首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Cloned cDNAs encoding mannose-binding proteins isolated from rat liver have been used to isolate one of the genes encoding this group of proteins. This gene, which encodes the minor form of binding protein (designated MBP-A), has been characterized by sequence analysis. The protein-coding portion of the mRNA for the MBP-A is encoded by four exons separated by three introns. The NH2-terminal, collagen-like portion of the protein is encoded by the first two exons. These exons resemble the exons found in the genes for nonfibrillar collagens in that the intron which divides them is inserted between the first two bases of a glycine codon and the exons do not have the 54- or 108-base pair lengths characteristic of fibrillar collagen genes. The carbohydrate-binding portion of MBP-A is encoded by the remaining two exons. This portion of the protein is homologous to the carbohydrate-recognition domain of the hepatic asialoglycoprotein receptor, which is encoded by four exons. It appears that the three COOH-terminal exons of the asialoglycoprotein receptor gene have been fused into a single exon in the MBP-A gene. The organization of the MBP-A gene is very similar to the arrangement of the gene encoding the highly homologous pulmonary surfactant apoprotein, although one of the intron positions is shifted by a single amino acid. The 3' end of a mannose-binding protein pseudogene has also been characterized.  相似文献   

2.
A J Harmar  V Hyde  K Chapman 《FEBS letters》1990,275(1-2):22-24
The neuropeptides substance P and neurokinin A are synthesised from a family of precursor polypeptides encoded by the preprotachykinin A (PPT) gene. In addition to a mRNA (beta-PPT) containing all 7 exons of the gene, alternatively spliced mRNAs lacking either exon 4 (gamma-PPT) or exon 6 (alpha-PPT) have been identified. We have determined the sequences of cDNA clones encoding four variants of PPT mRNA from rat dorsal root ganglion (DRG), including a novel mRNA species (delta-PPT) in which both exons 4 and 6 are absent. The sequence of delta-PPT predicts the existence of a novel tachykinin precursor polypeptide.  相似文献   

3.
The structure of monkey (Chlorocebus aethiops) heparin-binding EGF-like growth factor (HB-EGF) gene has been investigated in this work in comparison with the known structure of human gene. It was shown that HB-EGF short form (SF-HB-EGF) specific exon 3a is mapped between exons 3 and 4 at distance 700 b.p. from exon 4. In a number of human and simian cell lines the main part of SF-HB-EGF mRNA does not contain HB-EGF mRNA specific exons 4 and 5. In comparison with HB-EGF mRNA in SF-HB-EGF mRNA P-form, but not L-form of is predominant, and this mRNA encodes a polypeptide with changed propeptide structure. Labeled SF-HB-EGF competes with HB-EGF and EGF for binding sites at A431 cell surface, which may be due to interaction with specific receptor. All the data suggest a specific role of SF-HB-EGF in cellular signalization.  相似文献   

4.
5.
cDNAs that code for mouse organic anion transporting polypeptide 2 (oatp2) have been cloned. At least three forms of mouse oatp2 cDNAs containing the same coding sequence were isolated. The common coding sequence is for a protein of 670 amino acids with 12 putative transmembrane domains. The deduced amino acid sequence of the mouse oatp2 shares 89% identity with the reported rat oatp2. Cloning and analysis of mouse oatp2 gene indicates that these isoforms are alternatively spliced products from the same gene. Heterogeneity was observed in the 5'-untranslated region of the cDNAs. Two of the three isoforms lacked the noncoding exon 3 sequence. Northern-blot hybridization analysis using the exon 3-specific probes demonstrated that mouse oatp2 mRNA containing exon 3 sequence is expressed in heart and lung, whereas exon 1-, 2-, and 17-specific probes detected mRNA only in brain and liver. The mouse oatp2 gene consists of 17 exons, including three noncoding exons, and 16 introns. All of the introns are flanked by GT-AG splice sequences except for intron 10 that is flanked by GC-AG splice sequence.  相似文献   

6.
7.
Alternative splicing of glucokinase mRNA in rat liver.   总被引:3,自引:0,他引:3       下载免费PDF全文
The sequences of two near full-length cDNAs encoding rat liver glucokinase are reported. One of the cDNAs is essentially identical to the cDNA cloned by Andreone, Printz, Pilkis, Magnuson & Granner. [(1989) J. Biol. Chem. 264, 363-369]. The other cDNA contains a 151 bp insertion and a downstream 52 bp deletion. The inserted block of bases has been shown to originate from an optional cassette exon, termed 2A, between the previously described exons 1 and 2. The conceptual translation product from the variant mRNA is identical to the original glucokinase protein for the first 15 amino acids. Next there is a novel polypeptide sequence of 87 residues, comprising 50 residues encoded by the cassette exon and 37 residues specified by an altered reading frame in exon 2. Due to the 52 bp deletion, 17 amino acids of the reference sequence are then missing, after which the sequence reverts to the original. Northern blot analysis with oligonucleotide probes has shown that alternatively spliced mRNA represents about 5% of total glucokinase mRNA. Alternative splicing of glucokinase mRNA in liver may explain earlier findings of minor isoforms of hepatic glucokinase.  相似文献   

8.
9.
10.
Abstract: Aromatic l -amino acid decarboxylase (AADC) is found in both neuronal cells and nonneuronal cells, and a single gene encodes rat AADC in both neuronal and nonneuronal tissues. However, two cDNAs for this enzyme have been identified: one from the liver and the other from pheochromocytoma. Exons 1a and 1b are found in the liver cDNA and the pheochromocytoma cDNA, respectively. In the third exon (exon 2), there are two alternatively utilized splicing acceptors specific to these exons, 1a and 1b. Structural analysis of the rat AADC gene showed that both alternative promoter usage and alternative splicing are operative for the differential expression of this gene. To demonstrate whether alternative promoter usage and splicing are tissue specific and whether the exons 1a and 1b are differentially and specifically transcribed in nonneuronal and neuronal cells, respectively, in situ hybridization histochemistry for the rat brain, adrenal gland, liver, and kidney was carried out using these two exon probes. The exon 1a probe specifically identified AADC mRNA only in nonneuronal cells, including the liver and kidney, and the exon 1b probe localized AADC mRNA to monoaminergic neurons in the CNS and the adrenal medulla. Thus, both alternative promoter usage and differential splicing are in fact operative for the tissue-specific expression of the rat AADC gene.  相似文献   

11.
Recent studies on the human oestrogen receptor (ER) gene have revealed the complex system with the multiple untranslated first exons and promoters in the ER gene expression. Little information is however available on the system in the ER gene of the rat or nonhuman primate. The rat genomic library was first screened by the rat ER cDNA (0–1) probe. One of the four positive clones (λ rEgEl) was subcloned and sequenced. The nucleotide sequence was found to contain the exon 0, the intron 0, and the exon 1 with its 3′-ends. The novel untranslated first exons, the exon ON and the exon OS, were further identified. These results indicated the presence of at least four subtypes of the rat ER mRNAs; the messages transcribed from promoter P-0 (ER mRNA (0–1)), putative promoter P-1 (ER mRNA (1–1)), promoter P-ON (ER mRNA (ON-1)) and promoter P-OS (ER mRNA (OS-1)). The P-O- or P-1 driven message (0–1) or (1–1) appeared to be expressed most strongly in major oestrogen central- (anterior pituitary, AP, hypothalamus–preoptic area, HPOA, and amygdala, AMG) and peripheral targets (uterus and ovary). The message (ON-1) was strongly expressed in the liver and kidney, but not in the HPOA, AMG, cerebral cortex, CC, and cerebellum, Ce. The OS-1 message was expressed variably but generally in the tissues examined except for the CC and Ce. Thus, the region- and tissue specific expression of the rat ER gene is likely to be regulated by the multiple untranslated exons and promoters system. Furthermore, when the ER mRNA subtypes were examined in the rat neonatal CC where the ER protein level rose transiently, considered as a model for the development of the ER or progestin receptor A and B isoforms, the expression of the ER mRNAs seemed to be differential postnatally, implicating some stage dependent usage of the promoters in the development. In the monkey, we identified the untranslated first exon OS, the homologue of the rat exon OS. Interestingly, the exon C was found to consist of two different exons, the exon OK and the exon OG. By the alternative usage of the promoters and the alternative splicing, at least six ER mRNA subtypes, that is, ER mRNAs (0–1), (1–1), (OS-1), (OS-OG-1), (OK-1) and (OK-OG-1) were identified in the monkey tissues. These messages were also differentially distributed in the monkey brain and other tissues. It was noteworthy that the P-OK driven messages were expressed almost exclusively in the monkey liver. These results have suggested that the systems of the multiple untranslated first exons and promoters and the alternative splicing are involved in the regulation of the region- and tissue specific expression of the ER gene in the brain and peripheral tissues of the rat and monkey. Stage-related usage of the promoters was also suggested in the ER gene expression in the CC of the postnatal rat in development.  相似文献   

12.
13.
14.
15.
16.
The complete nucleotide sequence of the rat aldolase A isozyme gene, including the 5' and 3' flanking sequences, was determined. The gene comprises ten exons, spans 4827 base-pairs and occurs in a single copy per haploid rat genome. The genomic DNA sequence was compared with those of three species of rat aldolase A mRNA (mRNAs I, II and III) that have been found to differ from each other only in the 5' non-coding region and to be expressed tissue-specifically. It revealed that the first exon (exon M1) encodes the 5' non-coding sequence of mRNA I, while the second exon (exon AH1) encodes those of mRNAs II and III and the following eight exons (exons 2 to 9) are shared commonly by all the mRNA species. These results allowed us to conclude that mRNA I and mRNAs II, III were generated from a single aldolase A gene by alternative usage of exon M1 or exon AH1 in addition to exons 2 to 9. S1 nuclease mapping of the 5' ends of their precursor RNAs suggested that these three mRNA species were transcribed from three different initiation sites on the single gene.  相似文献   

17.
18.
The complete nucleotide sequence and exon/intron structure of the rat embryonic skeletal muscle myosin heavy chain (MHC) gene has been determined. This gene comprises 24 X 10(3) bases of DNA and is split into 41 exons. The exons encode a 6035 nucleotide (nt) long mRNA consisting of 90 nt of 5' untranslated, 5820 nt of protein coding and 125 nt of 3' untranslated sequence. The rat embryonic MHC polypeptide is encoded by exons 3 to 41 and contains 1939 amino acid residues with a calculated Mr of 223,900. Its amino acid sequence displays the structural features typical for all sarcomeric MHCs, i.e. an amino-terminal "globular" head region and a carboxy-terminal alpha-helical rod portion that shows the characteristics of a coiled coil with a superimposed 28-residue repeat pattern interrupted at only four positions by "skip" residues. The complex structure of the rat embryonic MHC gene and the conservation of intron locations in this and other MHC genes are indicative of a highly split ancestral sarcomeric MHC gene. Introns in the rat embryonic gene interrupt the coding sequence at the boundaries separating the proteolytic subfragments of the head, but not at the head/rod junction or between the 28-residue repeats present within the rod. Therefore, there is little evidence for exon shuffling and intron-dependent evolution by gene duplication as a mechanism for the generation of the ancestral MHC gene. Rather, intron insertion into a previously non-split ancestral MHC rod gene consisting of multiple tandemly arranged 28-residue-encoding repeats, or convergent evolution of an originally non-repetitive ancestral MHC rod gene must account for the observed structure of the rod-encoding portion of present-day MHC genes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号