首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine interindividual differences in sperm chromosome aneuploidy, repeated semen specimens were obtained from a group of ten healthy men, aged 20-21 at the start of the study, and analyzed by multi-color fluorescence in situ hybridization (FISH) analysis to determine the frequencies of sperm aneuploidy for chromosomes X, Y, 8, 18 and 21 and of diploidy. Semen samples were obtained three times over a five-year period. Statistical analysis examining the stability of sperm aneuploidy over time by type and chromosome identified two men who consistently exhibited elevated frequencies of sperm aneuploidy (stable variants): one with elevated disomy 18 and one with elevated MII diploidy. Differences among frequencies of aneuploidy by chromosome were also seen. Overall, disomy frequencies were lower for chromosome X, 8 and 18 than for chromosomes 21 or Y and for XY aneuploidy. The frequency of chromosome Y disomy did not differ from XY sperm frequency. Also, the frequency of meiosis I (XY) and II (YY + XX) sex chromosome errors did not differ in haploid sperm, but the frequency of MII errors was lower than MI errors in diploid sperm. Frequencies of sperm aneuploidy were similar between the first sampling period and the second, two years later. However, the frequency of some types of aneuploidy (XY, disomy Y, disomy 8, total autosomal disomies, total diploidy, and subcategories of diploidy) increased significantly between the first sampling period and the last, five years later, while others remained unchanged (disomy X, 21 and 18). These findings confirm inter-chromosome differences in the frequencies of disomy and suggest that some apparently healthy men exhibit consistently elevated frequencies of specific sperm aneuplodies. Furthermore, time/age-related changes in sperm aneuploidy may be detected over as short a period as five years in a repeated-measures study.  相似文献   

2.
With increasing availability of drugs for impotence and advanced reproductive technologies for the treatment of subfertility, more men are fathering children at advanced ages. We conducted a study of the chromosomal content of sperm of healthy men aged 24-57 years to (a) determine whether father's age was associated with increasing frequencies of aneuploid sperm including XY, disomy X, disomy Y, disomy 21, and sperm diploidy, and (b) examine the association between the frequencies of disomy 21 and sex-chromosomal aneuploidies. The study group consisted of 38 fathers of boys with Klinefelter syndrome (47, XXY) recruited nationwide, and sperm aneuploidy was assessed using multicolor X-Y-21 sperm FISH ( approximately 10,000 sperm per donor). Paternal age was significantly correlated with the sex ratio of sperm (Y/X; P=.006) and with the frequency of XY sperm (P=.02), with a clear trend with age by decades (P<.006). Compared with fathers in their 20s (who had an average frequency of 7.5 XY sperm per 10,000), the frequencies of XY sperm were 10% higher among fathers in their 30s, 31% higher among those in their 40s, and 160% higher among those in their 50s (95% CI 69%-300%). However, there was no evidence for age effects on frequencies of sperm carrying nullisomy sex; disomies X, Y, or 21; or meiosis I or II diploidies. The frequencies of disomy 21 sperm were significantly associated with sex-chromosomal aneuploidy (P=.04)-in particular, with disomy X (P=.004), but disomy 21 sperm did not preferentially carry either sex chromosome. These findings suggest that older fathers produce higher frequencies of XY sperm, which may place them at higher risk of fathering boys with Klinefelter syndrome, and that age effects on sperm aneuploidy are chromosome specific.  相似文献   

3.
Infertile men undergoing intracytoplasmic sperm injection have an increased frequency of chromosome abnormalities in their sperm. Men with low sperm concentration (oligozoospermia) have an increased risk of sperm chromosome abnormalities. This study was initiated to determine whether men with severe oligozoospermia (<10(6) sperm/ml) have a higher frequency of chromosome abnormalities in their sperm compared with men with moderate (1-9 x 10(6) sperm/ml) or mild (10-19 x 10(6) sperm/ml) oligozoospermia. Multicolor fluorescence in situ hybridization analysis was performed using DNA probes specific for chromosomes 13, 21, X, and Y (with chromosome 1 as an autosomal control for the sex chromosomes). Aneuploidy and disomy frequencies were assessed from a total of 603,011 sperm from 30 men: 10 in each of the categories. The mean frequencies of disomy for the patients with mild, moderate, and severe oligozoospermia were 0.17%, 0.24%, and 0.30%, respectively, for chromosome 13 and 0.22%, 0.44%, and 0.58%, respectively, for chromosome 21. For the sex chromosomes, the mean frequencies of disomy for mild, moderate, and severe oligozoospermia were 0.25%, 1.04%, and 0.68%, respectively, for XY, 0.047%, 0.08%, and 0.10%, respectively, for XX, and 0.04%, 0.06%, and 0.09%, respectively, for YY. The frequencies for diploidy also increased from 0.4% for mild to 1.20% for moderate to 1.24% for severe oligozoospermia. There was a significant inverse correlation between the frequency of sperm chromosome abnormalities and the sperm concentration for XY, XX, and YY disomy and diploidy. These results demonstrate that men with severe oligozoospermia have an elevated risk for chromosome abnormalities in their sperm, particularly sex chromosome abnormalities.  相似文献   

4.
The frequency of aneuploid sperm was assessed by fluorescence in situ hybridisation (FISH) in a 47,XYY male previously studied by sperm karyotyping. A total of 20,021 sperm were studied: 10,017 by two-colour FISH for chromosomes 13 and 21 and 10,002 by three-colour FISH for the sex chromosomes using chromosome 1 as an autosomal control for diploidy and lack of hybridisation. Results were compared with more than 500,000 sperm from 18 normal men. The frequencies of X-bearing (49.4%) and Y-bearing sperm (49.8%) were not significantly different from 50% as shown in our sperm karyotyping study. There was no significant increase in the frequency of diploid sperm compared with control donors. There was a significant increase in the frequency of disomy for chromosome 13 (p < 0.0001) and XY disomy (p = 0.0008) compared with control donors. However, since the frequency of disomy was 0.40% for chromosome 13 and 0.55% for XY disomy, it is not surprising that these increases were not discovered previously in our analysis of 75 sperm karyotypes. Our results suggest that the extra Y chromosome is eliminated during spermatogenesis in the majority of cells but that there may be a small but significant increase in the frequency of aneuploid sperm in these men.  相似文献   

5.
We studied the frequencies of X- and Y-chromosome-bearing sperm, diploidy and disomy for chromosomes 1, 12, X, and Y in sperm from 10 normal men aged 21-52 years, to determine whether there was any relationship between donor age and any of these variables. Multicolor FISH was used to control for lack of probe hybridization and to distinguish diploid sperm from disomic sperm. A minimum of 10,000 sperm per donor was evaluated for each chromosome, for a total of 225,846 sperm studied. Sperm were considered disomic if two fluorescent signals were separated by a minimal distance of one signal domain. The mean frequencies of X- and Y-bearing sperm were 50.1% and 49.0%, respectively; not significantly different from 50%. There was no correlation between paternal age and "sex ratio" in sperm. Similarly, there was no association between the frequency of diploid sperm (mean, .16%; range, .06-.42%) and donor age. For disomy frequencies, there was no relationship between donor age and disomy 12 (mean, .16%; range, .10%-.25%), XX (mean, .07%; range, .03%-.17%), and XY sperm (mean, .16%; range, .08%-.24%). There was a significant increase in the frequency of YY sperm (P = .04; mean, .18%; range, .10%-.43%) and disomy 1 sperm (P = .01; mean, .11%; range, .05%-.18%) with donor age. In summary, our results do not support a correlation between paternal age and sex ratio or diploidy.  相似文献   

6.
Repeated semen specimens from healthy men were analyzed by sperm fluorescence in situ hybridization (FISH), to identify men who consistently produced elevated frequencies of aneuploid sperm and to determine whether men who were identified as stable variants of sperm aneuploidy also exhibited higher frequencies of aneuploidy in their peripheral blood lymphocytes. Seven semen specimens were provided by each of 15 men over a 2-year period and were evaluated by the X-Y-8 multicolor sperm FISH method (i.e., approximately 1,050,000 sperm were analyzed from 105 specimens). Three men were identified as stable aneuploidy variants producing significantly higher frequencies of XY, disomy X, disomy Y, disomy 8, and/or diploid sperm over time. In addition, one man and three men were identified as sperm-morphology and sperm-motility variants, respectively. Strong correlations were found between the frequencies of sperm with autosomal and sex-chromosome aneuploidies and between the two types of meiosis II diploidy; but not between sperm aneuploidy and semen quality. A significant association was found between the frequencies of sex-chromosome aneuploidies in sperm and lymphocytes in a subset of 10 men (r2=0.67, P=.004), especially between XY sperm and sex-chromosome aneuploidy in lymphocytes (r2=0.70, P=.003). These findings suggest that certain apparently healthy men can produce significantly higher frequencies of both aneuploid sperm and lymphocytes. Serious long-term somatic and reproductive health consequences may include increased risks of aneuploidy-related somatic diseases and of having children with paternally transmitted aneuploidies, such as Klinefelter, Turner, triple-X, and XYY syndromes.  相似文献   

7.
Research over the past few years has clearly demonstrated that infertile men have an increased frequency of chromosome abnormalities in their sperm. These studies have been further corroborated by an increased frequency of chromosome abnormalities in newborns and fetuses from pregnancies established by intracytoplasmic sperm injection. Most studies have considered men with any type of infertility. However, it is possible that some types of infertility have an increased risk of sperm chromosome abnormalities, whereas others do not. We studied 10 men with a specific type of infertility, asthenozoospermia (poor motility), by multicolor fluorescence in situ hybridization analysis to determine whether they had an increased frequency of disomy for chromosomes 13, 21, XX, YY, and XY, as well as diploidy. The patients ranged in age from 28 to 42 yr (mean 34.1 yr); they were compared with 18 normal control donors whose ages ranged from 23 to 58 yr (mean 35.6 yr). A total of 201 416 sperm were analyzed in the men with asthenozoospermia, with a minimum of 10 000 sperm analyzed per chromosome probe per donor. There was a significant increase in the frequency of disomy in men with asthenozoospermia compared with controls for chromosomes 13 and XX. Thus, this study indicates that infertile men with poorly motile sperm but normal concentration have a significantly increased frequency of sperm chromosome abnormalities.  相似文献   

8.
The objective of this research was to develop chromosome-specific probes for use in evaluating aneuploidy in boar spermatozoa through the application of fluorescence in situ hybridization (FISH) technology. A multicolor FISH method was developed to detect aneuploidy in the sperm of boars using DNA probes specific for small regions of chromosomes 1, 10, and Y. The average frequencies of sperm with disomy for chromosomes 1, 10, and Y were 0.075%, 0.067%, and 0.094%, respectively. The incidence of disomy did not differ significantly by chromosome. The average frequencies of diploidy were 0.177% for 1-1-10-10 and 0.022% for Y-Y-10-10. Thus, the incidence of overall diploidy (1-1-10-10) was significantly higher than that of disomy for the chromosomes examined (P < 0.01 for disomy of the autosomes and P < 0.05 for disomy of the Y chromosome). No significant age or breed effects on disomy and diploidy rates and no significant interindividual variations in disomy or diploidy were found. The observed level of numerical chromosome aberrations in pig sperm appear to be within the range of the baseline frequencies reported so far in men.  相似文献   

9.
Application of fluorescence in situ hybridization (FISH) analysis has opened the way for comprehensive studies on numerical chromosome abnormalities in human sperm. During the last decade, more than five million sperm from approximately 500 normal men were analyzed by a number of laboratories from around the world by this approach. Except for chromosome 19 which has been analyzed in only one study, all other chromosomes have been examined by two or more studies with considerable differences in disomy frequency for an individual chromosome among studies. The mean disomy frequency is 0.15% for each of the autosomes and 0.26% for the sex chromosomes. Most chromosomes analyzed have an equal distribution of disomy with the exception of chromosomes 14, 21, 22 and the sex chromosomes, which display significantly higher disomy frequencies. Slight but significant increases in disomy frequency with advancing paternal age were observed for some chromosomes, in particular for the sex chromosomes. Some lifestyle factors such as smoking, alcohol drinking and caffeine consumption have been investigated and no consistent association between disomy frequency and any type of lifestyle factors has been established. The question of whether different geographic and ethnic groups of men have inherent differences in frequency of disomic sperm has been investigated by two studies with conflicting results.  相似文献   

10.
Renée Martin 《Chromosoma》1998,107(6-7):523-527
Our studies of human sperm karyotypes and interphase sperm analyzed by fluorescence in situ hybridization (FISH) have both yielded estimates of disomy frequencies of approximately 0.1% per chromosome with an overall aneuploidy frequency in human sperm of approximately 5%–6%. However, the distribution of aneuploidy in sperm is not even, as our data from sperm karyotypes and multicolour FISH analyses both demonstrate a significant increase in the frequency of aneuploidy for chromosome 21 and the sex chromosomes. We have studied men at increased risk of sperm chromosomal abnormalities including cancer patients and infertility patients. Testicular cancer patients were studied before and 2–13 years after chemotherapy (CT) with BEP (bleomycin, etoposide, cisplatin). Sperm karyotype analysis on 788 sperm demonstrated no significant difference in the frequency of numerical or structural chromosomal abnormalities post-CT vs pre-CT. Similarly, multicolour FISH analysis for chromosomes 1, 12, XX, YY and XY in 161,097 sperm did not detect any significant differences in the frequencies of disomy before and after treatment. However, recent evidence has suggested a significant increase in the frequency of disomy and diploidy during CT. We have found that infertile men, who would be candidates for intracytoplasmic sperm injection, have an increased frequency of chromosomally abnormal sperm karyotypes. Also, FISH analysis for chromosomes 1, 12, 13, 21, XX, YY and XY in 255,613 sperm demonstrated a significant increase in chromosomes 1, 13, 21, and XY disomy in infertile men compared with control donors. Received: 4 July 1998; in revised form: 7 September 1998 / Accepted: 8 September 1998  相似文献   

11.
In situ hybridizations were performed on mature human sperm cells with biotin-labeled -satellite DNA probes specific for chromosomes 3, 7, 10, 11, 17, and X in order to reveal the disomy rate for each of these chromosomes. A total of 76 253 sperm nuclei from seven healthy probands aged 23–57 years were analyzed. An average of 12 000 sperm nuclei (at least 1500 per donor) showing hybridization were scored with each probe. The disomy rate as indicated by two distinct hybridization signals turned out to be similar for all chromosomes, ranging from 0.31% to 0.34%. There were no significant interindividual differences and no age correlation in the frequency of disomic sperm cells between the donors.  相似文献   

12.
Aged men, known to have high serum gonadotropin levels and reduced spermatogenic potential, were used to study the relationship between serum follicle-stimulating hormone (FSH) and germ cell degeneration. Serum hormones were measured from blood obtained at autopsy. Phase-contrast cytometry was used to enumerate germ cells in homogenates of fixed testes from 13 younger (24-51 yr) and 14 aged (69-90 yr) men. The developmental steps of spermatogenesis during which germ cells degenerate were determined by comparing potential daily sperm production based on primary spermatocytes with daily sperm production based on two different types of spermatids. During spermiogenesis, there was no significant degeneration in the younger or aged men. During postprophase of meiosis, aged men had more (p less than 0.01) germ cell degeneration, significantly lower (p less than 0.05) serum testosterone, and greater (p less than 0.01) serum FSH than did younger men. Germ cell degeneration during postprophase of meiosis was negatively correlated (p less than 0.01) to daily sperm production and significantly (p less than 0.01) related to serum concentrations of FSH. As revealed in these aged men, meiotic germ cell degeneration has a direct effect on daily sperm production and is significantly related to serum FSH concentrations.  相似文献   

13.
Hereditary nonpolyposis colon cancer (HNPCC) has been shown to be caused by mutations in the mismatch repair genes hMSH2, hMLH1, hPMS1, and hPMS2. Recent evidence has demonstrated that mutations in mismatch repair genes disrupt meiosis in mice. A large HNPCC kindred in Newfoundland, Canada, has an hMSH2 mutation-an A-->T transversion at the +3 position of the splice-donor site of exon 5. We have studied sperm from men with this hMSH2 mutation, since it is possible that mismatch repair mutations in humans might also have an effect on meiosis and normal segregation of chromosomes. The frequencies of aneuploid and diploid sperm were determined in 10 men with the hMSH2 mutation, by use of multicolor FISH analysis for chromosomes 13, 21, X, and Y. A minimum of 10,000 sperm per man was studied per chromosome probe. Control individuals consisted of men in the same kindred with HNPCC who did not carry the mutation and of other normal men from Newfoundland. A total of 321,663 sperm were analyzed: 200,905 sperm were from men carrying the hMSH2 mutation and 120,758 sperm were from control men. There was a significantly increased frequency of disomy 13, disomy 21, XX, and diploidy in mutation carriers compared with control men. These results suggest that the hMSH2 mutation may affect meiosis in humans.  相似文献   

14.
The purpose of this study was to analyse the frequency of disomy for chromosomes 1, 13, 14, 18, 21, 22, X and Y in sperm nuclei of 50 infertile men and 10 healthy probands of proven fertility. Semen parameters (sperm count, global motility and morphology), urological clinical examination, genital ultrasound and lymphocyte karyotyping were performed for each patient. Disomy frequency was established by fluorescence in situ hybridization by using whole chromosome paint probes. The mean rate of disomy for the various autosomes studied was higher in infertile males than in subjects of proven fertility. Interchromosomal and interindividual differences in the disomy frequency were observed between the 50 patients. The mean frequency of homodisomy YY and heterodisomy XY was increased in spermatozoa of patients with low semen quality parameters (0.24% and 0.54%, respectively). The disomy frequency in infertile males was directly correlated with the severity of oligospermia. However, no relationship was established between aneuploidy rate, sperm motility, morphology or clinical phenotype. These results support the hypothesis that, during spermatogenesis of males with sperm parameter alterations, a decreased frequency of meiotic chromosome pairing and crossing over may lead to spermatogenesis arrest at the meiosis stage and/or to an increase of meiotic nondisjunctions. Meiotic arrest in some germ cells may be responsible for oligospermia and nondisjunctions in other cells for aneuploidy in mature male gametes.  相似文献   

15.
Many studies have been published establishing the background frequencies of disomic and diploid sperm in normal men by fluorescence in situ hybridization (FISH) analysis, with highly significant variance among the reports. Besides interdonor heterogeneity and differences in the experimental protocols used, the question of inherent differences in chromosome malsegregation and meiotic arrest among different geographic and ethnic groups of donors has been raised. In this study, multicolor FISH analysis was carried out on semen samples from 10 nonsmoking, nondrinking Chinese men from the People's Republic of China. The results were compared to FISH data on 10 nonsmoking, nondrinking Canadians under the same experimental conditions, in the same laboratory. A total of 200,497 sperm was scored in the Chinese donors and compared to 202,320 sperm from Canadian donors. Approximately 10,000 sperm per chromosome probe per donor were analyzed. The mean hybridization efficiency was 99.99%. The frequencies of X-bearing and Y-bearing sperm were not significantly different from the expected 50% for each individual and for the combined data from all donors (49.73% vs. 49.46%, P = 0.3946). The mean disomy frequencies (range) were 0.07% (0.02%-0.12%) for chromosome 13, 0.18% (0.09%-0.19%) for chromosome 21, 0.05% (0. 01%-0.09%) for 24,XX, 0.02% (0.01%-0.06%) for 24,YY, and 0.29% (0. 13%-0.49%) for 24,XY. The mean diploidy frequency (range) was 0.38% (0.22%-0.73%) for 13-21 hybridizations and 0.32% (0.07%-0.70%) for XY hybridizations. Highly significant interdonor heterogeneity was found for diploidy (P = 0.0000) and for XY disomy (P = 0.0011), but no age effect was observed in any category of disomic or diploid sperm. The data reported here show no marked differences in disomy and diploidy frequencies between the mainland Chinese and Canadian groups, if donor heterogeneity is taken into account.  相似文献   

16.
Acrocentric chromosomes may be particularly predisposed to nondisjunction because of the frequency of trisomy for these chromosomes in human spontaneous abortions and liveborns. Studies of aneuploidy in human sperm have provided data on only a few acrocentric chromosomes, with evidence that chromosome 21 has a significantly increased frequency of disomy. To determine whether other acrocentric chromosomes have a higher frequency of nondisjunction or if chromosome 21 is anomalous, disomy frequencies for chromosomes 13 and 22 were studied by fluorescence in situ hybridization (FISH) analysis of 51,043 sperm nuclei from five normal men for whom the frequency of disomy for chromosomes 15 and 21 was known. The mean frequency of disomy for chromosome 13 (0.19%) did not differ significantly from that for other autosomes; however, the frequency of disomy 22 (1.21%) was significantly elevated (P < 0.001, Mantel-Haenszel chi(2) test). The G-group chromosomes (Nos. 21 and 22) also showed a significantly increased frequency of disomy (0. 75%) compared to acrocentric D-group chromosomes (viz., chromosomes 13 and 15; 0.15%) (P < 0.001, Mantel-Haenszel chi(2) test) and other autosomes (chromosomes 1, 2, 4, 9, 12, 13, 15, 16, 18, and 20; 0. 13%) studied in the same men (P < 0.001, Mantel-Haenszel chi(2) test).  相似文献   

17.
Aneuploidy estimates for chromosomes 1, 12, X, and Y were obtained in human sperm from five donors using multicolor fluorescence in situ hybridization (FISH) analysis. Disomy frequencies were obtained by scoring a minimum of 10,000 sperm for each chromosome probe per donor. This analysis was replicated for two scoring criteria: one used one half of a signal domain as the minimum distance between two signals to be counted as two and thus disomic; the other set one signal domain as the minimum distance between two signals. A total of 120,870 sperm were assessed using one half of a domain as the criterion, and 113,478 were scored using one domain as the criterion. The percentage of disomy for chromosomes 1, 12, X, Y, and XY was 0.18, 0.16, 0.15, 0.19, and 0.25, respectively, using the one-half-domain criterion, and 0.08, 0.17, 0.07, 0.12, and 0.16, respectively, using the one-domain criterion. The percentage of disomy decreased significantly with use of one domain as the minimum distance for signal separation for all chromosomes except for chromosome number 12. These lower disomy frequencies correlated well with frequencies derived from human sperm karyotypes analyzed in our laboratory. This suggests that the fluorescent signals for chromosomes 1, X, and Y split into more than one domain in decondensed interphase sperm, and that the use of the one-half-domain criterion would lead to an overestimate of aneuploidy frequencies. The factors known to affect aneuploidy estimates derived from FISH studies are discussed, and recommendations for stringent scoring criteria are proposed. © 1995 wiley-Liss, Inc.  相似文献   

18.
Pesticides are some of the most frequently released toxic chemicals into the environment. Exposure to them has been associated with reproductive dysfunction, but the knowledge of the genotoxic risks of these substances is still limited. In vitro and in vivo, many pesticides are shown to induce aneuploidy. Analysis of sperm chromosomes by fluorescence in situ hybridization (FISH) with chromosome-specific probes has obtained increasing popularity in genetic toxicology. Sperm-FISH studies on men exposed to pesticides have yielded conflicting results: in men exposed to multiple pesticides during spraying no increased disomy frequencies in sperm were observed, although one study reported an increased rate of sex chromosome nullisomy. In contrast the two studies conducted in pesticide factories showed increased frequencies of sperm aneuploidy in exposed men compared to controls. The available data indicates that at least some of the commonly used pesticides are capable of inducing aneuploidy in human sperm when the exposure level is high enough.  相似文献   

19.
This study reviews the frequency and distribution of numerical and structural chromosomal abnormalities in spermatozoa from normal men obtained by the human-hamster system and by multicolor-FISH analysis on decondensed sperm nuclei. Results from large sperm karyotyping series analyzed by chromosome banding techniques and results from multicolor FISH in sperm nuclei (of at least 10(4) spermatozoa per donor and per probe) were reviewed in order to establish baseline values of the sperm chromosome abnormalities in normal men. In karyotyping studies, the mean disomy frequency in human sperm is 0.03% for each of the autosomes, and 0.11% for the sex chromosomes, lower than those reported in sperm nuclei by FISH studies using a similar methodology (0.09% and 0.26%, respectively). Both types of studies coincide in that chromosome 21 and sex chromosomes have a greater tendency to suffer segregation errors than the rest of the autosomes. The mean incidence of diploidy, only available from multicolor FISH in sperm nuclei, is 0.19%. Inter-donor differences observed for disomy and diploidy frequencies among FISH studies of decondensed sperm nuclei using a similar methodology could reflect real differences among normal men, but they could also reflect the subjective application of the scoring criteria among laboratories. The mean frequency of structural aberrations in sperm karyotypes is 6.6%, including all chromosome types of abnormalities. Chromosome 9 shows a high susceptibility to be broken and 50% of the breakpoints are located in 9q, between the centromere and the 9qh+ region. Structural chromosome aberrations for chromosomes 1 and 9 have also been analyzed in human sperm nuclei by multicolor FISH. Unfortunately, this assay does not allow to determine the specific type of structural aberrations observed in sperm nuclei. An association between advancing donor age and increased frequency of numerical and structural chromosome abnormalities has been reported in spermatozoa of normal men.  相似文献   

20.
We reviewed the frequency and distribution of disomy in spermatozoa obtained by multicolor-FISH analysis on decondensed sperm nuclei in (a) healthy men, (b) fathers of aneuploid offspring of paternal origin and (c) individuals with Klinefelter syndrome and XYY males. In series of healthy men, disomy per autosome is approximately 0.1% but may range from 0.03 (chromosome 8) to 0.47 (chromosome 22). The great majority of authors find that chromosome 21 (0.18%) and the sex chromosomes (0.27%) have significantly elevated frequencies of disomy although these findings are not universal. The total disomy in FISH studies is 2.26% and the estimated aneuploidy (2× disomy) is 4.5%, more than double that seen in sperm karyotypes (1.8%). Increased disomy levels of low orders of magnitude have been reported in spermatozoa of some normal men (stable variants) and in men who have fathered children with Down, Turner and Klinefelter syndromes. These findings suggest that men with a moderately elevated aneuploidy rate may be at a higher risk of fathering paternally derived aneuploid pregnancies. Among lifestyle factors, smoking, alcohol and caffeine have been studied extensively but the compounding effects of the 3 are difficult to separate because they are common lifestyle behaviors. Increases in sex chromosome abnormalities, some autosomal disomies, and in the number of diploid spermatozoa are general features in 47,XXY and 47,XYY males. Aneuploidy of the sex chromosomes is more frequent than aneuploidy of any of the autosomes not only in normal control individuals, but also in patients with sex chromosome abnormalities and fathers of paternally derived Klinefelter, Turner and Down syndromes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号