首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The half lives of mRNA for Escherichia coli chloramphenicol-acetyltransferase, Bacillus amyloliquefaciens alpha-amylase and human leucocyte interferon were measured in E. coli cells by molecular RNA.DNA hybridization. The effect of mutation in pnp gene, coding polynucleotide phosphorylase, on the stability of these mRNA was studied. The half life of interferon mRNA increases from 25 to 90 s in the pnp mutant, resulting in an increase of interferon accumulation. The stability of interferon in E. coli cells depends on the htpR gene, controlling the heat shock response. The yields of leucocyte interferons alpha-2, alpha I-1 and fibroblast interferon beta increase ten times in htpR mutants. Thus, by using pnp and htpR mutants it is possible to enhance considerably the eukaryotic gene expression in bacterial cells.  相似文献   

4.
5.
A dual affinity fusion approach has been used to study the expression and secretion of labile recombinant proteins in Escherichia coli. Here we show that three small eukaryotic proteins (human proinsulin, a thioredoxin homologous domain of rat protein disulfide isomerase, and the extracellular domain of the alpha 1.2-chain of a human T-cell receptor) are stabilized in vivo using a dual affinity fusion strategy, where the gene encoding the desired product is fused between two genes encoding two different affinity domains. Relatively high yields of full-length product were obtained for all three proteins as compared to when fused to a single fusion partner. Despite the use of a signal peptide, significant amounts of the disulfide protein isomerase and T-cell receptor gene products were maintained in the cytoplasm, while the proinsulin fusion was efficiently secreted to the periplasm. Interestingly, the E. coli heat shock proteins DnaK and GroEL were associated with the fusion proteins isolated from the cytoplasm.  相似文献   

6.
A deletion htpR mutant of Escherichia coli has been constructed on the basis of site-directed mutagenesis. To this end, the chromosomal allele of htpR gene was substituted by a mutant allele introduced into the cell with a recombinant plasmid. The htpR mutant is characterized by a reduced level of proteolysis and therefore by a decreased rate of proteolytic degradation of RNA polymerase of bacteriophage T7. The mutation in htpR is linked with chloramphenicol resistance.  相似文献   

7.
To produce glucoamylase efficiently as a recombinant protein, E. coli was grown with 20 g (NH4)2SO4 l–1 which removed proteolytic activity but did not effect cell growth. Growth in M9 medium with 20 g (NH4)2SO4 l–1 produced 11 U glucoamylase ml–1 compared to 7 U ml–1 without addition. Furthermore, the glucoamylase activity was maintained at about 9 U ml–1.  相似文献   

8.
9.
10.
The degradation in Escherichia coli of the recombinant serum-albumin-binding receptor derived from streptococcal protein G was investigated using a dual-affinity fusion approach. The proteolytic degradation of the receptor was characterized when fused to human proinsulin and human secretin. Several cleavages occurred at sequences not normally regarded as proteolytically sensitive, such as the dipeptide sequences Ile-Gly, Val-Ser and Ser-Ala. Depending on the fusion partner, large differences in the degradation of the albumin-binding domain were observed. Thus, susceptibility to proteolysis of a recombinant protein can be affected by a neighbouring domain.  相似文献   

11.
J Wower  P Maly  M Zobawa  R Brimacombe 《Biochemistry》1983,22(10):2339-2346
The detailed surface topography of the Escherichia coli 30S ribosomal subunit has been investigated, with iodination catalyzed by immobilized lactoperoxidase as the surface probe. Under mild conditions, only proteins S3, S7, S9, S18, and S21 were iodinated to a significant and reproducible extent. These proteins were isolated from the iodinated subunits, and in each case, the individual tyrosine residues that had reacted were identified by standard protein sequencing techniques. The targets of iodination that could be positively established were as follows: in protein S3 (232 amino acids), the tyrosines at positions 167 and 192; in S7 (153 amino acids), tyrosines 84 and 152; in S9 (128 amino acids), tyrosine 89; in S18 (74 amino acids), tyrosine 3 (tentative); in S21 (70 amino acids), tyrosines 37 and 70. The results represent part of a broader program to investigate ribosomal topography at the amino acid-nucleotide level.  相似文献   

12.
Y M Hou  P Schimmel 《Biochemistry》1992,31(17):4157-4160
Many of the mammalian mitochondrial tRNAs contain significant nucleotide deletions in the dihydrouridine (D) stem or T psi C stem, so that they cannot fold into the canonical cloverleaf structure. This suggests that alternative forms and shapes are possible for a mitochondrial tRNA that functions in the specialized translational apparatus of the mammalian mitochondria. The question of whether significant structural alterations may be accommodated by a bacterial protein synthesis machinery, such as in Escherichia coli, is unanswered. In this work, all but ten positions in the gene for the 76-nucleotide coding sequence of an E. coli amber suppressor tRNA were permuted and screened for biological activity in vivo. Sequence analysis of a collection of biologically active variants established that many have unusual structures that include base-pair mismatches in helical stems, substitutions of normally conserved bases, and deletions. Independent mutations were obtained that weaken base pairs or tertiary interactions that normally stabilize the coaxial stacking of the D and anticodon stems, suggesting that the translational apparatus can accommodate considerable flexibility in this part of the molecule. The results demonstrate the capacity of the bacterial protein synthetic apparatus to accommodate altered tRNA structures that are not represented by any naturally occurring tRNAs.  相似文献   

13.
M Br?ker  H P Harthus 《FEBS letters》1989,257(1):118-122
Mouse monoclonal antibodies were prepared against beta-galactosidase (EC 3.2.1.23) of Escherichia coli. The binding sites of these monoclonal antibodies within the beta-galactosidase molecule were estimated by immunoblot analyses to various defined peptide regions of beta-galactosidase, encoded by expression plasmids. Monoclonal antibodies were characterised, which either bind to the amino-terminal or to the carboxy-terminal region or to an internal section of beta-galactosidase. These defined monoclonal antibodies were shown to be a useful tool for characterisation of beta-galactosidase fusion proteins expressed in Escherichia coli.  相似文献   

14.
Secretion expression of recombinant glucagon in Escherichia coli   总被引:1,自引:0,他引:1  
A novel approach for the preparation of recombinant human glucagon was described. An expression vector pAGluT, containing phoA promoter, phoA signal peptide and glucagon gene, was constructed by means of genetic engineering. Escherichia coli strain YK537 was transformed with pAGluT. High-level secretory expression of recombinant human glucagon was achieved. The expression yield of recombinant human glucagon was found to be 80 mg/L, approximately 30% of the total proteins in supernatant. The biological activities and the physicochemical properties of the purified recombinant human glucagon were found to be the same as that of native glucagon. In addition, our results suggested that phoA expression system may be suitable for the expression of other small peptides.  相似文献   

15.
16.
将测序后的葡激酶重组质粒PUC-SAK经酶切后,组装于表达载体pBV220,构建成pBV-SAK表达质粒,转化大肠杆菌。重组葡激酶表达水平达60%~70%,相对分子质量为 15 500,主要以可溶状态存在于细胞中。生物活性测定证实,重组葡激酶具有很强的纤溶活性。  相似文献   

17.
Mutants of Escherichia coli were isolated which were affected in the formation of both formate dehydrogenase N (phenazine methosulfate reducing) (FDHN) and formate dehydrogenase H (benzylviologen reducing) (FDHH). They were analyzed, together with previously characterized pleiotropic fdh mutants (fdhA, fdhB, and fdhC), for their ability to incorporate selenium into the selenopolypeptide subunits of FDHN and FDHH. Eight of the isolated strains, along with the fdhA and fdhC mutants, maintained the ability to selenylate tRNA, but were unable to insert selenocysteine into the two selenopolypeptides. The fdhB mutant tested had lost the ability to incorporate selenium into both protein and tRNA. fdhF, which is the gene coding for the 80-kilodalton selenopolypeptide of FDHH, was expressed from the T7 promoter-polymerase system in the pleiotropic fdh mutants. A truncated polypeptide of 15 kilodaltons was formed; but no full-length (80-kilodalton) gene product was detected, indicating that translation terminates at the UGA codon directing the insertion of selenocysteine. A mutant fdhF gene in which the UGA was changed to UCA expressed the 80-kilodalton gene product exclusively. This strongly supports the notion that the pleiotropic fdh mutants analyzed possess a lesion in the gene(s) encoding the biosynthesis or the incorporation of selenocysteine. The gene complementing the defect in one of the isolated mutants was cloned from a cosmid library. Subclones were tested for complementation of other pleiotropic fdh mutants. The results revealed that the mutations in the eight isolates fell into two complementation groups, one of them containing the fdhA mutation. fdhB, fdhC, and two of the new fdh isolates do not belong to these complementation groups. A new nomenclature (sel) is proposed for pleiotropic fdh mutations affecting selenium metabolism. Four genes have been identified so far: selA and selB (at the fdhA locus), selC (previously fdhC), and selD (previously fdhB).  相似文献   

18.
Possibility of correction of proteolytic processes in cells of Escherichia coli and Pseudomonas aeruginosa has been studied. For this purpose recombinant plasmids directing the synthesis of antisense RNAs were constructed. In Ps. aeruginosa the synthesis of htpR antisense RNA resulted in 2.5-fold reduction of the intensity of degradation of 3H-puromycin polypeptides under heat shock conditions. An antisense RNA complementary to the 5'- end of E. coli lon gene decreased the same index to the level observed in lon- mutants. Genes homologous to htpR and lon genes of E. coli were found in Pseudomonas: bacteria in hybridisation experiments. This finding suggests that the genetic system of heat shock in these microorganisms is organized in a similar manner.  相似文献   

19.
20.
Expression of recombinant hemoproteins in Escherichia coli is often limited because a vast majority of the protein produced lacks the heme necessary for function. This is compounded by the fact that standard laboratory strains of E. coli have a limited capacity to withdraw heme from the extracellular environment. We are developing a new tool designed to increase the heme content of our proteins of interest by simply supplementing the expression medium with low concentrations of hemin. This hemoprotein expression (HPEX) system is based on plasmids (pHPEX1-pHPEX3) that encode an outermembrane-bound heme receptor (ChuA) from E. coli O157:H7. This heme receptor, and others like it, confers on the host the ability to more effectively internalize exogenous heme. Transformation of a standard laboratory E. coli protein expression strain (BL-21 [DE3]) with the pHPEX plasmid led to the expression of a new protein with the appropriate molecular weight for ChuA. The receptor was functional as demonstrated by the ability of the transformant to grow on iron-deficient media supplemented with hemin, an ability that the unmodified expression strain lacked. Expression of our proteins of interest, catalase-peroxidases, using this system led to a dramatic and parallel increase in heme content and activity. On a per-heme basis, the spectral and kinetic properties of HPEX-derived catalase-peroxidase were the same as those observed for catalase-peroxidases expressed in standard E. coli-based systems. We suggest that the pHPEX plasmids may be a useful addition to other E. coli expression systems and may help address a broad range of problems in hemoprotein structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号