首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Engagement of very late Ag-4 (integrin alpha(4)beta(1)) by ligands such as VCAM-1 markedly stimulates leukocyte migration mediated by LFA-1 (integrin alpha(L)beta(2)). This form of integrin trans-regulation in T cells requires the binding of paxillin to the alpha(4) integrin cytoplasmic domain. This conclusion is based on the abolition of trans-regulation in Jurkat T cells by an alpha(4) mutation (alpha(4)(Y991A)) that disrupts paxillin binding. Furthermore, cellular expression of an alpha(4)-binding fragment of paxillin that blocks the alpha(4)-paxillin interaction, selectively blocked VCAM-1 stimulation of alpha(L)beta(2)-dependent cell migration. The alpha(4)-paxillin association mediates trans-regulation by enhancing the activation of tyrosine kinases, focal adhesion kinase (FAK) and/or proline-rich tyrosine kinase-2 (Pyk2), based on two lines of evidence. First, disruption of the paxillin-binding site in the alpha(4) tail resulted in much less alpha(4)beta(1)-mediated phosphorylation of Pyk2 and FAK. Second, transfection with cDNAs encoding C-terminal fragments of Pyk2 and FAK, which block the function of the intact kinases, blocked alpha(4)beta(1) stimulation of alpha(L)beta(2)-dependent migration. These results define a proximal protein-protein interaction of an integrin cytoplasmic domain required for trans-regulation between integrins, and establish that augmented activation of Pyk2 and/or FAK is an immediate signaling event required for the trans-regulation of integrin alpha(L)beta(2) by alpha(4)beta(1).  相似文献   

2.
3.
The binding of integrins to extracellular matrix triggers signals that promote cell spreading. We previously demonstrated that expression of the integrin β1 cytoplasmic domain in the context of a chimeric transmembrane receptor with the Tac subunit of the interleukin-2 receptor (Tac-β1) inhibits cell spreading. To study the mechanism whereby Tac-β1 inhibits cell spreading, we examined the effect of Tac-β1 on early signaling events following integrin engagement namely FAK and Src signaling. We infected primary fibroblasts with adenoviruses expressing Tac or Tac-β1 and found that Tac-β1 prevented FAK activation by inhibiting the phosphorylation of FAK at Tyr-397. In contrast, Src activation was maintained, as phosphorylation of Src at Tyr-419 and Tyr-530 were not responsive to expression of Tac-β1. Importantly, adhesion-induced tyrosine phosphorylation of the Src substrates p130Cas and paxillin was inhibited, indicating that Src signaling was blocked by Tac-β1. These Src-dependent signaling events were found to require FAK signaling. Our results suggest that Tac-β1 inhibits cell spreading, at least in part, by preventing the phosphorylation of FAK at Tyr-397 and the assembly of signaling complexes necessary for phosphorylation of p130Cas and other downstream effectors.  相似文献   

4.
We previously demonstrated contrasting roles for integrin alpha subunits and their cytoplasmic domains in controlling cell cycle withdrawal and the onset of terminal differentiation (Sastry, S., M. Lakonishok, D. Thomas, J. Muschler, and A.F. Horwitz. 1996. J. Cell Biol. 133:169-184). Ectopic expression of the integrin alpha5 or alpha6A subunit in primary quail myoblasts either decreases or enhances the probability of cell cycle withdrawal, respectively. In this study, we addressed the mechanisms by which changes in integrin alpha subunit ratios regulate this decision. Ectopic expression of truncated alpha5 or alpha6A indicate that the alpha5 cytoplasmic domain is permissive for the proliferative pathway whereas the COOH-terminal 11 amino acids of alpha6A cytoplasmic domain inhibit proliferation and promote differentiation. The alpha5 and alpha6A cytoplasmic domains do not appear to initiate these signals directly, but instead regulate beta1 signaling. Ectopically expressed IL2R-alpha5 or IL2R-alpha6A have no detectable effect on the myoblast phenotype. However, ectopic expression of the beta1A integrin subunit or IL2R-beta1A, autonomously inhibits differentiation and maintains a proliferative state. Perturbing alpha5 or alpha6A ratios also significantly affects activation of beta1 integrin signaling pathways. Ectopic alpha5 expression enhances expression and activation of paxillin as well as mitogen-activated protein (MAP) kinase with little effect on focal adhesion kinase (FAK). In contrast, ectopic alpha6A expression suppresses FAK and MAP kinase activation with a lesser effect on paxillin. Ectopic expression of wild-type and mutant forms of FAK, paxillin, and MAP/erk kinase (MEK) confirm these correlations. These data demonstrate that (a) proliferative signaling (i.e., inhibition of cell cycle withdrawal and the onset of terminal differentiation) occurs through the beta1A subunit and is modulated by the alpha subunit cytoplasmic domains; (b) perturbing alpha subunit ratios alters paxillin expression and phosphorylation and FAK and MAP kinase activation; (c) quantitative changes in the level of adhesive signaling through integrins and focal adhesion components regulate the decision of myoblasts to withdraw from the cell cycle, in part via MAP kinase.  相似文献   

5.
Choi JH  Yang YR  Lee SK  Kim IS  Ha SH  Kim EK  Bae YS  Ryu SH  Suh PG 《Cellular signalling》2007,19(8):1784-1796
Phospholipase C-gamma1 (PLC-gamma1), which generates two second messengers, namely, inositol-1, 4, 5-trisphosphate and diacylglycerol, is implicated in growth factor-mediated chemotaxis. However, the exact role of PLC-gamma1 in integrin-mediated cell adhesion and migration remains poorly understood. In this study, we demonstrate that PLC-gamma1 is required for actin cytoskeletal organization and cell motility through the regulation of Pyk2 and paxillin activation. After fibronectin stimulation, PLC-gamma1 directly interacted with the cytoplasmic tail of integrin beta1. In PLC-gamma1-silenced cells, integrin-induced Pyk2 and paxillin phosphorylation were significantly reduced and PLC-gamma1 potentiated the integrin-induced Pyk2/paxillin activation in its enzymatic activity-dependent manner. In addition, specific knock-down of PLC-gamma1 resulted in a failure to form focal adhesions dependent on fibronectin stimulation, which appeared to be caused by the suppression of Pyk2 and paxillin phosphorylation. Interestingly, PLC-gamma1 potentiated the activations of Rac, thus integrin-induced lamellipodia formation was up-regulated. Consequently, the strength of cell-substratum interaction and cell motility were profoundly up-regulated by PLC-gamma1. Taken together, these results suggest that PLC-gamma1 is a key player in integrin-mediated cell spreading and motility achieved by the activation of Pyk2/paxillin/Rac signaling.  相似文献   

6.
Our previous work indicates intestinal epithelial cell ERK activation by collagen IV, a major component of the intestinal epithelial basement membrane, requires focal adhesion kinase (FAK) and suggests FAK and ERK may have important roles in regulating intestinal epithelial cell migration. We therefore sought to identify FAK downstream targets regulating intestinal epithelial cell spreading, migration, and ERK activation on collagen IV and the integrins involved. Both dominant-negative Src and Src inhibitor PP2 strongly inhibited collagen IV ERK activation in Caco-2 intestinal epithelial cells. Collagen IV stimulated Grb2 binding site FAK Y925 phosphorylation, which was inhibited by PP2 and required FAK Y397 autophosphorylation. Additionally, FAK Y925F expression blocked collagen IV ERK activation. alpha(1)beta(1)- Or alpha(2)beta(1)-integrin blockade with alpha(1)- or alpha(2)-integrin subunit antibodies indicated that either integrin can mediate adhesion, cell spreading, and FAK, Src, and ERK activation on collagen IV. Both dominant-negative Src and PP2 inhibited Caco-2 spreading on collagen IV. PP2 inhibited p130(Cas) tyrosine phosphorylation, but dominant-negative p130(Cas) did not inhibit cell spreading. PP2 inhibited Caco-2 migration on collagen IV much more strongly than the mitogen-activated protein kinase kinase inhibitor PD-98059, which completely inhibited collagen IV ERK activation. These results suggest a pathway for collagen IV ERK activation requiring Src phosphorylation of FAK Y925 not previously described for this matrix protein and suggest either alpha(1)beta(1)- or alpha(2)beta(1)-integrins can regulate Caco-2 spreading and ERK activation on collagen IV via Src. Additionally, these results suggest Src regulates Caco-2 migration on collagen IV primarily through ERK-independent pathways.  相似文献   

7.
Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase involved in integrin-mediated control of cell behavior. Following cell adhesion to components of the extracellular matrix, FAK becomes phosphorylated at multiple sites, including tyrosines 397, 576, and 577. Tyr-397 is an autophosphorylation site that promotes interaction with c-Src or Fyn. Tyr-576 and Tyr-577 lie in the putative activation loop of the kinase domain, and FAK catalytic activity may be elevated through phosphorylation of these residues by associated Src family kinase. Recent studies have implicated FAK as a positive regulator of cell spreading and migration. To further study the mechanism of adhesion-induced FAK activation and the possible role and signaling requirements for FAK in cell spreading and migration, we utilized the tetracycline repression system to achieve inducible expression of either wild-type FAK or phosphorylation site mutants in fibroblasts derived from FAK-null mouse embryos. Using these Tet-FAK cells, we demonstrated that both the FAK autophosphorylation and activation loop sites are critical for maximum adhesion-induced FAK activation and FAK-enhanced cell spreading and migration responses. Negative effects on cell spreading and migration, as well as decreased phosphorylation of the substrate p130(Cas), were observed upon induced expression of the FAK autophosphorylation site mutant. These negative effects appear to result from an inhibition of integrin-mediated signaling by the FAK-related kinase Pyk2/CAKbeta/RAFTK/CadTK.  相似文献   

8.
Formation of a stable lamellipodium at the front of migrating cells requires localization of Rac activation to the leading edge. Restriction of alpha4 integrin phosphorylation to the leading edge limits the interaction of alpha4 with paxillin to the sides and rear of a migrating cell. The alpha4-paxillin complex inhibits stable lamellipodia, thus confining lamellipod formation to the cell anterior. Here we report that binding of paxillin to the alpha4 integrin subunit inhibits adhesion-dependent lamellipodium formation by blocking Rac activation. The paxillin LD4 domain mediates this reduction in Rac activity by recruiting an ADP-ribosylation factor GTPase-activating protein (Arf-GAP) that decreases Arf activity, thereby inhibiting Rac. Finally, the localized formation of the alpha4-paxillin-Arf-GAP complex mediates the polarization of Rac activity and promotes directional cell migration. These findings establish a mechanism for the spatial localization of Rac activity to enhance cell migration.  相似文献   

9.
The ArfGAP paxillin kinase linker (PKL)/G protein-coupled receptor kinase-interacting protein (GIT)2 has been implicated in regulating cell spreading and motility through its transient recruitment of the p21-activated kinase (PAK) to focal adhesions. The Nck-PAK-PIX-PKL protein complex is recruited to focal adhesions by paxillin upon integrin engagement and Rac activation. In this report, we identify tyrosine-phosphorylated PKL as a protein that associates with the SH3-SH2 adaptor Nck, in a Src-dependent manner, after cell adhesion to fibronectin. Both cell adhesion and Rac activation stimulated PKL tyrosine phosphorylation. PKL is phosphorylated on tyrosine residues 286/392/592 by Src and/or FAK and these sites are required for PKL localization to focal adhesions and for paxillin binding. The absence of either FAK or Src-family kinases prevents PKL phosphorylation and suppresses localization of PKL but not GIT1 to focal adhesions after Rac activation. Expression of an activated FAK mutant in the absence of Src-family kinases partially restores PKL localization, suggesting that Src activation of FAK is required for PKL phosphorylation and localization. Overexpression of the nonphosphorylated GFP-PKL Triple YF mutant stimulates cell spreading and protrusiveness, similar to overexpression of a paxillin mutant that does not bind PKL, suggesting that failure to recruit PKL to focal adhesions interferes with normal cell spreading and motility.  相似文献   

10.
Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase that promotes cell migration, survival, and gene expression. Here we show that FAK signaling is important for tumor necrosis factor-alpha (TNFalpha)-induced interleukin 6 (IL-6) mRNA and protein expression in breast (4T1), lung (A549), prostate (PC-3), and neural (NB-8) tumor cells by FAK short hairpin RNA knockdown and by comparisons of FAK-null (FAK(-/-)) and FAK(+/+) mouse embryo fibroblasts. FAK promoted TNFalpha-stimulated MAPK activation needed for maximal IL-6 production. FAK was not required for TNFalpha-mediated nuclear factor-kappaB or c-Jun N-terminal kinase activation. TNFalpha-stimulated FAK catalytic activation and IL-6 production were inhibited by FAK N-terminal but not FAK C-terminal domain overexpression. Analysis of FAK(-/-) fibroblasts stably reconstituted with wild type or various FAK point mutants showed that FAK catalytic activity, Tyr-397 phosphorylation, and the Pro-712/713 proline-rich region of FAK were required for TNFalpha-stimulated MAPK activation and IL-6 production. Constitutively activated MAPK kinase-1 (MEK1) expression in FAK(-/-) and A549 FAK short hairpin RNA-expressing cells rescued TNFalpha-stimulated IL-6 production. Inhibition of Src protein-tyrosine kinase activity or mutation of Src phosphorylation sites on FAK (Tyr-861 or Tyr-925) did not affect TNFalpha-stimulated IL-6 expression. Moreover, analyses of Src(-/-), Yes(-/-), and Fyn(-/-) fibroblasts showed that Src expression was inhibitory to TNFalpha-stimulated IL-6 production. These studies provide evidence for a novel Src-independent FAK to MAPK signaling pathway regulating IL-6 expression with potential importance to inflammation and tumor progression.  相似文献   

11.
alpha(4)beta(1)-Integrin plays a pivotal role in cell migration in vivo. This integrin has been shown to regulate the front-back polarity of migrating cells via localized inhibition of alpha(4)-integrin/paxillin binding by phosphorylation at the alpha(4)-integrin cytoplasmic tail. Here, we demonstrate that alpha(4)beta(1)-integrin regulates directionally persistent cell migration via a more complex mechanism in which alpha(4)-integrin phosphorylation and paxillin binding act via both cooperative and independent pathways. We show that, in response to shear flow, alpha(4)beta(1)-integrin binding to the CS-1 region of fibronectin was necessary and sufficient to promote directionally persistent cell migration when this integrin was ectopically expressed in CHO cells. Under shear flow, the alpha(4)beta(1)-integrin-expressing cells formed a fan shape with broad lamellipodia at the front and retracted trailing edges at the back. This "fanning" activity was enhanced by disrupting paxillin binding alone and inhibited by disrupting phosphorylation alone or together with disrupting paxillin binding. Notably, the phosphorylation-disrupting mutation and the double mutation resulted in the formation of long trailing tails, suggesting that alpha(4)-integrin phosphorylation is required for trailing edge retraction/detachment independent of paxillin binding. Furthermore, the stable polarity and directional persistence of shear flow-stimulated cells were perturbed by the double mutation but not the single mutations alone, indicating that paxillin binding and alpha(4)-integrin phosphorylation can facilitate directionally persistent cell migration in an independent and compensatory manner. These findings provide a new insight into the mechanism by which integrins regulate directionally persistent cell migration.  相似文献   

12.
alpha4 integrins are essential for embryogenesis, hematopoiesis, inflammation, and immune response possibly because alpha4 integrins have distinct signaling properties from other integrins. Specifically, the alpha4 cytoplasmic domain binds tightly to paxillin, a signaling adaptor protein, leading to increased cell migration and an altered cytoskeletal organization that results in reduced cell spreading. The alpha4 tail contains potential phosphorylation sites clustered in its core paxillin binding region. We now report that the alpha4 tail is phosphorylated in vitro and in vivo. Furthermore, Ser(988) is a major phosphorylation site. Using antibodies specific for Ser(988)-phosphorylated alpha4, we found the stoichiometry of alpha4 phosphorylation varied in different cells. However, >60% of alpha4 was phosphorylated in Jurkat T cells. Phosphorylation at Ser(988) blocked paxillin binding to the alpha4 tail. A phosphorylation-mimicking mutant of alpha4 (alpha4S988D) blocked paxillin binding and reversed the inhibitory effect of alpha4 on cell spreading. Consequently, alpha4 phosphorylation is a biochemical mechanism to modulate paxillin binding to alpha4 integrins with consequent regulation of alpha4 integrin-dependent cellular functions.  相似文献   

13.
Hic-5 is a paxillin homologue that is localized to focal adhesion complexes. Hic-5 and paxillin share structural homology and interacting factors such as focal adhesion kinase (FAK), Pyk2/CAKbeta/RAFTK, and PTP-PEST. Here, we showed that Hic-5 inhibits integrin-mediated cell spreading on fibronectin in a competitive manner with paxillin in NIH 3T3 cells. The overexpression of Hic-5 sequestered FAK from paxillin, reduced tyrosine phosphorylation of paxillin and FAK, and prevented paxillin-Crk complex formation. In addition, Hic-5-mediated inhibition of spreading was not observed in mouse embryo fibroblasts (MEFs) derived from FAK(-/-) mice. The activity of c-Src following fibronectin stimulation was decreased by about 30% in Hic-5-expressing cells, and the effect of Hic-5 was restored by the overexpression of FAK and the constitutively active forms of Rho-family GTPases, Rac1 V12 and Cdc42 V12, but not RhoA V14. These observations suggested that Hic-5 inhibits cell spreading through competition with paxillin for FAK and subsequent prevention of downstream signal transduction. Moreover, expression of antisense Hic-5 increased spreading in primary MEFs. These results suggested that the counterbalance of paxillin and Hic-5 expression may be a novel mechanism regulating integrin-mediated signal transduction.  相似文献   

14.
The alpha4beta1 integrin is an essential adhesion molecule for recruitment of circulating lymphocytes into lymphoid organs and peripheral sites of inflammation. Chemokines stimulate alpha4beta1 adhesive activity allowing lymphocyte arrest on endothelium and subsequent diapedesis. Activation of the GTPase Rac by the guanine-nucleotide exchange factor Vav1 promoted by CXCL12 controls T lymphocyte adhesion mediated by alpha4beta1. In this study, we investigated the role of DOCK2, a lymphocyte guanine-nucleotide exchange factor also involved in Rac activation, in CXCL12-stimulated human T lymphocyte adhesion mediated by alpha4beta1. Using T cells transfected with DOCK2 mutant forms defective in Rac activation or with DOCK2 small interfering RNA, we demonstrate that DOCK2 is needed for efficient chemokine-stimulated lymphocyte attachment to VCAM-1 under shear stress. Flow chamber, soluble binding, and cell spreading assays identified the strengthening of alpha4beta1-VCAM-1 interaction, involving high affinity alpha4beta1 conformations, as the adhesion step mainly controlled by DOCK2 activity. The comparison of DOCK2 and Vav1 involvement in CXCL12-promoted Rac activation and alpha4beta1-dependent human T cell adhesion indicated a more prominent role of Vav1 than DOCK2. These results suggest that DOCK2-mediated signaling regulates chemokine-stimulated human T lymphocyte alpha4beta1 adhesive activity, and that cooperation with Vav1 might be required to induce sufficient Rac activation for efficient adhesion. In contrast, flow chamber experiments using lymph node and spleen T cells from DOCK2(-/-) mice revealed no significant alterations in CXCL12-promoted adhesion mediated by alpha4beta1, indicating that DOCK2 activity is dispensable for triggering of this adhesion in mouse T cells, and suggesting that Rac activation plays minor roles in this process.  相似文献   

15.
Formation of a complex between the tyrosine kinases FAK and Src is a key integrin-mediated signaling event implicated in cell motility, survival, and proliferation. Past studies indicate that FAK functions in the complex primarily as a "scaffold," acting to recruit and activate Src within cell/matrix adhesions. To study the cellular impact of FAK-associated Src signaling we developed a novel gain-of-function approach that involves expressing a chimeric protein with the FAK kinase domain replaced by the Src kinase domain. This FAK/Src chimera is subject to adhesion-dependent activation and promotes tyrosine phosphorylation of p130Cas and paxillin to higher steady-state levels than is achieved by wild-type FAK. When expressed in FAK -/- mouse embryo fibroblasts, the FAK/Src chimera resulted in a striking cellular phenotype characterized by unusual large peripheral adhesions, enhanced adhesive strength, and greatly reduced motility. Live cell imaging of the chimera-expressing FAK -/- cells provided evidence that the large peripheral adhesions are associated with a dynamic actin assembly process that is sensitive to a Src-selective inhibitor. These findings suggest that FAK-associated Src kinase activity has the capacity to promote adhesion integrity and actin assembly.  相似文献   

16.
Adhesion of hematopoietic cells, mainly through alpha4beta1 and alpha5beta1 integrins, to the bone marrow microenvironment may play important roles in regulation of hematopoiesis. However, the mechanisms for signaling, outside-in signaling, have largely remained to be established. We demonstrate here that cross-linking of alpha4beta1 by anti-alpha4 antibody induces tyrosine phosphorylation of Pyk2, Shc, and Cbl as well as binding of the adaptor protein CrkL with Cbl in a murine hematopoietic cell line, 32D/EpoR-Wt. Furthermore, cross-linking of alpha4beta1 induced activation of the Rho family small GTPase Rac, which was enhanced by induced overexpression of CrkL and was inhibited by the phosphatidylinositol 3(')-kinase (PI3K) inhibitor LY294002. In addition, adhesion of 32D/EpoR-Wt cells to immobilized H-296, a recombinant fibronectin peptide specific for alpha4beta1, induced tyrosine phosphorylation of Jak2, the erythropoietin receptor (EpoR), and the IL-3 receptor beta subunit as well as Pyk2, Shc, and Cbl. Tyrosine phosphorylation of Jak2 and EpoR was also induced in a human leukemic cell line, UT-7, by adhesion to immobilized H-296. However, adhesion of 32D/EpoR-PM4 cells, expressing the W282R mutant EpoR defective in coupling with Jak2, to immobilized H-296 failed to induce tyrosine phosphorylation of the mutant EpoR. These results implicate CrkL in PI3K-dependent activation of Rac by outside-in signaling from alpha4beta1 and suggest that adhesion through alpha4beta1 further activates cytokine receptor-associated Jak2 to induce phosphorylation of these receptors.  相似文献   

17.
Platelet-activating factor (PAF), a phospholipid second messenger, has diverse physiological functions, including responses in differentiated endothelial cells to external stimuli. We used human umbilical vein endothelial cells (HUVECs) as a model system. We show that PAF activated pertussis toxin-insensitive G alpha(q) protein upon binding to its seven transmembrane receptor. Elevated cAMP levels were observed via activation of adenylate cyclase, which activated protein kinase A (PKA) and was attenuated by a PAF receptor antagonist, blocking downstream activity. Phosphorylation of Src by PAF required G alpha(q) protein and adenylate cyclase activation; there was an absolute requirement of PKA for PAF-induced Src phosphorylation. Immediate (1 min) PAF-induced STAT-3 phosphorylation required the activation of G alpha(q) protein, adenylate cyclase, and PKA, and was independent of these intermediates at delayed (30 min) and prolonged (60 min) PAF exposure. PAF activated PLC beta 3 through its G alpha(q) protein-coupled receptor, whereas activation of phospholipase C gamma 1 (PLC gamma 1) by PAF was independent of G proteins but required the involvement of Src at prolonged PAF exposure (60 min). We demonstrate for the first time in vascular endothelial cells: (i) the involvement of signaling intermediates in the PAF-PAF receptor system in the induction of TIMP2 and MT1-MMP expression, resulting in the coordinated proteolytic activation of MMP2, and (ii) a receptor-mediated signal transduction cascade for the tyrosine phosphorylation of FAK by PAF. PAF exposure induced binding of p130(Cas), Src, SHC, and paxillin to FAK. Clearly, PAF-mediated signaling in differentiated endothelial cells is critical to endothelial cell functions, including cell migration and proteolytic activation of MMP2.  相似文献   

18.
The alpha(4) integrins play important roles in embryogenesis, hematopoiesis, cardiac development, and the immune responses. The alpha(4) integrin subunit is indispensable for these biological processes, possibly because the alpha(4) subunit regulates cellular functions differently from other integrin alpha subunits. We have previously reported that the alpha(4) cytoplasmic domain directly and tightly binds paxillin, an intracellular signaling adaptor molecule, and this interaction accounts for some of the unusual functional responses to alpha(4) integrin-mediated cell adhesion. We also have identified a conserved 9-amino acid region (Glu(983)-Tyr(991)) in the alpha(4) cytoplasmic domain that is sufficient for paxillin binding, and an alanine substitution at either Glu(983) or Tyr(991) within this region disrupted the alpha(4)-paxillin interaction and reversed the effects of the alpha(4) cytoplasmic domain on cell spreading and migration. In the current study, we have mapped the alpha(4)-binding site within paxillin using mutational analysis, and examined its effects on the alpha(4) tail-mediated functional responses. Here we report that sequences between residues Ala(176) and Asp(275) of paxillin are sufficient for binding to the alpha(4) tail. We found that the alpha(4) tail, paxillin, and FAT, the focal adhesion targeting domain of pp125(FAK), could form a ternary complex and that the alpha(4)-binding paxillin fragment, P(Ala(176)-Asp(275)), specifically blocked paxillin binding to the alpha(4) tail more efficiently than it blocked binding to FAT. Furthermore, when expressed in cells, this alpha(4)-binding paxillin fragment specifically inhibited the alpha(4) tail-stimulated cell migration. Thus, paxillin binding to the alpha(4) tail leads to enhanced cell migration and inhibition of the alpha(4)-paxillin interaction selectively blocks the alpha4-dependent cellular responses.  相似文献   

19.
We have previously shown that mutation of the two tyrosines in the cytoplasmic domain of integrin subunit beta1 (Y783 and Y795) to phenylalanines markedly reduces the capability of beta1A integrins to mediate directed cell migration. In this study, beta1-dependent cell spreading was found to be delayed in GD25 cells expressing beta1A(Y783/795F) compared to that in wild-type GD25-beta1A. Focal adhesion kinase (FAK) tyrosine phosphorylation and activation were severely impaired in response to beta1-dependent adhesion in GD25-beta1A(Y783/795F) cells compared to that in wild-type GD25-beta1A or mutants in which only a single tyrosine was altered (beta1A(Y783F) or beta1A(Y795F)). Phosphorylation site-specific antibodies selective for FAK phosphotyrosine 397 indicated that the defect in FAK phosphorylation via beta1A(Y783/795F) lies at the level of the initial autophosphorylation step. Indeed, beta1A-dependent tyrosine phosphorylation of tensin and paxillin was lost in the beta1A(Y783/795F) cells, consistent with the impairment in FAK activation. In contrast, p130(CAS) overall tyrosine phosphorylation was unaffected by the beta1 mutations. Despite the defect in beta1-mediated FAK activation, FAK was still localized to focal adhesions. Taken together, the phenotype of the GD25-beta1A(Y783/795F) cells resembles, but is distinct from, the phenotype observed in FAK-null cells. These observations argue that tyrosines 783 and 795 within the cytoplasmic tail of integrin subunit beta1A are critical mediators of FAK activation and cell spreading in GD25 cells.  相似文献   

20.
《The Journal of cell biology》1995,130(5):1181-1187
The integrins have recently been implicated in signal transduction. A likely mediator of integrin signaling is focal adhesion kinase (pp125FAK or FAK), a structurally distinct protein tyrosine kinase that becomes enzymatically activated upon engagement of integrins with their ligands. A second candidate signaling molecule is paxillin, a focal adhesion associated, cytoskeletal protein that coordinately becomes phosphorylated on tyrosine upon activation of pp125FAK. Paxillin physically complexes with two protein tyrosine kinases, pp60src and Csk (COOH-terminal src kinase), and the oncoprotein p47gag-crk, each of which could function as part of a paxillin signaling complex. Using an in vitro assay we have established that the cytoplasmic domain of the beta 1 integrin can bind to paxillin and pp125FAK from chicken embryo cell lysates. The NH2-terminal, noncatalytic domain of pp125FAK can bind directly to the cytoplasmic tail of beta 1 and recognizes integrin sequences distinct from those involved in binding to alpha-actinin. Paxillin binding is independent of pp125FAK binding despite the fact that both bind to the same region of beta 1. These results demonstrate that the cytoplasmic domain of the beta subunits of integrins contain binding sites for both signaling molecules and structural proteins suggesting that integrins can coordinate the generation of cytoplasmic signals in addition to their role in anchoring components of the cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号