首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
GrpE is the nucleotide exchange factor for the Escherichia coli molecular chaperone DnaK, the bacterial homologue of Hsp70. In the temperature range of the bacterial heat shock response, the long helices of GrpE undergo a helix-to-coil transition, and GrpE exhibits non-Arrhenius behavior with respect to its nucleotide exchange function. It is hypothesized that GrpE acts as a thermosensor and that unwinding of the long helices of E. coli GrpE reduces its activity as a nucleotide exchange factor. In turn, it was proposed that temperature-dependent down-regulation of the activity of GrpE may increase the time in which DnaK binds its substrates at higher temperatures. A combination of thermodynamic and hydrodynamic techniques, in concert with the luciferase refolding assay, were used to characterize a molecular mechanism in which the long helices of GrpE are thermodynamically linked with the beta-domains via an intramolecular contact between Phe86 and Arg183. These "thermosensing" long helices were found to be necessary for full activity as a nucleotide exchange factor in the luciferase refolding assay. Point mutations in the beta-domains and in the long helices of GrpE destabilized the beta-domains. Engineered disulfide bonds in the long helices alternately stabilized the long helices and the four-helix bundle. This allowed the previously reported 75 degrees C thermal transition seen in the excess heat capacity function as monitored by differential scanning calorimetry to be further characterized. The observed thermal transition represents the unfolding of the four-helix bundle and the beta-domains. The thermal transitions for these two domains are superimposed but are not thermodynamically linked.  相似文献   

2.
GrpE acts as a nucleotide exchange factor for DnaK, the main Hsp70 protein in bacteria, accelerating ADP/ATP exchange by several orders of magnitude. GrpE is a homodimer, each subunit containing three structural domains: a N-terminal unordered segment, two long coils and a C-terminal globular domain formed by a four-helix bundle, and a β-subdomain. GrpE association to DnaK nucleotide-binding domain involves side-chain and backbone interactions located within the “headpiece” of the cochaperone, which consists of the C-terminal half of the coils, the four-helix bundle and the β-subdomain. However, the role of the GrpE N-terminal region in the interaction with DnaK and the activity of the cochaperone remain controversial. In this study we explore the contribution of this domain to the binding reaction, using the wild-type proteins, two deletion mutants of GrpE (GrpE34-197 and GrpE69-197) and the isolated DnaK nucleotide-binding domain. Analysis of the thermodynamic binding parameters obtained by isothermal titration calorimetry shows that both GrpE N-terminal segments, 1-33 and 34-68, contribute to the binding reaction. Partial proteolysis and substrate dissociation kinetics also suggest that the N-terminal half of GrpE coils (residues 34-68) interacts with DnaK interdomain linker, regulates the nucleotide exchange activity of the cochaperone and is required to stabilize DnaK-substrate complexes in the ADP-bound conformation.  相似文献   

3.
DnaK, the prokaryotic Hsp70 molecular chaperone, requires the nucleotide exchange factor and heat shock protein GrpE to release ADP. GrpE and DnaK are tightly associated molecules with an extensive protein-protein interface, and in the absence of ADP, the dissociation constant for GrpE and DnaK is in the low nanomolar range. GrpE reduces the affinity of DnaK for ADP, and the reciprocal linkage is also true: ADP reduces the affinity of DnaK for GrpE. The energetic contributions of GrpE side-chains to GrpE-DnaK binding were probed by alanine-scanning mutagenesis. Sedimentation velocity (SV) analytical ultracentrifugation (AUC) was used to measure the equilibrium constants (Keq) for GrpE binding to the ATPase domain of DnaK in the presence of ADP. ADP-bound DnaK is the natural target of GrpE, and the addition of ADP (final concentration of 5 microM) to the preformed GrpE-DnaK(ATPase) complexes allowed the equilibrium association constants to be brought into an experimentally accessible range. Under these experimental conditions, the substitution of one single GrpE amino acid residue, arginine 183 with alanine, resulted in a GrpE-DnaK(ATPase) complex that was weakly associated (Keq =9.4 x 10(4) M). This residue has been previously shown to be part of a thermodynamic linkage between two structural domains of GrpE: the thermosensing long helices and the C-terminal beta-domains. Several other GrpE side-chains were found to have a significant change in the free energy of binding (DeltaDeltaG approximately 1.5 to 1.7 kcal mol(-1)), compared to wild-type GrpE.DnaK(ATPase) in the same experimental conditions. Overall, the strong interactions between GrpE and DnaK appear to be dominated by electrostatics, not unlike barnase and barstar, another well-characterized protein-protein interaction. GrpE, an inherent thermosensor, exhibits non-Arrhenius behavior with respect to its nucleotide exchange function at bacterial heat shock temperatures, and mutation of several solvent-exposed side-chains located along the thermosensing indicated that these residues are indeed important for GrpE-DnaK interactions.  相似文献   

4.
GrpE proteins function as nucleotide exchange factors for DnaK-type Hsp70s. We have previously identified a chloroplast homolog of GrpE in Chlamydomonas reinhardtii, termed CGE1. CGE1 exists as two isoforms, CGE1a and CGE1b, which are generated by temperature-dependent alternative splicing. CGE1b contains additional valine and glutamine residues in its extreme NH2-terminal region. Here we show that CGE1a is predominant at lower temperatures but that CGE1b becomes as abundant as CGE1a at elevated temperatures. Coimmunoprecipitation experiments revealed that CGE1b had a approximately 25% higher affinity for its chloroplast chaperone partner HSP70B than CGE1a. Modeling of the structure of CGE1b revealed that the extended alpha-helix formed by GrpE NH2 termini is 34 amino acids longer in CGE1 than in Escherichia coli GrpE and appears to contain a coiled coil motif. Progressive deletions of this coiled coil increasingly impaired the ability of CGE1 to form dimers, to interact with DnaK at elevated temperatures, and to complement temperature-sensitive growth of a DeltagrpE E. coli strain. In contrast, deletion of the four-helix bundle required for dimerization of E. coli GrpE did not affect CGE1 dimer formation. Circular dichroism measurements revealed that CGE1, like GrpE, undergoes two thermal transitions, the first of which is in the physiologically relevant temperature range (midpoint approximately 45 degrees C). Truncating the NH2-terminal coiled coil shifted the second transition to lower temperatures, whereas removal of the four-helix bundle abolished the first transition. Our data suggest that bacterial GrpE and chloroplast CGE1 share similar structural and biochemical properties, but some of these, like dimerization, are realized by different domains.  相似文献   

5.
Hsp70 molecular chaperones contain three distinct structural domains, a 44 kDa N-terminal ATPase domain, a 17 kDa peptide-binding domain, and a 10 kDa C-terminal domain. The ATPase and peptide binding domains are conserved in sequence and are functionally well characterized. The function of the 10 kDa variable C-terminal domain is less well understood. We have characterized the secondary structure and dynamics of the C-terminal domain from the Escherichia coli Hsp70, DnaK, in solution by high-resolution NMR. The domain was shown to be comprised of a rigid structure consisting of four helices and a flexible C-terminal subdomain of approximately 33 amino acids. The mobility of the flexible region is maintained in the context of the full-length protein and does not appear to be modulated by the nucleotide state. The flexibility of this region appears to be a conserved feature of Hsp70 architecture and may have important functional implications. We also developed a method to analyze 15N nuclear spin relaxation data, which allows us to extract amide bond vector directions relative to a unique diffusion axis. The extracted angles and rotational correlation times indicate that the helices form an elongated, bundle-like structure in solution.  相似文献   

6.
Temperature directly controls functional properties of the DnaK/DnaJ/GrpE chaperone system. The rate of the high to low affinity conversion of DnaK shows a non-Arrhenius temperature dependence and above approximately 40 degrees C even decreases. In the same temperature range, the ADP/ATP exchange factor GrpE undergoes an extensive, fully reversible thermal transition (Grimshaw, J. P. A., Jelesarov, I., Sch?nfeld, H. J., and Christen, P. (2001) J. Biol. Chem. 276, 6098-6104). To show that this transition underlies the thermal regulation of the chaperone system, we introduced an intersubunit disulfide bond into the paired long helices of the GrpE dimer. The transition was absent in disulfide-linked GrpE R40C but was restored by reduction. With disulfide-stabilized GrpE, the rate of ADP/ATP exchange and conversion of DnaK from its ADP-liganded high affinity R state to the ATP-liganded low affinity T state continuously increased with increasing temperature. With reduced GrpE R40C, the conversion became slower at temperatures >40 degrees C, as observed with wild-type GrpE. Thus, the long helix pair in the GrpE dimer acts as a thermosensor that, by decreasing its ADP/ATP exchange activity, induces a shift of the DnaK.substrate complexes toward the high affinity R state and in this way adapts the DnaK/DnaJ/GrpE system to heat shock conditions.  相似文献   

7.
In addition to the sigma(32)-mediated heat shock response, the DnaK/DnaJ/GrpE molecular chaperone system of Escherichia coli directly adapts to elevated temperatures by sequestering a higher fraction of substrate. This immediate heat shock response is due to the differential temperature dependence of the activity of DnaJ, which stimulates the hydrolysis of DnaK-bound ATP, and the activity of GrpE, which facilitates ADP/ATP exchange and converts DnaK from its high-affinity ADP-liganded state into its low-affinity ATP-liganded state. GrpE acts as thermosensor with its ADP/ATP exchange activity decreasing above 40 degrees C. To assess the importance of this reversible thermal adaptation for the chaperone action of the DnaK/DnaJ/GrpE system during heat shock, we used glucose-6-phosphate dehydrogenase and luciferase as substrates. We compared the performance of wild-type GrpE as a component of the chaperone system with that of GrpE R40C. In this mutant, the thermosensing helices are stabilized with an intersubunit disulfide bond and its nucleotide exchange activity thus increases continuously with increasing temperature. Wild-type GrpE with intact thermosensor proved superior to GrpE R40C with desensitized thermosensor. The chaperone system with wild-type GrpE yielded not only a higher fraction of refolding-competent protein at the end of a heat shock but also protected luciferase more efficiently against inactivation during heat shock. Consistent with their differential thermal behavior, the protective effects of wild-type GrpE and GrpE R40C diverged more and more with increasing temperature. Thus, the direct thermal adaptation of the DnaK chaperone system by thermosensing GrpE is essential for efficient chaperone action during heat shock.  相似文献   

8.
GrpE proteins act as co-chaperones for DnaK heat-shock proteins. The dimeric protein unfolds under heat stress conditions, which results in impaired interaction with a DnaK protein. Since interaction of GrpE with DnaK is crucial for the DnaK chaperone activity, GrpE proteins act as a thermosensor in bacteria. Here we have analyzed the thermostability and function of two GrpE homologs of the mesophilic cyanobacterium Synechocystis sp. PCC 6803 and of the thermophilic cyanobacterium Thermosynechococcus elongatus BP1. While in Synechocystis an N-terminal helix pair of the GrpE dimer appears to be the thermosensing domain and mainly mediates GrpE dimerization, the C-terminal four-helix bundle is involved in additional stabilization of the dimeric structure. The four-helix bundle domain has a key role in the thermophilic cyanobacterium, since dimerization of the Thermosynechococcus protein appears to be mediated by the four-helix bundle domain, and melting of this domain is linked to monomerization of the GrpE protein. Thus, in two related cyanobacteria the GrpE thermosensing function might be mediated by different protein domains.  相似文献   

9.
The conserved, ATP-dependent bacterial DnaK chaperones process client substrates with the aid of the co-chaperones DnaJ and GrpE. However, in the absence of structural information, how these proteins communicate with each other cannot be fully delineated. For the study reported here, we solved the crystal structure of a full-length Geobacillus kaustophilus HTA426 GrpE homodimer in complex with a nearly full-length G. kaustophilus HTA426 DnaK that contains the interdomain linker (acting as a pseudo-substrate), and the N-terminal nucleotide-binding and C-terminal substrate-binding domains at 4.1-Å resolution. Each complex contains two DnaKs and two GrpEs, which is a stoichiometry that has not been found before. The long N-terminal GrpE α-helices stabilize the linker of DnaK in the complex. Furthermore, interactions between the DnaK substrate-binding domain and the N-terminal disordered region of GrpE may accelerate substrate release from DnaK. These findings provide molecular mechanisms for substrate binding, processing, and release during the Hsp70 chaperone cycle.  相似文献   

10.
Y Liu  M Levit  R Lurz  M G Surette    J B Stock 《The EMBO journal》1997,16(24):7231-7240
Chemotaxis responses of Escherichia coli and Salmonella are mediated by type I membrane receptors with N-terminal extracytoplasmic sensing domains connected by transmembrane helices to C-terminal signaling domains in the cytoplasm. Receptor signaling involves regulation of an associated protein kinase, CheA. Here we show that kinase activation by a soluble signaling domain construct involves the formation of a large complex, with approximately 14 receptor signaling domains per CheA dimer. Electron microscopic examination of these active complexes indicates a well defined bundle composed of numerous receptor filaments. Our findings suggest a mechanism for transmembrane signaling whereby stimulus-induced changes in lateral packing interactions within an array of receptor-sensing domains at the cell surface perturb an equilibrium between active and inactive receptor-kinase complexes within the cytoplasm.  相似文献   

11.
Hsp70 proteins like DnaK bind unfolded polypeptides in a nucleotide-dependent manner. The switch from high-affinity ADP-state to low- affinity ATP-state with concomitant substrate release is accelerated significantly by GrpE proteins. GrpE thus fulfils an important role in regulation of the chaperone cycle. Here, we analysed the thermal stability of GrpE from Thermus thermophilus using differential scanning calorimetry and CD-spectroscopy. The protein exhibits unusual unfolding characteristics with two observable thermal transitions. The first transition is CD-spectroscopically silent with a transition midpoint at 90 degrees C. The second transition, mainly constituting the CD-signal, ranges between 100 and 105 degrees C depending on the GrpE(Tth) concentration, according to the model N(2) <==> I(2) <==> 2U. Using a C-terminally truncated version of GrpE(Tth) it was possible to assign the second thermal transition to the dimerisation of GrpE(Tth), while the first transition represents the completely reversible unfolding of the globular C-terminal domain. The unfolding of this domain is accompanied by a distinct decrease in nucleotide exchange rates and impaired binding to DnaK(Tth). Under heat shock conditions, the DnaK-ADP-protein-substrate complex is thus stabilised by a reversibly inactivated GrpE-protein that refolds under permissive conditions. In combination with studies on GrpE from Escherichia coli presented recently by Christen and co-workers, it thus appears that the general role of GrpE is to function as a thermosensor that modulates nucleotide exchange rates in a temperature-dependent manner to prevent substrate dissociation at non-permissive conditions.  相似文献   

12.
Hsc20 is a 20 kDa J-protein that regulates the ATPase activity and peptide-binding specificity of Hsc66, an hsp70-class molecular chaperone. We report herein the crystal structure of Hsc20 from Escherichia coli determined to a resolution of 1.8 A using a combination of single isomorphous replacement (SIR) and multi-wavelength anomalous diffraction (MAD). The overall structure of Hsc20 consists of two distinct domains, an N-terminal J-domain containing residues 1-75 connected by a short loop to a C-terminal domain containing residues 84-171. The structure of the J-domain, involved in interactions with Hsc66, resembles the alpha-topology of J-domain fragments of Escherichia coli DnaJ and human Hdj1 previously determined by solution NMR methods. The C-terminal domain, implicated in binding and targeting proteins to Hsc66, consists of a three-helix bundle in which two helices comprise an anti-parallel coiled-coil. The two domains make contact through an extensive hydrophobic interface ( approximately 650 A(2)) suggesting that their relative orientations are fixed. Thus, Hsc20, in addition to its role in the regulation of the ATPase activity of Hsc66, may also function as a rigid scaffold to facilitate positioning of the protein substrates targeted to Hsc66.  相似文献   

13.
Aromatic clusters in the core of proteins are often involved in imparting structural stability to proteins. However, their functional importance is not always clear. In this study, we investigate the thermosensing role of a phenylalanine cluster present in the GrpE homodimer. GrpE, which acts as a nucleotide exchange factor for the molecular chaperone DnaK, is well known for its thermosensing activity resulting from temperature-dependent structural changes that allow control of chaperone function. Using mutational analysis, we show that an interchain phenylalanine cluster in a four-helix bundle of the GrpE homodimer assists in the thermosensing ability of the co-chaperone. Substitution of aromatic residues with hydrophobic ones in the core of the four-helix bundle reduces the thermal stability of the bundle and that of a connected coiled-coil domain, which impacts thermosensing. Cell growth assays and SEM images of the mutants show filamentous growth of Escherichia coli cells at 42°C, which corroborates with the defect in thermosensing. Our work suggests that the interchain edge-to-face aromatic cluster is important for the propagation of the structural signal from the coiled-coil domain to the four-helical bundle of GrpE, thus facilitating GrpE-mediated thermosensing in bacteria.  相似文献   

14.
The cochaperone GrpE functions as a nucleotide exchange factor to promote dissociation of adenosine 5'-diphosphate (ADP) from the nucleotide-binding cleft of DnaK. GrpE and the DnaJ cochaperone act in concert to control the flux of unfolded polypeptides into and out of the substrate-binding domain of DnaK by regulating the nucleotide-bound state of DnaK. DnaJ stimulates nucleotide hydrolysis, and GrpE promotes the exchange of ADP for adenosine triphosphate (ATP) and also augments peptide release from the DnaK substrate-binding domain in an ATP-independent manner. The eukaryotic cytosol does not contain GrpE per se because GrpE-like function is provided by the BAG1 protein, which acts as a nucleotide exchange factor for cytosolic Hsp70s. GrpE, which plays a prominent role in mitochondria, chloroplasts, and bacterial cytoplasms, is a fascinating molecule with an unusual quaternary structure. The long alpha-helices of GrpE have been hypothesized to act as a thermosensor and to be involved in the decrease in GrpE-dependent nucleotide exchange that is observed in vitro at temperatures relevant to heat shock. This review describes the molecular biology of GrpE and focuses on the structural and kinetic aspects of nucleotide exchange, peptide release, and the thermosensor hypothesis.  相似文献   

15.
The DnaK chaperone of Escherichia coli assists protein folding by an ATP-dependent interaction with short peptide stretches within substrate polypeptides. This interaction is regulated by the DnaJ and GrpE co-chaperones, which stimulate ATP hydrolysis and nucleotide exchange by DnaK, respectively. Furthermore, GrpE has been claimed to trigger substrate release independent of its role as a nucleotide exchange factor. However, we show here that GrpE can accelerate substrate release from DnaK exclusively in the presence of ATP. In addition, GrpE prevented the association of peptide substrates with DnaK through an activity of its N-terminal 33 amino acids. A ternary complex of GrpE, DnaK, and a peptide substrate could be observed only when the peptide binding to DnaK precedes GrpE binding. Furthermore, we demonstrate that GrpE slows down the release of a protein substrate, sigma(32), from DnaK in the absence of ATP. These findings suggest that the ATP-triggered dissociation of GrpE and substrates from DnaK occurs in a concerted fashion.  相似文献   

16.
The Escherichia coli nucleotide exchange factor GrpE accelerates the rate of ADP dissociation from high affinity ADP-DnaK, thus enabling ATP binding and transition to the low affinity state. We show here that GrpE, in the absence of ATP, accelerates the rates of the forward and reverse reaction ADP-DnaK-P right harpoon over left harpoon ADP-DnaK + P, where P denotes peptide substrate. Specifically, the binding of GrpE to an ADP-DnaK-P (or DnaK-P) complex increases koff and kon by approximately 200-fold and approximately 60-fold, respectively. The results are consistent with a GrpE- induced conformational change in the C-terminal polypeptide binding domain of an ADP-DnaK molecule, which results in a unique low affinity intermediate from which peptide can dissociate. A simulation of peptide dissociation from DnaK as a function of the [ATP] / [ADP] ratio shows that GrpE induced peptide dissociation from ADP-DnaK is important at elevated cellular concentrations of ADP, which typically occur upon stress.  相似文献   

17.
Apolipoprotein (apo) E is thought to undergo conformational changes in the N-terminal helix bundle domain upon lipid binding, modulating its receptor binding activity. In this study, site-specific fluorescence labeling of the N-terminal (S94) and C-terminal (W264 or S290) helices in apoE4 by pyrene maleimide or acrylodan was employed to probe the conformational organization and lipid binding behavior of the N- and C-terminal domains. Guanidine denaturation experiments monitored by acrylodan fluorescence demonstrated the less organized, more solvent-exposed structure of the C-terminal helices compared to the N-terminal helix bundle. Pyrene excimer fluorescence together with gel filtration chromatography indicated that there are extensive intermolecular helix-helix contacts through the C-terminal helices of apoE4. Comparison of increases in pyrene fluorescence upon binding of pyrene-labeled apoE4 to egg phosphatidylcholine small unilamellar vesicles suggests a two-step lipid-binding process; apoE4 initially binds to a lipid surface through the C-terminal helices followed by the slower conformational reorganization of the N-terminal helix bundle domain. Consistent with this, fluorescence resonance energy transfer measurements from Trp residues to acrylodan attached at position 94 demonstrated that upon binding to the lipid surface, opening of the N-terminal helix bundle occurs at the same rate as the increase in pyrene fluorescence of the N-terminal domain. Such a two-step mechanism of lipid binding of apoE4 is likely to apply to mostly phospholipid-covered lipoproteins such as VLDL. However, monitoring pyrene fluorescence upon binding to HDL(3) suggests that not only apoE-lipid interactions but also protein-protein interactions are important for apoE4 binding to HDL(3).  相似文献   

18.
Zhu G  Zhai P  He X  Terzyan S  Zhang R  Joachimiak A  Tang J  Zhang XC 《Biochemistry》2003,42(21):6392-6399
GGAs are a family of vesicle-coating regulatory proteins that function in intracellular protein transport. A GGA molecule contains four domains, each mediating interaction with other proteins in carrying out intracellular transport. The GAT domain of GGAs has been identified as the structural entity that binds membrane-bound ARF, a molecular switch regulating vesicle-coat assembly. It also directly interacts with rabaptin5, an essential component of endosome fusion. A 2.8 A resolution crystal structure of the human GGA1 GAT domain is reported here. The GAT domain contains four helices and has an elongated shape with the longest dimension exceeding 80 A. Its longest helix is involved in two structural motifs: an N-terminal helix-loop-helix motif and a C-terminal three-helix bundle. The N-terminal motif harbors the most conservative amino acid sequence in the GGA GAT domains. Within this conserved region, a cluster of residues previously implicated in ARF binding forms a hydrophobic surface patch, which is likely to be the ARF-binding site. In addition, a structure-based mutagenesis-biochemical analysis demonstrates that the C-terminal three-helix bundle of this GAT domain is responsible for the rabaptin5 binding. These structural characteristics are consistent with a model supporting multiple functional roles for the GAT domain.  相似文献   

19.
Yohe ME  Rossman K  Sondek J 《Biochemistry》2008,47(26):6827-6839
Dbl-related oncoproteins are guanine nucleotide exchange factors (GEFs) specific for Rho-family GTPases and typically possess tandem Dbl (DH) and pleckstrin homology (PH) domains that act in concert to catalyze exchange. Although the exchange potential of many Dbl-family proteins is constitutively activated by truncation, the precise mechanisms of regulation for many Dbl-family proteins are unknown. Tim and Vav are distantly related Dbl-family proteins that are similarly regulated; their Dbl homology (DH) domains interact with N-terminal helices to exclude and prevent activation of Rho GTPases. Phosphorylation, substitution, or deletion of the blocking helices relieves this autoinhibition. Here we show that two other Dbl-family proteins, Ngef and Wgef, which like Tim contain a C-terminal SH3 domain, are also activated by tyrosine phosphorylation of a blocking helix. Consequently, basal autoinhibition of DH domains by direct steric exclusion using short N-terminal helices likely represents a conserved mechanism of regulation for the large family of Dbl-related proteins. N-Terminal truncation or phosphorylation of many other Dbl-family GEFs leads to their activation; similar autoinhibition mechanisms could explain some of these events. In addition, we show that the C-terminal SH3 domain binding to a polyproline region N-terminal to the DH domain of the Tim subgroup of Dbl-family proteins provides a unique mechanism of regulated autoinhibition of exchange activity that is functionally linked to the interactions between the autoinhibitory helix and the DH domain.  相似文献   

20.
The nucleotide binding and release cycle of the molecular chaperone DnaK is regulated by the accessory proteins GrpE and DnaJ, also called co-chaperones. The concerted action of the nucleotide exchange factor GrpE and the ATPase-stimulating factor DnaJ determines the ratio of the two nucleotide states of DnaK, which differ in their mode of interaction with unfolded proteins. In the Escherichia coli system, the stimulation by these two antagonists is comparable in magnitude, resulting in a balance of the two nucleotide states of DnaK(Eco) in the absence and the presence of co-chaperones.The regulation of the DnaK chaperone system from Thermus thermophilus is apparently substantially different. Here, DnaJ does not stimulate the DnaK-mediated ATP hydrolysis and thus does not appear to act as an antagonist of the nucleotide exchange factor GrpE(Tth). This raises the question of whether T. thermophilus GrpE stimulates nucleotide exchange to a smaller degree as compared to the E. coli system and how the corresponding rates relate to intrinsic ATPase and ATP binding as well as luciferase refolding kinetics of T. thermophilus DnaK.We determined dissociation constants as well as kinetic constants that describe the interactions between the T. thermophilus molecular chaperone DnaK, its nucleotide exchange factor GrpE and the fluorescent ADP analogue N8-(4-N'-methylanthraniloylaminobutyl)-8-aminoadenosine-5'-diphosphate by isothermal equilibrium titration calorimetry and stopped-flow kinetic experiments and investigated the influence of T. thermophilus DnaJ on the DnaK nucleotide cycle.The interaction of GrpE with the DnaK.ADP complex versus nucleotide-free DnaK can be described by a simple equilibrium system, where GrpE reduces the affinity of DnaK for ADP by a factor of about 10. Kinetic experiments indicate that the maximal acceleration of nucleotide release by GrpE is 80,000-fold at a saturating GrpE concentration.Our experiments show that in T. thermophilus, although the thermophilic DnaK system displays no stimulation of the DnaK-ATPase activity by DnaJ, nucleotide exchange is still efficiently stimulated by GrpE. This indicates that two counteracting factors are not absolutely necessary to maintain a functional and regulated chaperone cycle. This conclusion is corroborated by data that show that the slower ATPase cycle of the DnaK system as well as of heterologous T. thermophilus DnaK/E. coli DnaK systems is directly reflected in altered refolding kinetics of firefly luciferase but not necessarily in refolding yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号