首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wei G  Shea JE 《Biophysical journal》2006,91(5):1638-1647
The free energy landscape for folding of the Alzheimer's amyloid-beta(25-35) peptide is explored using replica exchange molecular dynamics in both pure water and in HFIP/water cosolvent. This amphiphilic peptide is a natural by-product of the Alzheimer's amyloid-beta(1-40) peptide and retains the toxicity of its full-length counterpart as well as the ability to aggregate into beta-sheet-rich fibrils. Our simulations reveal that the peptide preferentially populates a helical structure in apolar organic solvent, while in pure water, the peptide adopts collapsed coil conformations and to a lesser extent beta-hairpin conformations. The beta-hairpin is characterized by a type II' beta-turn involving residues G29 and A30 and two short beta-strands involving residues N27, K28, I31, and I32. The hairpin is stabilized by backbone hydrogen-bonding interactions between residues K28 and I31; S26 and G33; and by side-chain-to-side-chain interactions between N27 and I32. Implications regarding the mechanism of aggregation of this peptide into fibrils and the role of the environment in modulating secondary structure are discussed.  相似文献   

2.
The beta-hairpin trpzip2 can be tuned continuously from a two-state folder to folding on a rough energy landscape without a dominant refolding barrier. At high denaturant concentration, this extremely stable peptide exhibits a single apparent "two-state" transition temperature when monitored by different spectroscopic techniques. However, under optimal folding conditions the hairpin undergoes an unusual folding process with three clusters of melting transitions ranging from 15 degrees C to 160 degrees C, as monitored by 12 different experimental and computational observables. We explain this behavior in terms of a rough free energy landscape of the unfolded peptide caused by multiple tryptophan interactions and alternative backbone conformations. The landscape is mapped out by potentials of mean force derived from replica-exchange molecular dynamics simulations. Implications for deducing cooperativity from denaturant titrations, for the origin of folding cooperativity, and for the folding of thermophilic proteins are pointed out. trpzip is an excellent small tunable model system for the glass-like folding transitions predicted by landscape theory.  相似文献   

3.
Wang C  Huang L  Wang L  Hong Y  Sha Y 《Biopolymers》2007,86(1):23-31
Fabricating various nanostructures based on the self-assembly of diverse biological molecules is now of great interest to the field of bionanotechnology. In this study, we report a de novo designed peptide (T1) with a preferential beta-hairpin forming property that can spontaneously assemble into nanofibrils in ultrapure water. The nanofibrils assembled by T1 could grow up to tens of microns in length with a left-handed helical twist and an average height of 4.9 +/- 0.9 nm. Moreover, protofilaments and nucleus structures both with a similar height of 1.4 +/- 0.2 nm were observed during fibrilization as well as via sonication of the mature nanofibrils. A typical conformational transition from random coil to beta-structure was observed in association with the fibrilization. Molecular modeling of T1 assemblies displayed that the beta-hairpin molecules organize in a parallel fashion in which the beta-strands align in an antiparallel fashion and each adjoining beta-strand runs left-handed twist at about 2.9 degrees with respect to the one located before it along the fibrillar axis. It also revealed that the maximum thickness of the assembly intermediate, the helical tape structure, is about 1.4 nm and four tapes can further assemble into a fibril with a diameter of about 4.1 nm. Taken together the results obtained by AFM, CD, and molecular modeling, T1 fibrilization probably undergoes a hierarchy approach, in which the aromatic stacking and the electrostatic interactions between the assembled structures are most likely the two major factors directing the one-dimensional self-assembly. Based on these studies, we propose T1 can be used as a model peptide to investigate the beta-sheet based self-assembly process and could be a potential bioorganic template to develop functional materials.  相似文献   

4.
An octapeptide containing a central -Aib-Gly- segment capable of adopting beta-turn conformations compatible with both hairpin (beta(II') or beta(I')) and helical (beta(I)) structures has been designed. The effect of solvent on the conformation of the peptide Boc-Leu-Val-Val-Aib-Gly-Leu-Val-Val-OMe (VIII; Boc: t-butyloxycarbonyl; OMe: methyl ester) has been investigated by NMR and CD spectroscopy. Peptide VIII adopts a well-defined beta-hairpin conformation in solvents capable of hydrogen bonding like (CD(3))(2)SO and CD(3)OH. In solvents that have a lower tendency to interact with backbone peptide groups, like CDCl(3) and CD(3)CN, helical conformations predominate. Nuclear Overhauser effects between the backbone protons and solvent shielding of NH groups involved in cross-strand hydrogen bonding, backbone chemical shifts, and vicinal coupling constants provide further support for the conformational assignments in different solvents. Truncated peptides Boc-Val-Val-Aib-Gly-Leu-Val-Val-OMe (VII), Boc-Val-Val-Aib-Gly-Leu-Val-OMe (VI), and Boc-Val-Aib-Gly-Leu-OMe (IV) were studied in CDCl(3) and (CD(3))(2)SO by 500 MHz (1)H-NMR spectroscopy. Peptides IV and VI show no evidence for hairpin conformation in both the solvents. The three truncated peptides show a well-defined helical conformation in CDCl(3). In (CD(3))(2)SO, peptide VII adopts a beta-hairpin conformation. The results establish that peptides may be designed, which are poised to undergo a dramatic conformational transition.  相似文献   

5.
Araki M  Tamura A 《Proteins》2007,66(4):860-868
Intrinsic rules of determining the tertiary structure of a protein have been unknown partly because physicochemical factors that contribute to stabilization of a protein structure cannot be represented as a linear combination of local interactions. To clarify the rules on the nonlinear term caused by nonlocal interaction in a protein, we tried to transform a peptide that has a fully helical structure (Target Peptide or TP) into a peptide that has a beta-hairpin structure (Designed Peptide or DP) by adding seven residues to the C terminus of TP. According to analyses of nuclear magnetic resonance measurements, while the beta-hairpin structure is stabilized in some DPs, it is evident that the helical structure observed in TP is also persistent and even extended throughout the length of the molecule. As a result, we have produced a peptide molecule that contains both the alpha-helix and beta-hairpin conformation at an almost equally populated level. The helical structures contained in these DPs were more stable than the helix in TP, suggesting that stabilizing one conformation does not result in destabilizing the other conformation. These DPs can thus be regarded as an isolated peptide version of the chameleon sequence, which has the capability of changing the secondary structure depending on the context of the surrounding environment in a protein structure. The fact that the transformation of one secondary structure caused stabilization of both the original and the induced structure would shed light on the mechanism of protein folding.  相似文献   

6.
Wu X  Brooks BR 《Biophysical journal》2004,86(4):1946-1958
The beta-hairpin fold mechanism of a nine-residue peptide, which is modified from the beta-hairpin of alpha-amylase inhibitor tendamistat (residues 15-23), is studied through direct folding simulations in explicit water at native folding conditions. Three 300-nanosecond self-guided molecular dynamics (SGMD) simulations have revealed a series of beta-hairpin folding events. During these simulations, the peptide folds repeatedly into a major cluster of beta-hairpin structures, which agree well with nuclear magnetic resonance experimental observations. This major cluster is found to have the minimum conformational free energy among all sampled conformations. This peptide also folds into many other beta-hairpin structures, which represent some local free energy minimum states. In the unfolded state, the N-terminal residues of the peptide, Tyr-1, Gln-2, and Asn-3, have a confined conformational distribution. This confinement makes beta-hairpin the only energetically favored structure to fold. The unfolded state of this peptide is populated with conformations with non-native intrapeptide interactions. This peptide goes through fully hydrated conformations to eliminate non-native interactions before folding into a beta-hairpin. The folding of a beta-hairpin starts with side-chain interactions, which bring two strands together to form interstrand hydrogen bonds. The unfolding of the beta-hairpin is not simply the reverse of the folding process. Comparing unfolding simulations using MD and SGMD methods demonstrate that SGMD simulations can qualitatively reproduce the kinetics of the peptide system.  相似文献   

7.
A spontaneously folding beta-hairpin peptide (Lys-Lys-Tyr-Thr-Val-Ser-Ile-Asn-Gly-Lys-Lys-Ile-Thr-Val-Ser-Ile) and related cyclic (cyclo-Gly-Lys-Tyr-Ile-Asn-Gly-Lys-Ile-Ile-Asn) and linear (Ser-Ile-Asn-Gly-Lys) controls were studied to determine the effects of various factors on secondary structure. Secondary structure was evaluated using circular dichroism (CD) and 1D and 2D (1)H nuclear magnetic resonance (NMR). The effects of chemical modifications in the peptide and various solution conditions were investigated to determine their impact on peptide structure. The beta-hairpin peptide displayed a CD minimum at 216 nm and a TOCSY i + 1 - i + 2 and i + 2 -i + 3 interaction, confirming the expected structure. Using NMR alpha-proton (H(alpha)) chemical shifts, the extents of folding of the beta-hairpin and linear control were estimated to be 51 and 25% of the cyclic control (pH 4, 37 degrees C), which was taken to be maximally folded. Substitution of iso-aspartic acid for Asn reduced the secondary structure dramatically; substitution of aspartic acid for Asn also disrupted the structure. This result suggests that deamidation in unconstrained beta-turns may have adverse effects on secondary structure. N-terminal acetylation and extreme pH conditions also reduced structure, while the addition of methanol increased structure.  相似文献   

8.
The evolution of the incorporation of cation transport channels into lysolecithin micelles by gramicidin A was followed by measuring the ns time-resolved fluorescence of the tryptophan residues. In all samples, the tryptophan fluorescence could be resolved into three exponentially decaying components. The three decay times ranged from 6 to 8 ns, 1.8 to 3 ns, and 0.3 to 0.8 ns, depending on the emission wavelength. The fractional fluorescence of each component changed with incubation time. The long lifetime component had a reduced contribution to the total fluorescence while the short decay time component increased. The fluorescence spectra could be resolved into three distinct fluorescent components having maxima at 340 nm, 330 nm and 323 nm after 90 min of incubation, and 335 nm, 325 nm and 320 nm after 24 h of incubation. These maxima were, respectively, associated with the long, medium and short decay components. The fluorescence decay behaviour was interpreted as representing three families of tryptophans, the short lifetime component being due to a stacking interaction between tryptophan residues. The variation with incubation time suggests a two-step process in the channel-lipid organization. The first is associated with the conformational change of the polypeptide as it takes up a left-handed helical head-to-head dimer structure in the lipid. The second step is proposed to involve changes originating from membrane assembly and intermolecular interactions between channels as they form hexameric clusters.  相似文献   

9.
The energy landscape of a peptide [Ace-Lys-Gln-Cys-Arg-Glu-Arg-Ala-Nme] in explicit water was studied with a multicanonical molecular dynamics simulation, and the AMBER parm96 force field was used for the energy calculation. The peptide was taken from the recognition helix of the DNA-binding protein, c-MYB: A rugged energy landscape was obtained, in which the random-coil conformations were dominant at room temperature. The CD spectra of the synthesized peptide revealed that it is in the random state at room temperature. However, the 300 K canonical ensemble, Q(300K), contained alpha-helix, 3(10)-helix, beta-turn, and beta-hairpin structures with small but notable probabilities of existence. The complete alpha-helix, imperfect alpha-helix, and random-coil conformations were separated from one another in the conformational space. This means that the peptide must overcome energy barriers to form the alpha-helix. The overcoming process may correspond to the hydrogen-bond rearrangements from peptide-water to peptide-peptide interactions. The beta-turn, imperfect 3(10)-helix, and beta-hairpin structures, among which there are no energy barriers at 300 K, were embedded in the ensemble of the random-coil conformations. Two types of beta-hairpin with different beta-turn regions were observed in Q(300K). The two beta-hairpin structures may have different mechanisms for the beta-hairpin formation. The current study proposes a scheme that the random state of this peptide consists of both ordered and disordered conformations. In contrast, the energy landscape obtained from the parm94 force field was funnel like, in which the peptide formed the helical conformation at room temperature and random coil at high temperature.  相似文献   

10.
Scalley ML  Nauli S  Gladwin ST  Baker D 《Biochemistry》1999,38(48):15927-15935
We use a broad array of biophysical methods to probe the extent of structure and time scale of structural transitions in the protein L denatured state ensemble. Measurement of amide proton exchange protection during the first several milliseconds following initiation of refolding in 0.4 M sodium sulfate revealed weak protection in the first beta-hairpin and helix. A tryptophan residue was introduced into the first beta-hairpin to probe the extent of structure formation in this part of the protein; the intrinsic fluorescence of this tryptophan was found to deviate from that expected given its local sequence context in 2-3 M guanidine, suggesting some partial ordering of this region in the unfolded state ensemble. To further probe this partial ordering, dansyl groups were introduced via cysteine residues at three sites in the protein. It was found that fluorescence energy transfer from the introduced tryptophan to the dansyl groups decreased dramatically upon unfolding. Stopped-flow fluorescence studies showed that the recovery of dansyl fluorescence upon refolding occurred on a submillisecond time scale. To probe the interactions responsible for the residual structure observed in the denatured state ensemble, the conformation of a peptide corresponding to the first beta-hairpin and helix of protein L was studied using circular dichroism spectroscopy and compared to that of full-length protein L and previously characterized peptides corresponding to the isolated helix and second beta-hairpin.  相似文献   

11.
Jourdan M  Searle MS 《Biochemistry》2000,39(40):12355-12364
Peptide fragments corresponding to the N- and C-terminal portions of bovine ubiquitin, U(1-35) and U(36-76), are shown by NMR to associate in solution to form a complex of modest stability (Kassn approximately 1.4 x 10(5) M(-1) at pH 7.0), with NMR features characteristic of a nativelike structure. The complex undergoes cold denaturation, with temperature-dependent estimates of stability from NMR indicating a DeltaC(p) degrees for fragment complexation in good agreement with that determined for native ubiquitin, suggesting that fragment association results in the burial of a similar hydrophobic surface area. The stability of the complex shows appreciable pH dependence, suggesting that ionic interactions on the surface of the protein contribute significantly. However, denaturation studies of native ubiquitin in the presence of guanidine hydrochloride (Gdn.HCl) show little pH dependence, suggesting that ionic interactions may be "screened" by the denaturant, as recently suggested. Examination of the conformation of the isolated peptide fragments has shown evidence for a low population of nativelike structure in the N-terminal beta-hairpin (residues 1-17) and weak nascent helical propensity in the helical fragment (residues 21-35). In contrast, the C-terminal peptide (36-76) shows evidence in aqueous solution, from some Halpha chemical shifts, for nonnative phi and psi angles; nonnative alpha-helical structure is readily induced in the presence of organic cosolvents, indicating that tertiary interactions in both native ubiquitin and the folded fragment complex strongly dictate its structural preference. The data suggest that the N-terminal fragment (1-35), where interaction between the helix and hairpin requires the minimum loss of conformational entropy, may provide the nucleation site for fragment complexation.  相似文献   

12.
The effect of solution conditions on the conformation of the peptide corresponding to residues 129-141 of the mouse prion protein has been examined by experimental and theoretical tools including circular dichroism, secondary structure predictions, and Molecular Dynamics simulations. The conformational properties of the peptide observed by CD confirm the prediction results: the peptide is chiefly random coil in water. The conformational sampling performed by Molecular Dynamics simulations in water also corroborates the flexibility of the peptide, in particular for the N-terminal part. We show, however, that the peptide samples hairpin conformations in one of several approximately 1-ns Molecular Dynamics simulations in water. Interestingly, the analysis of the CD spectra obtained in this study suggests the presence of beta-structure which, given the length of the peptide, can only consist in beta-hairpin. The peptide can also be induced to form a modest percentage of helical structure in the presence of organic cosolvents such as trifluoroethanol, or detergents such as sodium dodecyl sulfate and lysophosphatidylcholine. This result is different from that obtained for a homologous hamster fragment, which differs from the mouse sequence by the single substitution of Ile 139 to Met. Interestingly, this substitution is crucial for the barrier in the transmission of the prion disease between hamsters and mice.  相似文献   

13.
The effect of dimyristoylphosphatidylcholine (DMPC) on the conformation and environment of the single tryptophan residue of a model amphipathic helical polypeptide has been investigated by fluorescence quenching with a water-soluble, neutral quencher (acrylamide) and multiple-frequency phase fluorometry. The peptide H-Ser-Ser-Ala-Asp-Trp-Leu-Lys-Ala-Phe-Tyr-Asp-Lys-Val-Ala-Glu-Lys-Leu-Ly s-Glu- Ala-Phe-Ser-Ser-Ser-OH [18As; Kanellis, P., Romans, A.Y., Johnson, B.J., Kercret, H., Chiovetti, R., Jr., Allen, T.M., & Segrest, S.P. (1980) J. Biol. Chem. 255, 11464] was synthesized by solid-phase techniques. Peptide was incubated at 26 degrees C with DMPC at various peptide:lipid weight ratios. The diameter of the resulting disk-shaped micelles increases with increasing lipid concentration from 12.0 +/- 0.4 nm at a 1:1 weight ratio of peptide to lipid to a maximum of 48.7 +/- 1.0 nm at a 1:13 ratio. At a weight ratio of 1:5, the average diameter is 22.7 +/- 0.6 nm. Decreasing the peptide:lipid ratio of the micelle resulted in a blue-shift in the fluorescence emission maximum (from 337 nm at 1:1 to 334 nm at 1:5), an increase in the fluorescence lifetime of the tryptophan measured by the phase shift method at 18 MHz (from 3.12 ns at 1:1 to 3.61 ns at 1:5), a decrease in the rate of fluorescence quenching by acrylamide (from 0.87 x 10(9) M-1 s-1 at 1:1 to 0.42 x 10(9) M-1 s-1 at 1:5), and an increase in the activation energy for quenching (from 6.7 kcal/mol at 1:1 to 12.7 kcal/mol at 1:5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In an effort to develop a structured peptide scaffold that lacks a disulfide bond and is thus suitable for molecular recognition applications in the reducing environment of the cytosol, we investigated engineered versions of the trpzip class of β‐hairpin peptides. We have previously shown that even most highly folded members of the trpzip class (i.e. the 16mer peptide HP5W4 ) are substantially destabilized by the introduction of mutations in the turn region and therefore not an ideal peptide scaffold. To address this issue, we used a FRET‐based live cell screening system to identify extended trpzip‐type peptides with additional stabilizing interactions. One of the most promising of these extended trpzip‐type variants is the 24mer xxtz1 ‐peptide with the sequence KAWTHDWTWNPATGKWTWLWRKNK. A phage display library of this peptide with randomization of six residues with side chains directed towards one face of the hairpin was constructed and panned against immobilized streptavidin. We have also explored the use of xxtz1 ‐peptide for the presentation of an unstructured peptide ‘loop’ inserted into the turn region. Although NMR analysis provided no direct evidence for structure in the xxtz1 ‐peptide with the loop insertion, we did attempt to use this construct as a scaffold for phage display of randomized peptide libraries. Panning of the resulting libraries against streptavidin resulted in the identification of peptide sequences with submicromolar affinities. Interestingly, substitution of key residues in the hairpin‐derived portion of the peptide resulted in a 400‐fold decrease in Kd, suggesting that the hairpin‐derived portion plays an important role in preorganization of the loop region for molecular recognition. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
The evolution of the incorporation of cation transport channels into lysolecithin micelles by gramicidin A was followed by measuring the ns time-resolved fluorescence of the tryptophan residues. In all samples, the tryptophan fluorescence could be resolved into three exponentially decaying components. The three decay times ranged from 6 to 8 ns, 1.8 to 3 ns, and 0.3 to 0.8 ns, depending on the emission wavelength. The fractional fluorescence of each component changed with incubation time. The long lifetime component had a reduced contribution to the total fluorescence while the short decay time component increased. The fluorescence spectra could be resolved into three distinct fluorescent components having maxima at 340 nm, 330 nm and 323 nm after 90 min of incubation, and 335 nm, 325 nm and 320 nm after 24 h of incubation. These maxima were, respectively, associated with the long, medium and short decay components. The fluorescence decay behaviour was interpreted as representing three families of tryptophans, the short lifetime component being due to a stacking interaction between tryptophan residues. The variation with incubation time suggests a two-step process in the channel-lipid organization. The first is associated with the conformational change of the polypeptide as it takes up a left-handed helical head-to-head dimer structure in the lipid. The second step is proposed to involve changes originating from membrane assembly and intermolecular interactions between channels as they form hexameric clusters.  相似文献   

16.
An efficient excitation energy transfer from tryptophan residues of intrinsic membrane proteins to an extrinsic fluorescent probe (diphenylhexatriene) has been demonstrated in rat erythrocyte ghosts. To correlate this transfer with the localization of the probe, a model system has been investigated. It consists of peptides containing lysine and tryptophan residues bound to negatively charged phosphatidylserine vesicles. Absorption and fluorescence spectroscopies were used to follow peptide binding and diphenylhexatriene incorporation. Peptide binding is accompanied by a blue shift of the tryptophan fluorescence together with an increase of the quantum yield and of the fluorescence decay time. An experimental Föster critical distance value of 4.0 nm was found for energy transfer from tryptophan residues of peptides to diphenylhexatriene which approaches the range of calculated values (3.1–3.7 nm) using a two-dimensional model. These results demonstrate that efficient energy transfer can occur from tryptophan residues of intrinsic proteins to diphenylhexatriene without any interaction between diphenylhexatriene and proteins in biological membranes.  相似文献   

17.
pH-dependent bilayer destabilization by an amphipathic peptide   总被引:7,自引:0,他引:7  
A 30-residue amphipathic peptide was designed to interact with uncharged bilayers in a pH-dependent fashion. This was achieved by a pH-induced random coil-alpha-helical transition, exposing a hydrophobic face in the peptide. The repeat unit of the peptide, glutamic acid-alanine-leucine-alanine (GALA), positioned glutamic acid residues on the same face of the helix, and at pH 7.5, charge repulsion between aligned Glu destabilized the helix. A tryptophan was included at the N-terminal as a fluorescence probe. The rate and extent of peptide-induced leakage of contents from large, unilamellar vesicles composed of egg phosphatidylcholine were dependent on pH. At pH 5.0 with a lipid/peptide mole ratio of 500/1, 100% leakage of vesicle contents occurred within 1 min. However, no leakage of vesicle contents occurred at pH 7.5. Circular dichroism measurements indicated that the molar ellipticity at 222 nm changed from about -4000 deg cm2 dmol-1 at pH 7.6 to -11,500 deg cm2 dmol-1 at pH 5.1, indicating a substantial increase in helical content as the pH was reduced. Changes in molar ellipticity were most significant over the same pH range where a maximum change in the extent and rate of leakage occurred. The tryptophan fluorescence emission spectra and the circular dichroism spectra of the peptide, in the presence of lipid, suggest that GALA did not associate with the bilayer at neutral pH. A change in the circular dichroism spectrum and a blue shift of the maximum of the tryptophan fluorescence emission spectra at pH 5.0, in the presence of lipid, indicated an association of GALA with the bilayer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A model peptide with enhanced helicity   总被引:4,自引:0,他引:4  
The sequence of a model monomeric peptide, acetylA(EAAAK)3Aamide was altered to expedite measurement of peptide concentration and to enhance its fractional helical content. Replacement of the N-terminal alanine residue with a tryptophan residue provides a convenient chromophore for measurement of peptide concentration without diminishing the helical content. Replacement of the three lysine residues with arginine residues enhances the helical content without loss of their electrostatic contributions. Increasing the number of EAAAR sequence units in the peptide acetylW(EAAAR)nAamide from three to five indicates that the spectral features anticipated for a completely helical peptide are closely approached.  相似文献   

19.
To probe structural changes that occur when a membrane protein is transferred from lipid bilayers to SDS micelles, a fragment of bacteriorhodopsin containing transmembrane helical segments A and B was studied by fluorescence spectroscopy, molecular dynamics (MD) simulation, and stopped flow kinetics. In lipid bilayers, F?rster resonance energy transfer (FRET) was observed between tyrosine 57 on helix B and tryptophans 10 and 12 on helix A. FRET efficiency decreased substantially when the peptide was transferred to SDS. MD simulation showed no evidence for significant disruption of helix-helix interactions in SDS micelles. However, a cluster of water molecules was observed to form a hydrogen-bonded network with the phenolic hydroxyl group of tyrosine 57, which probably causes the disappearance of tyrosine-to-tryptophan FRET in SDS. The tryptophan quantum yield decreased in SDS, and the change occurred at nearly the same rate as membrane solubilization. The results provide a clear example of the importance of corroborating distance changes inferred from FRET by using complementary methods.  相似文献   

20.
Schibli DJ  Hwang PM  Vogel HJ 《Biochemistry》1999,38(51):16749-16755
Tritrpticin is a member of the cathelicidin family, a group of diverse antimicrobial peptides found in neutrophil granules. The three Trp and four Arg residues in the sequence VRRFPWWWPFLRR make this a Trp-rich cationic peptide. The structure of tritrpticin bound to membrane-mimetic sodium dodecyl sulfate micelles has been determined using conventional two-dimensional NMR methods. It forms two adjacent turns around the two Pro residues, a distinct fold for peptide-membrane interaction. The first turn involves residues 4-7, followed immediately by a second well-defined 3(10)-helical turn involving residues 8-11. The hydrophobic residues are clustered together and are clearly separated from the basic Arg residues, resulting in an amphipathic structure. Favorable interactions between the unusual amphipathic fold and the micelle surface are probably key to determining the peptide structure. NMR studies of the peptide in the micelle in the presence of the spin-label 5-doxylstearic acid determined that tritrpticin lies near the surface of the micelle, where its many aromatic side chains appear to be equally partitioned into the hydrophilic-hydrophobic interface. Additional fluorescence studies confirmed that the tryptophan residues are inserted into the micelle and are partially protected from the effects of the soluble fluorescence quencher acrylamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号