首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns of both above- and belowground biomass and production were evaluated using published information from 200 individual data-sets. Data sets were comprised of the following types of information: organic matter storage in living and dead biomass (e.g. surface organic horizons and soil organic matter accumulations), above- and belowground net primary production (NPP) and biomass, litter transfers, climatic data (i.e. precipitation and temperature), and nutrient storage (N, P, Ca, K) in above- and belowground biomass, soil organic matter and litter transfers. Forests were grouped by climate, foliage life-span, species and soil order. Several climatic and nutrient variables were regressed against fine root biomass or net primary production to determine what variables were most useful in predicting their dynamics. There were no significant or consistent patterns for above- and belowground biomass accumulation or NPP change across the different climatic forest types and by soil order. Similarly, there were no consistent patterns of soil organic matter (SOM) accumulation by climatic forest type but SOM varied significantly by soil order—the chemistry of the soil was more important in determining the amount of organic matter accumulation than climate. Soil orders which were high in aluminum, iron, and clay (e.g. Ultisols, Oxisols) had high total living and dead organic matter accumulations-especially in the cold temperate zone and in the tropics. Climatic variables and nutrient storage pools (i.e. in the forest floor) successfully predicted fine root NPP but not fine root biomass which was better predicted by nutrients in litterfall. The importance of grouping information by species based on their adaptive strategies for water and nutrient-use is suggested by the data. Some species groups did not appear to be sensitive to large changes in either climatic or nutrient variables while for others these variables explained a large proportion of the variation in fine root biomass and/or NPP.  相似文献   

2.
Uncertainty in biomass estimates is one of the greatest limitations to models of carbon flux in tropical forests. Previous comparisons of field‐based estimates of the aboveground biomass (AGB) of trees greater than 10 cm diameter within Amazonia have been limited by the paucity of data for western Amazon forests, and the use of site‐specific methods to estimate biomass from inventory data. In addition, the role of regional variation in stand‐level wood specific gravity has not previously been considered. Using data from 56 mature forest plots across Amazonia, we consider the relative roles of species composition (wood specific gravity) and forest structure (basal area) in determining variation in AGB. Mean stand‐level wood specific gravity, on a per stem basis, is 15.8% higher in forests in central and eastern, compared with northwestern Amazonia. This pattern is due to the higher diversity and abundance of taxa with high specific gravity values in central and eastern Amazonia, and the greater diversity and abundance of taxa with low specific gravity values in western Amazonia. For two estimates of AGB derived using different allometric equations, basal area explains 51.7% and 63.4%, and stand‐level specific gravity 45.4% and 29.7%, of the total variation in AGB. The variation in specific gravity is important because it determines the regional scale, spatial pattern of AGB. When weighting by specific gravity is included, central and eastern Amazon forests have significantly higher AGB than stands in northwest or southwest Amazonia. The regional‐scale pattern of species composition therefore defines a broad gradient of AGB across Amazonia.  相似文献   

3.
The most commonly observed change in soil following slash-and-burn clearing of tropical forest is a short-term increase in nutrient availability. Studies of shifting cultivation commonly cite the incorporation of nutrient-rich ash from consumed aboveground biomass into soil as the reason for this change. The effects of soil heating on nutrient availability have been examined only rarely in field studies of slash-and-burn, and soil heating as a mechanism of nutrient release is most often assumed to be of minor importance in the field. Few budgets for above and belowground nutrient flux have been developed in the tropics, and a survey of results from field and laboratory studies indicates that soils are sufficiently heated during most slash-and-burn events, particularly in dry and monsoonal climates, to cause significant, even substantial release of nutrients from non-plant-available into plant-available forms in soil. Conversely, large aboveground losses of nutrients during and after burning often result in low quantities of nutrients that are released to soil. Assessing the biophysical sustainability of an agricultural practice requires detailed information about nutrient flux and loss incurred during management. To this end, current conceptual models of shifting cultivation should be revised to more accurately describe these fluxes and losses. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
We studied the effects of mycorrhizal pitch pine (Pinus rigida) roots on litter decomposition, microbial biomass, nematode abundance and inorganic nutrients in the E horizon material of a spodosolic soil, using field microcosms created in a regenerating pitch pine stand in the New Jersey Pinelands. Pine roots stimulated litter decomposition by 18.7% by the end of the 29 month study. Both mass loss and N and P release from the litter were always higher in the presence of roots than in their absence. Nutrient concentrations in decomposing litter were similar, however, in the presence and absence of roots, which suggests that the roots present in the with-root treatment did not withdraw nutrients directly from the litter. The soil was slightly drier in the presence of roots, but there was no discernible effect on soil microbial biomass. The effects of roots on soil extractable inorganic nutrients were inconsistent. Roots, however, were consistently associated with higher numbers of soil nematodes. These results suggest that, in soils with low total C and N contents, roots stimulate greater activity of the soil biota, which contribute, in turn, to faster litter decomposition and nutrient release.Contribution No. 95-22 from the Institute of Marine and Coastal Sciences.Contribution No. 95-22 from the Institute of Marine and Coastal Sciences.  相似文献   

5.
  总被引:8,自引:1,他引:8  
The net primary production of tropical forests and its partitioning between long‐lived carbon pools (wood) and shorter‐lived pools (leaves, fine roots) are of considerable importance in the global carbon cycle. However, these terms have only been studied at a handful of field sites, and with no consistent calculation methodology. Here we calculate above‐ground coarse wood carbon productivity for 104 forest plots in lowland New World humid tropical forests, using a consistent calculation methodology that incorporates corrections for spatial variations in tree‐size distributions and wood density, and for census interval length. Mean wood density is found to be lower in more productive forests. We estimate that above‐ground coarse wood productivity varies by more than a factor of three (between 1.5 and 5.5 Mg C ha?1 a?1) across the Neotropical plots, with a mean value of 3.1 Mg C ha?1 a?1. There appear to be no obvious relationships between wood productivity and rainfall, dry season length or sunshine, but there is some hint of increased productivity at lower temperatures. There is, however, also strong evidence for a positive relationship between wood productivity and soil fertility. Fertile soils tend to become more common towards the Andes and at slightly higher than average elevations, so the apparent temperature/productivity relationship is probably not a direct one. Coarse wood productivity accounts for only a fraction of overall tropical forest net primary productivity, but the available data indicate that it is approximately proportional to total above‐ground productivity. We speculate that the large variation in wood productivity is unlikely to directly imply an equivalent variation in gross primary production. Instead a shifting balance in carbon allocation between respiration, wood carbon and fine root production seems the more likely explanation.  相似文献   

6.
* It is commonly hypothesized that stand-level fine root biomass increases as soil fertility decreases both within and among tropical forests, but few data exist to test this prediction across broad geographic scales. This study investigated the relationships among fine roots, arbuscular mycorrhizal (AM) fungi and soil nutrients in four lowland, neotropical rainforests. * Within each forest, samples were collected from plots that differed in fertility and above-ground biomass, and fine roots, AM hyphae and total soil nutrients were measured. * Among sites, total fine root mass varied by a factor of three, from 237+/-19 g m-2 in Costa Rica to 800+/-116 g m-2 in Brazil (0-40 cm depth). Both root mass and length were negatively correlated to soil nitrogen and phosphorus, but AM hyphae were not related to nutrients, root properties or above-ground biomass. * These results suggest that understanding how soil fertility affects fine roots is an additional factor that may improve the representation of root functions in global biogeochemical models or biome-wide averages of root properties in tropical forests.  相似文献   

7.
Meerts  Pierre 《Plant and Soil》1997,189(2):257-265
In order to investigate broad patterns of variation of the foliar mineral nutrient concentrations of herbaceous plant communities in the ground layer of W Europe forests, correlations were examined between Ellenberg's indices (N-index: mineral nitrogen availability, R-index: pH, F-index: soil moisture and L-index: light intensity) and literature values of macronutrient concentrations for 84 forbs and 39 graminoid species. Significant, positive correlations were found between the R-index and the plants' concentration of Ca and K (forbs only) and between the N-index and the plants' concentration of K, P (forbs only) and N (forbs and graminoids). Multiple regressions showed that the N-index was the best predictor of the plants' concentration of N (forbs and graminoids), P (forbs) and Ca (graminoids) and the R-index of the plants' concentration of Ca and K (forbs). The mineral nutrient concentrations of graminoids were lower and less strongly correlated with Ellenberg's indices than those of forbs. It is argued that the mineral nutrient concentrations in the plants match the availability of mineral nutrients in the soil for N, P (N-index) and Ca (R-index), but not for K and Mg. Significant, positive correlations were found between potential relative growth rate and the concentration of some elements (N, P, K and Ca in forbs, Ca and Mg in graminoids). This suggests that the increase in the concentration of these elements in plants along fertility gradients is due, at least partly, to genetically controlled alterations of leaf anatomy associated with increasing potential relative growth rate.  相似文献   

8.
9.
The use of the plant available moisture (PAM)/plant available nutrients (PAN) concept to compare savanna structure was examined using data from twenty Australian sites. Above-ground biomass was regressed on various combinations of seventeen different estimates of PAM (plant available moisture) and two estimates of PAN (plant available nutrients). The ratios of actual transpirational loss from the subsoil to potential evapotranspiration (PET), and total annual rainfall to PET, were most highly correlated with total biomass. Grass biomass is poorly predicted by PAM on its own, and requires inclusion of woody leaf biomass in the regression. PAN had little effect on total biomass, although it is likely to be important for other, functional aspects of vegetation. The woody : grass ratio is best predicted by an index involving the ratio of subsoil : topsoil moisture. For biomass comparisons the use of a detailed water-balance model to estimate PAM is not warranted.  相似文献   

10.
The application of knowledge of water and nutrient relationships to improve forest management is discussed from an Australian perspective. The objectives of tree planting and forest management have become diverse, and there are outstanding examples of successful application of research results to forestry.Experiments seeking to explain the way water and nutrients influence growth tend to use treatments designed to ensure large differences in growth to increase the opportunities for identifying the mechanisms involved. The application of results from such research to many forestry situations, however, is harder than from research in which there is a closer match between treatments and management practices. The expectations of process-based models as management tools for economic decision-making is yet to be fulfilled. More progress is required in our ability to predict accurately the effects of soil and stand management practices on the production of marketable wood.The extent to which results of research on silvicultural practices are applied in practice is ultimately dependent upon economic return from investment. Water and nutrient relations have a significant influence on production, harvest index and log and wood quality. Recognition and understanding of this influence and the availability of management-oriented growth models incorporating process-based information, will permit better assessment of potential returns from management options.  相似文献   

11.
Temperate forests of North America are thought to besignificant sinks of atmospheric CO2. Wedeveloped a below-ground carbon (C) budget forwell-drained soils in Harvard Forest Massachusetts, anecosystem that is storing C. Measurements of carbonand radiocarbon (14C) inventory were used todetermine the turnover time and maximum rate ofCO2 production from heterotrophic respiration ofthree fractions of soil organic matter (SOM):recognizable litter fragments (L), humified lowdensity material (H), and high density ormineral-associated organic matter (M). Turnover timesin all fractions increased with soil depth and were2–5 years for recognizable leaf litter, 5–10 years forroot litter, 40–100+ years for low density humifiedmaterial and >100 years for carbon associated withminerals. These turnover times represent the timecarbon resides in the plant + soil system, and mayunderestimate actual decomposition rates if carbonresides for several years in living root, plant orwoody material.Soil respiration was partitioned into two componentsusing 14C: recent photosynthate which ismetabolized by roots and microorganisms within a yearof initial fixation (Recent-C), and C that is respiredduring microbial decomposition of SOM that resides inthe soil for several years or longer (Reservoir-C).For the whole soil, we calculate that decomposition ofReservoir-C contributes approximately 41% of thetotal annual soil respiration. Of this 41%,recognizable leaf or root detritus accounts for 80%of the flux, and 20% is from the more humifiedfractions that dominate the soil carbon stocks.Measurements of CO2 and 14CO2 in thesoil atmosphere and in total soil respiration werecombined with surface CO2 fluxes and a soil gasdiffusion model to determine the flux and isotopicsignature of C produced as a function of soil depth. 63% of soil respiration takes place in the top 15 cmof the soil (O + A + Ap horizons). The average residencetime of Reservoir-C in the plant + soil system is8±1 years and the average age of carbon in totalsoil respiration (Recent-C + Reservoir-C) is 4±1years.The O and A horizons have accumulated 4.4 kgC m–2above the plow layer since abandonment by settlers inthe late-1800's. C pools contributing the most to soilrespiration have short enough turnover times that theyare likely in steady state. However, most C is storedas humified organic matter within both the O and Ahorizons and has turnover times from 40 to 100+ yearsrespectively. These reservoirs continue to accumulatecarbon at a combined rate of 10–30 gC mminus 2yr–1. This rate of accumulation is only 5–15% of the total ecosystem C sink measured in this stand using eddy covariance methods.  相似文献   

12.
Herrera  Bernal  Finegan  Bryan 《Plant and Soil》1997,191(2):259-267
A 28 yr old secondary lowland rain forest in Costa Rica was dominated by two tree species of contrasting ecologies, Vochysia ferruginea - a species typical of well-drained but infertile soils of high Al saturation, and Cordia alliodora, a species requiring soils of at least moderate fertility. The two species exhibited markedly different spatial distributions in the forest and we sought to determine whether or not these different distributions were related to variation in substrate conditions and the nutrient requirements of the two species. Two soil types were present: Ultisols (Typic Haplohumults) and Inceptisols (Typic Dystropepts) and topography was of low hills. The study formed part of an analysis of site quality for timber production in the two species and therefore used standard forestry methods for such analyses. 36 plots of 20 m×20 m were established using predetermined criteria of site uniformity, presence of at least four dominant trees of at least one of the study species, and absence of disturbance. The abundance (number of individuals 10 cm dbh) of each species was determined in each plot. Soil samples were taken in 27 of the 36 plots, 9 plots being considered to replicate conditions already sampled, and 14 soil chemical and physical variables were measured using standard methods. Foliar nutrient analyses were carried out for trees of both species with crowns fully exposed to sunlight, distributed across the gradient of soil conditions. Variations in species abundances were not related to soil type, but plots in which Vochysia ferruginea was more abundant tended to be on steeper slopes with soils of higher exchangeable acidity and lower concentrations of Mn; Cordia alliodora was more abundant on gentler topography where soils had much lower exchangeable acidity but higher Mn. Differences between the two species in foliar nutrient concentrations were marked and supported previous interpretations of their nutrient requirements; foliar nutrients of Vochysia ferruginea were typical of tree species of moist tropical forest on infertile soils, and those of Cordia alliodora typical of a species requiring more fertile soils. Factors such as the distributions of seed trees at site abandonment may affect the spatial distributions of tree species in secondary forests such as that studied. The relationships of the distributions of the two species to substrate variation, however, and their evidently different nutrient requirements, support the hypothesis that variation in the composition and structure of the forest studied is at least partially related to exchangeable acidity and its dominant cation, Al.  相似文献   

13.
1. An in situ enclosure experiment was conducted in a deep reservoir of southern China to examine (i) the effects of a low biomass (4 g wet weight m?3) of silver carp (Hypophthalmichthys molitrix) and nutrients on the plankton community and (ii) the response of Daphnia to eutrophication. 2. In the absence of fish, Daphnia galeata dominated the zooplankton community, whereas calanoids were dominant in the fish treatments, followed by D. galeata. Silver carp stocking significantly reduced total zooplankton biomass, and that of D. galeata and Leptodorarichardi, but markedly increased the biomass of smaller cladocerans, copepod nauplii and rotifers. In contrast, nutrient enrichment had no significant effect on the plankton community except for cyclopoids. 3. Chlorophyta, Cryptophyta and Bacillariophyta were dominant phytoplankton groups during the experiment. Chlorophyta with high growth rates (mainly Chlorella vulgaris in the fish enclosures and Ankyra sp. in the fishless enclosures) eventually dominated the phytoplankton community. Total phytoplankton biomass and the biomass of edible phytoplankton [greatest axial linear dimension (GALD) < 30 μm], Chlorophyta, Cryptophyta, Bacillariophyta and Cyanobacteria showed positive responses to fish stocking, while inedible phytoplankton (GALD ≥ 30 μm) was significantly reduced in the fish enclosures. However, there was no significant effect on the plankton community from the interaction of fish and nutrients. 4. Overall, the impact of fish on the plankton community was much greater than that of nutrients. High total phosphorus concentrations in the control treatment and relatively low temperatures may reduce the importance of nutrient enrichment. These results suggest it is not appropriate to use a low biomass of silver carp to control phytoplankton biomass in warmer, eutrophic fresh waters containing large herbivorous cladocerans.  相似文献   

14.
15.
The impact of macrophyte communities on benthic fluxes has been analyzed in three shallow coastal environments: Etang du Prévost (Mediterranean coast of France), characterized by the large floating macro-alga Ulva rigida; Certes fishponds (Bassin d'Arcachon), covered by Ruppia cirrhosa; and the inner intertidal mud-flat in the Arcachon Bay (French Atlantic coast), which has extensive Zostera noltii meadows. In these bodies of water, primary production is dependent primarily on the dominant seagrasses and macroalgae that are also responsible for the large quantity of organic matter deposited on the sediment surface. In 1993 and 1994, fluxes of oxygen, sulphide and nutrients were measured in early and late summer, which were selected in order to represent the production and decomposition phases of the dominant macrophytes. Experimental work was undertaken to measure: (1) standing crop of dominant macroalgae and rooted phanerogams and the elemental and macromolecular composition of plant biomass; (2) benthic fluxes of oxygen, sulphide, nitrogen and phosphorus using incubation of multiple dark and light benthic chambers; (3) water-sediment profiles of free-sulphide in sediment cores with rooted phanerogams (Ruppia) as well as with floating Seaweeds (Ulva).At the selected sampling sites, in addition to external (tides) and/or internal (sediment reactivity) factors, we observed differences in benthic fluxes which were clearly related to growth patterns and structure of the macrophyte communities. The Z. noltii meadows were stable and characterized by slow growth and almost constant biomass. In the more sheltered sampling station in the Certes fishponds, R. cirrhosa beds showed a summer decrease due to extensive epiphyte growth. During the decomposition phase, significant fluxes of free-sulphide occurred inside the dark benthic chambers, probably due to the metabolism of the epiphytic layer. In the Etang du Prévost, U. rigida achieved high biomass levels, even though the macroalgal beds exhibited a patchy distribution due to wind action and the hydrodynamics of the lagoon. In the decomposition phase, which was coincident with the annual dystrophic crisis the rapid decomposition of Ulva led to high fluxes of free sulphide.The shift from the production to decomposition phase resulted in substantial changes in nutrient recycling only in the macro-algal-dominated system. During the growth period dissolved inorganic nitrogen and phosphorus were kept at low levels due to macrophyte uptake. In contrast during the decomposition phase when the macroalgal biomass was mineralised, nitrogen and phosphorus were rapidly recycled. The same processes did not occur in the Certes fishponds probably because of the greater internal buffering capacity linked either to plant morphology/physiology or to the properties of the sediment.  相似文献   

16.
Nitrogen (N) fixed by termites was evaluated as a N input to decomposition processes in two tropical forests, a dry deciduous forest (DDF) and the neighboring dry evergreen forest (DEF), Thailand. A diverse group of termite species were assayed by acetylene reduction method and only the wood/litter-feeding termites were found to fix N. More intensive samplings of two abundant species, Microcerotermes crassus and Globitermes sulphureus, were done across several seasons, suggesting N fixation rates of 0.21 and 0.28 kg ha−1 y−1 by termites in the DDF and DEF, respectively. Also, estimates of asymbiotic N fixation rates were 0.75 and 3.95 kg ha−1 y−1. N fixed by termites and by asymbiotic fixers is directly supplied to decomposers breaking down dead plant material and could be a major source of their N. N fixed by termites was 7–22% of that fixed by termites and asymbiotic fixers. Although N fixed by termites is a small input compared to other inputs, this N is likely important for decomposition processes.  相似文献   

17.
Summary Current speed and direction measurements collected during summer (January–February) and sping (November–December) of 1984 indicated that currents in McMurdo Sound, Antarctica were dominated by oscillatory flow associated with diurnal tidal components (O1, K1, P1). Net flow was southward in the eastern Sound, mixed in the central Sound, and northward in the western Sound. Short term observations (<5 days) from nearshore stations indicated a similar but more sluggish pattern of tidal and mean flow. Hydrographic data collected during the same period indicated a similar pattern of cold water with low chlorophyll a content flowing northward from under the Ross Ice Shelf in the western Sound and denser, slightly warmer water with higher chlorophyll a content flowing southward in the eastern Sound. Previous studies have shown that productivity is higher in the eastern Sound than in the west, apparently due to the circulation pattern. The western Sound consists of waters from beneath the Ross Ice Shelf which have a lower phytoplankton standing stock than eastern Sound waters which enter from the north. More sluggish current speeds in the western Sound result in even lower particle fluxes past benthic consumers. Finally, more persistent ice cover in the west further inhibits in situ primary productivity.  相似文献   

18.
J. P. Barry 《Polar Biology》1988,8(5):377-391
Summary Measurements of hydrographic parameters (temperature, salinity, nitrate, nitrite, phosphate, chlorophyll a, phaeophytin, and oxygen) in McMurdo Sound, Antarctica during spring, 1984, before the regional phytoplankton bloom, and summer, 1984, after the peak of the bloom, indicate the several processes contribute to changes in the vertical and horizontal structure of the water column. Regional variation in the source of water masses within the Sound, ice cover patterns, and meltwater from the Ross Ice Shelf and nearby continental glaciers result in east-west and north-south gradients in the thermohaline, nutrient, and productivity characteristics of the Sound. These patterns are also related to the extremely variable structure and productivity of shallow water benthic macrofaunal communities in McMurdo Sound. Hydrographic patterns during Spring (November) were indicative of conditions at the end of winter prior to the spring phytoplankton bloom. The water column was nearly isothermal with temperatures near or below the surface freezing point of seawater with only a slight salinity increase with depth. Salinity was lower in the west Sound than in the east, probably in response to glacial meltwater input from the Ross Ice Shelf and/or terrestrial sources. Nutrient levels were high and nearly homogenous throughout the Sound. Chlorophyll a was low (<1.0 g/l) throughout most of the Sound, but was lowest in the western sound, as expected from the circulation pattern (Barry and Dayton 1988). Oxygen was uniformly low during spring. The summer hydrographic distributions, estimated from samples collected during the decline of the regional plankton bloom, were dramatically different than in during spring. Both the salinity and temperature were vertically stratified at all sites, particularly in the west Sound. Temperatures near the surface were well above the freezing point and occasionally near or above 0°C. Near surface salinity in the western Sound was nearly fresh (0.4 ppt) at some locations in the southwestern Sound. Chlorophyll a was high throughout the Sound relative to spring concentrations, and nutrient levels (NO3, PO4) were strongly depressed near the surface, due mainly to phytoplankton uptake rather than by dilution. Primary productivity estimates based on the summer nitrate and phosphate deficits over 90 days were 1.96–2.02 and 0.39–1.02 gCm-2d-1 for the east and west sound, respectively. Nutrient ratios indicated that glacial meltwater from the Ross Ice Shelf and/or nearby terrestrial sources may be an important component of the summer meltwater input to the western Sound. Enhanced water column stability due to this input may prolong the maintenance of high water column stability as this water mass flows northward and result in particularly high productivity in northern McMurdo Sound.  相似文献   

19.
Pierret  A.  Moran  C.J.  Pankhurst  C.E. 《Plant and Soil》1999,211(1):51-58
Under certain soil conditions, e.g. hardsetting clay B-horizons of South-Eastern Australia, wheat plants do not perform as well as would be expected given measurements of bulk soil attributes. In such soils, measurement indicates that a large proportion (80%) of roots are preferentially located in the soil within 1 mm of macropores. This paper addresses the question of whether there are biological and soil chemical effects concomitant with this observed spatial relationship. The properties of soil manually dissected from the 1–3 mm wide region surrounding macropores, the macropore sheath, were compared to those that are measured in a conventional manner on the bulk soil. Field specimens of two different soil materials were dissected to examine biological differentiation. To ascertain whether the macropore sheath soil differs from rhizosphere soil, wheat was grown in structured and repacked cores under laboratory conditions. The macropore sheath soil contained more microbial biomass per unit mass than both the bulk soil and the rhizosphere. The bacterial population in the macropore sheath was able to utilise a wider range of carbon substrates and to a greater extent than the bacterial population in the corresponding bulk soil. These differences between the macropore sheath and bulk soil were almost non-existent in the repacked cores. Evidence for larger numbers of propagules of the broad host range fungus Pythium in the macropore sheath soil were also obtained. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Anders Södergren 《Hydrobiologia》1993,251(1-3):217-225
The origin and mechanisms of formation of aquatic surface microlayers are reviewed, and processes within the layer responsible for enrichment of inorganic and organic substances, particles, and microorganisms are discussed. In a study of the chemical and biological composition of microlayers in three lakes of different levels of productivity, surface slicks were sampled with a revolving cylinder coated with hydrophilic Teflon. DOC, POC, DON and various forms of phosphorus were enriched in the microlayer compared to those in the subsurface water. In eutrophic and oligotrophic lakes the DOC:DON ratio shows that the slicks were more influenced by allochtonous sources than was the subsurface water, which indicates that processes in the ecotone influence the microlayer composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号