首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of 2-(2-aminophenyl)benzothiazole (Habt) with [Re(CO)5Br] led to the isolation of the rhenium(I) complex fac-[Re(Habt)(CO)3Br] (1). With trans-[ReOCl3(PPh3)2], the ligand Habt decomposed to form the oxofree rhenium(V) complex [Re(itp)2Cl(PPh3)] (2) (itp = 2-amidophenylthiolate). From the reaction of trans-[ReOBr3(PPh3)2] with 2-(2-hydroxyphenyl)benzothiazole (Hhpd) the complex [ReVOBr2(hpd)(PPh3)] (3) was obtained. Complexes 1-3 are stable and lipophilic. 1H NMR and infrared assignments, as well as the X-ray crystal structures, of the complexes are reported.  相似文献   

2.
Reaction of CdCl2 with N-alkylaminopyrazole ligands 1-[(2-ethylamino)ethyl]-3,5-dimethylpyrazole (deae), 1-[(2-(tert-butylamino)ethyl)]-3,5-dimethylpyrazole (deat), bis-[(3,5-dimethylpyrazolyl)methyl]ethylamine (bdmae), and bis-[(3,5-dimethylpyrazolyl)ethyl]ethylamine (ddae) in absolute ethanol yields [CdCl2(NN′)] (NN′ = deae (1), deat (2)), [CdCl2(bdmae)] (3), and [CdCl(ddae)]2[CdCl4] (4). The Cd(II) complexes have been characterised by elemental analyses, conductivity measurements, IR, 1H, 13C{1H} and 113Cd NMR spectroscopies, and X-ray diffraction methods. 1H and 113Cd NMR experiments at variable temperature for 3 and 4 show that dynamic processes are taking place in solution. We report the measurements of 113Cd NMR chemical shift data for complexes 1-4 in solution. X-ray crystal structures for complexes 2 and 3 have been determined. The Cd(II) is coordinated to the deat ligand, in 2, by one nitrogen atom of the pyrazolyl group and one nitrogen atom of the amine. It finishes a tetrahedral geometry with two chlorine atoms. The bdmae ligand is linked to Cd(II), in 3, by two nitrogens atoms of the pyrazolyl groups and one amine nitrogen, along with two chlorine atoms, in a distorted trigonal bipyramidal geometry.  相似文献   

3.
New trinuclear iron(III) furoates with the general formula [Fe3O(α-fur)6(R-OH)3]X, where α-fur C4H3OCOO, R = CH3 (1), C2H5 (2), n-C3H7 (3), n-C4H9 (4), X = NO3 (1-4); [Fe3O(α-Fur)6(DMF)(CH3OH)2]NO3 (5); [Fe3O(α-Fur)6(H2O)(CH3OH)2]Cl (6); [Fe2MO(α-Fur)6(L)(H2O)2], where L = THF (7-9), DMF (10-12), M = Mn2+ (7, 10), Co2+ (8, 11), Ni2+ (9, 12) and [Fe2MO(α-Fur)6(3Cl-Py)3], where M = Mn2+ (13), Co2+ (14), Ni2+ (15); have been prepared and investigated by Mössbauer and IR spectroscopy. The X-ray crystal structure for the 1·2CH3OH complex indicates that it crystallizes in the monoclinic crystal system (P21/n) and has a structure typical of μ3-O-bridged trinuclear iron(III) compounds. Coordination compounds 1, 4, 7, 8 can be used as regulators of the biochemical composition of cyanobacterium Spirulina platensis biomass. The supplementation of these compounds, in concentrations exceeding 5-10 mg/l, increases the content of iron, amino acids, peptides and carbohydrates in Spirulina.  相似文献   

4.
Two new zinc(II)-triazole-aliphatic dicarboxylate coordination polymers, [Zn(trz)(Hsuc)]n (1), [Zn2(trz)2(tar)]n (2), have been hydrothermally synthesized by reaction of Zn salt, Htrz with H2suc and H2tar, respectively (Htrz = 1,2,4-triazole, H2suc = succinic acid, H2tar = tartaric acid).Their structures were determined by single-crystal X-ray diffraction analyses and further characterized by X-ray powder diffraction, elemental analyses, IR spectra and TG analyses. Compound 1 displays a 2D layer structure containing {[Zn4(trz)4]4+}n layers decorated by the suc ligand. Compound 2 is in a 3D structure formed by the interconnection of 2D {[Zn4(trz)4]4+}n layers with tar ligand, resulting a 3,4-connected topological network. Due to the different coordination mode and conformation of aliphatic carboxylate ligand, the similar 2D {[Zn4(trz)4]4+}n layers stack in the -AAA- fashion in 1, while the {[Zn4(trz)4]4+}n layers hold together in the -ABAB- stacking sequence in 2. Additionally, the two compounds show strong fluorescence in the solid state at room temperature.  相似文献   

5.
Six novel metal-organic complex assemblies constructed from a conformation-flexible ligand - pyridine-4-acetamide (PAT) and inorganic CuII and CoII salts have been synthesized and structurally characterized by single crystal X-ray diffraction analysis. Crystal structure analysis reveals five types of architectures by variation of metal salts. In {[Cu(PAT)2Cl2]}n (1) and {[Co(PAT)2Cl2]}n (3), PAT ligands bridge metal centers to form one-dimensional chains. The chains are extended to three dimensions with the aid of two types of hydrogen bonded motifs () and (12)). {[Cu(PAT)2(NO3)](NO3)(THF)}n (5) which exhibits two-dimensional coordinating layers forms open channels filled with solvent molecules. In [Cu(PAT)2Cl2] (2), [Co(PAT)2Cl2] (4) and [Co(PAT)4(H2O)2](NO3)2(THF)2 (6), PAT is observed as a monofunctional ligand. Complex 2 forms one-dimensional hydrogen bonded chains. Crystal structure of complex 4 has a two-dimensional infinite hydrogen-bonded network with and motifs formed by complementary amide-amide hydrogen bonds. [Co(PAT)4(H2O)2](NO3)2(THF)2 (6) crystallizes in centrosymmetric I41/a space group. Complex 6 forms chiral channels which are filled with twisted solvent helices and anion helices. Within each channel the solvent helix and the anion helix have the same handedness; and adjacent channels have opposite handedness. Complexes 1, 2 and complexes 3, 4 illustrate examples of conformational supramolecular isomerism in {[Cu(PAT)2Cl2]} and {[Co(PAT)2Cl2]}, respectively. In these complexes, changes of PAT conformations and coordination geometry of metal center induced the structural versatility.  相似文献   

6.
Reaction of [(PPh2C5H4)Cp3Fe4(CO)4] (1) with (CO)4W(CH3CN)2 at ambient temperature affords [(CO)4W(PPh2C5H4)Cp3Fe4(CO)4] (2) as the major product, together with a small amount of [(CO)5W(PPh2C5H4)Cp3Fe4(CO)4] (3). Compound 3 can be obtained in good yield by treating (CO)5W(CH3CN) with equal molar of 1, and reaction of 3 with Me3NO in acetonitrile solvent produces 2 exclusively. The crystal structures of 2 and 3 have been determined by an X-ray diffraction study. Compound 2 contains an interesting μ4, η2-CO ligand, where two electrons donated by the carbon atom are involved to bridge a Fe3 face and two electrons from oxygen are donated to the tungsten(0) atom.  相似文献   

7.
By applying the hydrothermal in situ acylation reactions between alkyl-substituted pyridine-2,3-dicarboxylic acids and hydrazine hydrate, six pyridine-monoacylhydrazidate-coordinated transition-metal complexes [Mn(MPDH)2] 1, [M(MPDH)2(H2O)2]·2H2O (M2+ = Co2+2, Zn2+3), [Mn(EPDH)2(H2O)2] 4 and [M(EPDH)2(H2O)2] (M2+ = Zn2+5, Co2+6) (MPDH = 6-methylpyridine-2,3-dicarboxylhydrazidate; EPDH = 5-ethylpyridine-2,3-dicarboxylhydrazidate) were obtained. Although only compound 1 is a 1-D chained coordination polymer and the others are the mononuclear molecular entities, they all further self-assemble into the interesting supramolecular networks via hydrogen-bonded interactions between pyridine-monoacylhydrazidate ligands. Two Zn2+ compounds 3 and 5 possess the fluorescence properties with maximum emissions at 517 nm for 3 and 530 nm for 5 upon excitation, respectively. The magnetic analysis for compound 1 indicates there exists the antiferromagnetic interactions between the Mn(II) ions.  相似文献   

8.
A tridentate NNO donor Schiff base ligand [(1Z,3E)-3-((pyridin-2-yl)methylimino)-1-phenylbut-1-en-1-ol = LH] in presence of azide ions coordinates with cobalt(II) and copper(II) ions giving rise to three new coordination complexes [Co2(L)21,1-N3)2(N3)2] (1), [Cu2(L)21,3-N3)]·ClO4 (2) and [(μ1,1-N3)2Cu5(μ-OL)21,1-N3)41,1,1-N3)2]n (3). The complexes have been characterized by elemental analysis, FT-IR, UV-Vis spectral studies, and single crystal X-ray diffraction studies. These complexes demonstrate that under different synthetic conditions the azide ions and the Schiff base ligand (LH) show different coordination modes with cobalt(II) and copper(II) ions, giving rise to unusual dinuclear and polynuclear species (1, 2 and 3) whose structural variations are discussed. Magneto-structural correlation for the very rare singly μ1,3-N3 bridged CuII-Schiff base dinuclear species (2) has been studied. In addition, the catalytic properties of 1 for alkene oxidation and the general catalase-like activity behavior of 2 have been discussed.  相似文献   

9.
We synthesized iron(III), cobalt(II), copper(II) and zinc(II) complexes [FeIII(HBPClNOL)Cl2]·H2O (1), [CoII(H2BPClNOL)Cl2] (2), [CuII(H2BPClNOL)Cl]Cl·H2O (3), and [ZnII(HBPClNOL)Cl] (4), where H2BPClNOL is the ligand (N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)]propylamine). The complexes obtained were characterized by elemental analysis, IR and UV-visible spectroscopies, electrospray ionization mass spectrometry (ESI-MS), tandem mass spectrometry (MS/MS), and cyclic voltammetry. X-ray diffraction studies were performed for complexes (3) and (4) revealing the presence of mononuclear and dinuclear structures in solid state for (3). However, the zinc complex is mononuclear in solid state. Biological studies of complexes (1)-(4) were carried out in vitro for antimicrobial activity against nine Gram-positive bacteria (Staphylococcus aureus strains RN 6390B, COL, ATCC 25923, Smith Diffuse, Wood 46, enterotoxigenic S. aureus FRI-100 (SEA+), FRI S-6 (SEB+) and SEC FRI-361) and animal strain S. aureus LSA 88 (SEC/SED/TSST-1+). The following sequence of inhibition promoted by the complexes was observed: (4) > (2) > (3) > (1), showing the effect of the metal on the biological activity. To directly observe the morphological changes of the internal structure of bacterial cells after the treatment, transmission electron microscopy (TEM) was employed. For the most active complex [ZnII(HBPClNOL)Cl] (4), granulation deposits around the genetic material and internal material leaking were clearly detected.  相似文献   

10.
The reaction of [Ti(cp)2(BTMSA)] (1) (cp = η5-C5Me5, BTMSA = bis(trimethylsilyl)acetylene) with malonic acids ((HOOC)2CR2, R = H, Me) and N,N-dimethylglycine resulted in the formation of titanium(IV) dicarboxylato complexes [Ti(cp)2{(OOC)2CR2}] (R = H, 2; R = Me, 3) and an α-amino acid titanium(III) complex [Ti(cp)2(OOCCH2NMe2)] (4). The identities of complexes 2-4 were confirmed by microanalysis, 1H and 13C NMR spectroscopy (2, 3), ESI-MS and CID experiments (2, 3) as well as by ESR and magnetic measurements (μeff = 1.81, 298 K) for 4. Single X-ray diffraction analyses of 2 and 4 exhibited monomolecular complexes in which the titanium atom is distorted tetrahedrally coordinated by two η5-C5Me5 rings and by the chelating bound malonato-κ2O,O′ (2) and N,N-dimethylglycinato-κ2O,O′ ligand (4).  相似文献   

11.
The reaction of 3β-hydroxy-21-hydroxymethylidenepregn-5-en-3β-ol-20-one (1) with phenylhydrazine (2a) affords two regioisomers, 17β-(1-phenyl-3-pyrazolyl)androst-3-en-3β-ol (5a) and 17β-(1-phenyl-5-pyrazolyl)androst-5-en-3β-ol (6a). The direction of the ring-closure reactions of 1 with p-substituted phenylhydrazines (2b-e) depends strongly on the electronic features of the substituents. Oppenauer oxidation of 3β-hydroxy-17β-exo-heterocyclic steroids 5a-e and 6a-e yielded the corresponding Δ4-3-ketosteroids 9a-e and 10a-e. The inhibitory effects (IC50) of these compounds on rat testicular C17,20-lyase were investigated by means of an in vitro radioligand incubation technique.  相似文献   

12.
A series of 3-aryl-5-acylpiperazinyl-pyrazoles (e.g., 3a-b) initially identified through a high-throughput screening campaign using the aequorin Ca2+ bioluminescence assay as novel, potent small molecule antagonists of the G protein-coupled human tachykinin NK3 receptor (hNK3-R) is described. Preliminary profiling revealed poor plasma and metabolic stability for these structures in rodents. Further optimization efforts resulted in analogs with improved potency, stability, and pharmacokinetic properties as well as good brain permeability, for example, compounds 26 and 42. Unexpected cytotoxicity was observed in such N-Me pyrazole structures as compounds 41-42.  相似文献   

13.
In this work we report on the synthesis, crystal structure, and physicochemical characterization of the novel dinuclear [FeIIICdII(L)(μ-OAc)2]ClO4·0.5H2O (1) complex containing the unsymmetrical ligand H2L = 2-bis[{(2-pyridyl-methyl)-aminomethyl}-6-{(2-hydroxy-benzyl)-(2-pyridyl-methyl)}-aminomethyl]-4-methylphenol. Also, with this ligand, the tetranuclear [Fe2IIIHg2II(L)2(OH)2](ClO4)2·2CH3OH (2) and [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) complexes were synthesized and fully characterized. It is demonstrated that the precursor [FeIII2HgII2(L)2(OH)2](ClO4)2·2CH3OH (2) can be converted to (3) by the fixation of atmospheric CO2 since the crystal structure of the tetranuclear organometallic complex [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) with an unprecedented {FeIII(μ-Ophenoxo)2(μ-CO3)FeIII} core was obtained through X-ray crystallography. In the reaction 2 → 3 a nucleophilic attack of a FeIII-bound hydroxo group on the CO2 molecule is proposed. In addition, it is also demonstrated that complex (3) can regenerate complex (2) in aqueous/MeOH/NaOH solution. Magnetochemical studies reveal that the FeIII centers in 3 are antiferromagnetically coupled (J = − 7.2 cm− 1) and that the FeIII-OR-FeIII angle has no noticeable influence in the exchange coupling. Phosphatase-like activity studies in the hydrolysis of the model substrate bis(2,4-dinitrophenyl) phosphate (2,4-bdnpp) by 1 and 2 show Michaelis-Menten behavior with 1 being ~ 2.5 times more active than 2. In combination with kH/kD isotope effects, the kinetic studies suggest a mechanism in which a terminal FeIII-bound hydroxide is the hydrolysis-initiating nucleophilic catalyst for 1 and 2. Based on the crystal structures of 1 and 3, it is assumed that the relatively long FeIII…HgII distance could be responsible for the lower catalytic effectiveness of 2.  相似文献   

14.
A series of para-substituted triaryltin(pentacarbonyl)manganese(I) compounds [(p-XC6H4)3SnMn(CO)5: II, X=CH3; III, X=CH3O; IV, X=CH3S; V, X=F; VI, X=Cl; VII, X=CH3S(O2)] is reported for comparison with the known phenyl analogue I. IR data [ν(CO)] as well as complete 119Sn/55Mn/13C solution NMR results are given for I-VII. Chemical shifts, 119Sn versus 55Mn, except I, correlate well, but have differing single parameter (SP) correlations, 119Sn versus σI and 55Mn versus σ°p. These results are compared with previous SP studies of the 119Sn solution NMR spectra of the series, (p-XC6H4)4Sn and (p-XC6H4)3SnY (Y=Cl, Br, I). Full crystal structures are reported for compounds II-VI. All are similar to that of I, with the Mn(CO)5 moiety being a distorted tetragonal pyramid, and having a quasi-mirror plane through the central C4MnSnC3 skeleton. The Ar3Sn are distorted trigonal propellers with ring torsion angles in the range 30-80°, the exception being IV with one torsion angle of 22°.  相似文献   

15.
Phosphorus-carbon bond is formed via: (i) the apparent HCCH insertion into Ir-P bond to produce Ir-CHCH-PPh3 group and (ii) the activation of the ring-methyl group of the coordinated Cp* (C5Me5 −) to produce Ir(η5-C5Me4CH2-PPh3) group from reactions of iridium(III)-Cp* complexes, [Cp*IrL3]n+ (n=1, 2); Cp*=C5Me5 −; L3=Cl(PPh3)2 (3), (CH3CN)3 (5). The following new P-C bond containing iridium(III) complexes have been prepared: [Cp*Ir(-CHCH-PPh3)Cl(PPh3)]+ (4) from 3 with HCCH; [Ir(η5-C5Me4CH2-PPh3)(H)(PPh3)2]2+ (6) from 5 with PPh3; [Cp*Ir(-CHCH-PPh3)2(PPh3)]2+ (7) from 5 with HCCH and PPh3; [Ir(η5-C5Me4CH2-PPh3)(-CHCH-PPh3)Cl(PPh3)]2+ (8) from [Ir(η5-C5Me4CH2-PPh3)(Cl)(PPh3)2]2+ (6-Cl) with HCCH; [Ir(η5-C5Me3(1,3-CH2-PPh3)2(H)(PPh3)2)]3+ (10) from [Ir(η5-C5Me4CH2-PPh3)(NCCH3)2(PPh3)]3+ (9) with PPh3; [Ir(η5-C5Me4CH2-PPh3)(-CHCH-PPh3)2(PPh3)]3+ (11) from 9 with HCCH and PPh3.  相似文献   

16.
The synthesis, characterisation and solution behaviour of a series of octahedral complexes SnCl4·2L (L = R2NP(O)(OCH2CF3)2; R = Me (1); Et (2) or L = P(O)(OCH2Rf)3; Rf = CF3 (3); C2F5 (4)) are described. Complexes 1-4 were prepared from SnCl4 and 2 equiv. of the ligand, L, in anhydrous CH2Cl2 solution. The adducts have been characterised by multinuclear (1H, 31P and 119Sn) NMR, IR spectroscopy and elemental analysis. In dichloromethane solution, the NMR data showed the presence of a mixture of cis and trans isomers for 1 and 2 and only the cis isomer for 3 and 4. The difference could be interpreted in terms of the electronic effects of the substituents on the phosphorus atom of the ligand. In addition, the solution structure of the complexes studied by variable temperature 31P-{1H} and 1H NMR in the presence of excess ligand indicated that the ligand exchange on the cis isomer dominates the chemistry. The metal-ligand exchange barriers were estimated to be 13.38 and 11.39 kcal/mol for 1 and 3, respectively. The results are discussed and compared with those previously reported for the related hexamethylphosphoramide adduct, SnCl4·2HMPA.  相似文献   

17.
New t-butyl-aryl thioethers where the aryl group is 2,6-bis(phosphino)phenyl have been synthesized. The syntheses were completed via sequential ortho-lithiations of t-butylphenylsulfide, followed by chlorophosphine (ClPR2) quenches; symmetric (2,6-bis(diphenylphosphino)phenyl, (4a)) and unsymmetric (2-diisopropylphosphino-6-diphenylphosphino)phenyl, (4b) aryl groups were obtained. Treatment of 4a with Li or Na naphthalenide yielded 2,6-bis(diphenylphosphino)thiophenol 5. Reactions of 4a or 5 with NiCl2 · 6H2O yielded nickel bis(phosphinothiophenolate) 6. Compounds 4a,b, 5 and 6 were characterized by 1H and 31P NMR, and by mass-spectrometry. In addition, 4a, 5 and 6 were characterized by single crystal X-ray diffraction methods.  相似文献   

18.
The Zn2+ and Cu2+ complexes of L1 and L2 ligands (L1: 1-(benzimidazol-2-ylmethyl)-1,4,7,10-tetraazacyclododecane, L2: 1,7-bis(benzimidazol-2-ylmethyl)-1,4,7,10-tetraazacyclododecane) were synthesised and characterised by means of NMR, EPR, and UV-Vis spectroscopies, X-ray determination and molecular modelisation (HF-DFT(B3LYP)/LANL2DZ). These studies showed that the 1:1 complexes were formed in which the benzimidazole arm(s) are coordinated to the metal ion. On addition of successive amounts of Zn2+ in CH3CN, the fluorescence emission of L1 increased linearly by a factor of 50 and the one of L2 by a factor of 5 while on addition of successive amounts of Cu2+ in CH3CN, the fluorescence emission of L2 decreased linearly to 80% of its initial value.  相似文献   

19.
The first FeIII complexes 1-6 with cyclin-dependent kinase (CDK) inhibitors of the type [Fe(Ln)Cl3nH2O (n = 0 for 1, 1 for 2, 2 for 3-6; L1-L6 = C2- and phenyl-substituted CDK inhibitors derived from 6-benzylamino-9-isopropylpurine), have been synthesized and characterized by elemental analysis, IR, 57Fe Mössbauer, 1H and 13C NMR, and ES+ mass spectroscopies, conductivity and magnetic susceptibility measurements, and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The study revealed that the compounds are mononuclear, tetrahedral high-spin (S = 5/2) FeIII complexes with an admixture of an S = 3/2 spin state originating probably from five-coordinated FeIII ions either connecting with a bidentate coordination mode of the CDK inhibitor ligand or relating to the possibility that one crystal water molecule enters the coordination sphere of the central atom in a portion of molecules of the appropriate complex. Nearly spin-only value of the effective magnetic moment (5.82 μeff/μB) was determined for compound 1 due to absence of crystal water molecule(s) in the structure of the complex. Based on NMR data and DFT calculations, we assume that the appropriate organic ligand is coordinated to the FeIII ion through the N7 atom of a purine moiety. The cytotoxicity of the complexes was tested in vitro against selected human cancer cell lines (G-361, HOS, K-562 and MCF-7) along with the ability to inhibit the CDK2/cyclinE kinase. The best cytotoxicity (IC50: 4-23 μM) and inhibition activity (IC50: 0.02-0.09 μM) results have been achieved in the case of complexes 2-4, and complexes 3, 4 and 6, respectively. In addition, the X-ray structure of 2-chloro-6-benzylamino-9-isopropylpurine, i.e. a precursor for the preparation of L1, L4 and L5, is also described.  相似文献   

20.
Reaction between the dinuclear model hydrolases [M2(μ-OAc)2(OAc)2(μ-H2O)(tmen)2]; M = Ni (1); M = Co (2) and trimethylsilyltrifluoromethanesulphonate (TMS-OTf) under identical reaction conditions gives the mononuclear complex [Ni(OAc)(H2O)2(tmen)][OTf] · H2O (3) in the case of nickel and the dinuclear complex [Co2(μ-OAc)2(μ-H2O)2(tmen)2][OTf]2 (4) in the case of cobalt.Reaction of (3) with urea gives the previously reported [Ni(OAc)(urea)2(tmen)][OTf] (5), whereas (4) gives [Co2(OAc)3(urea)(tmen)2][OTf] (6) previously obtained by direct reaction of (2) with urea. Both (3) and (4) react with monohydroxamic acids (RHA) to give the dihydroxamate bridged dinuclear complexes [M2(μ-OAc)(μ-RA)2(tmen)2][OTf]; M = Ni (7); M = Co (8) previously obtained by the reaction of (1) and (2) with RHA, illustrating the greater ability of hydroxamic acids to stabilize dinuclear complexes over that of urea by means of their bridging mode, and offering a possible explanation for the inhibiting effect of hydroxamic acids by means of their displacing bridging urea in a possible intermediate invoked in the action of urease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号