首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Calstabin deficiency, ryanodine receptors, and sudden cardiac death   总被引:4,自引:0,他引:4  
Altered cardiac ryanodine receptor (RyR2) function has an important role in heart failure and genetic forms of arrhythmias. RyR2 constitutes the major intracellular Ca2+ release channel in the cardiac sarcoplasmic reticulum (SR). The peptidyl-prolyl isomerase calstabin2 (FKBP12.6) is a component of the RyR2 macromolecular signaling complex. Calstabin2 binding to RyR2 is regulated by PKA phosphorylation of Ser2809 in RyR2. PKA phosphorylation of RyR2 decreases the binding affinity for calstabin2 and increases RyR2 open probability and sensitivity to Ca2+-dependent activation. In heart failure, a majority of studies have found that RyR2 becomes chronically PKA hyper-phosphorylated which depletes calstabin2 from the channel complex. Calstabin2 dissociation causes a diastolic SR Ca2+ leak contributing to depressed intracellular Ca2+ cycling and decreased cardiac contractility. Missense mutations linked to genetic forms of exercise-induced arrhythmias and sudden cardiac death also cause decreased calstabin2-binding affinity and leaky RyR2 channels. We review the importance of calstabin2 for RyR2 function and excitation-contraction coupling, and discuss new observations that implicate dysregulation of calstabin2 binding as a central mechanism for abnormal calcium cycling in heart failure and triggered arrhythmias.  相似文献   

2.
The ryanodine receptor (RyR)/calcium release channel on the sarcoplasmic reticulum (SR) is the major source of calcium (Ca2+) required for cardiac muscle excitation-contraction (EC) coupling. The channel is a tetramer comprised of four type 2 RyR polypeptides (RyR2) and four FK506 binding proteins (FKBP12.6). We show that protein kinase A (PKA) phosphorylation of RyR2 dissociates FKBP12.6 and regulates the channel open probability (Po). Using cosedimentation and coimmunoprecipitation we have defined a macromolecular complex comprised of RyR2, FKBP12.6, PKA, the protein phosphatases PP1 and PP2A, and an anchoring protein, mAKAP. In failing human hearts, RyR2 is PKA hyperphosphorylated, resulting in defective channel function due to increased sensitivity to Ca2+-induced activation.  相似文献   

3.
Ryanodine receptors/Ca2+-release channels (RyR2) from the sarcoplasmic reticulum (SR) provide the Ca2+ required for contraction at each cardiac twitch. RyR2 are regulated by a variety of proteins, including the immunophilin FK506 binding protein (FKBP12.6). FKBP12.6 seems to be important for coupled gating of RyR2 and its deficit and alteration may be involved in heart failure. The role of FKBP12.6 on Ca2+ release has not been analyzed directly, but rather it was inferred from the effects of immunophilins, such us FK506 and rapamycin, which, among other effects, dissociates FKBP12.6 from the RyR2. Here, we investigated directly the effects of FKBP12.6 on local (Ca2+ sparks) and global [intracellular Ca2+ concentration ([Ca2+]i) transients] Ca2+ release in single rat cardiac myocytes. The FKBP12.6 gene was transfected in single myocytes using the adenovirus technique with a reporter gene strategy based on green fluorescent protein (GFP) to check out the success of transfections. Control myocytes were transfected with only GFP (Ad-GFP). Rhod-2 was used as the Ca2+ indicator, and cells were viewed with a confocal microscope. We found that overexpression of FKBP12.6 decreases the occurrence, amplitude, duration, and width of spontaneous Ca2+ sparks. FK506 had diametrically opposed effects. However, overexpression of FKBP12.6 increased the [Ca2+]i transient amplitude and accelerated its decay in field-stimulated cells. The associated cell shortening was increased. SR Ca2+ load, estimated by rapid caffeine application, was increased. In conclusion, FKBP12.6 overexpression decreases spontaneous Ca2+ sparks but increases [Ca2+]i transients, in relation with enhanced SR Ca2+ load, therefore improving excitation-contraction coupling.  相似文献   

4.
Changes in FKBP12.6 binding to cardiac ryanodine receptors (RyR2) are implicated in mediating disturbances in Ca(2+)-homeostasis in heart failure but there is controversy over the functional effects of FKBP12.6 on RyR2 channel gating. We have therefore investigated the effects of FKBP12.6 and another structurally similar molecule, FKBP12, which is far more abundant in heart, on the gating of single sheep RyR2 channels incorporated into planar phospholipid bilayers and on spontaneous waves of Ca(2+)-induced Ca(2+)-release in rat isolated permeabilised cardiac cells. We demonstrate that FKBP12 is a high affinity activator of RyR2, sensitising the channel to cytosolic Ca(2+), whereas FKBP12.6 has very low efficacy, but can antagonise the effects of FKBP12. Mathematical modelling of the data shows the importance of the relative concentrations of FKBP12 and FKBP12.6 in determining RyR2 activity. Consistent with the single-channel results, physiological concentrations of FKBP12 (3 μM) increased Ca(2+)-wave frequency and decreased the SR Ca(2+)-content in cardiac cells. FKBP12.6, itself, had no effect on wave frequency but antagonised the effects of FKBP12.We provide a biophysical analysis of the mechanisms by which FK-binding proteins can regulate RyR2 single-channel gating. Our data indicate that FKBP12, in addition to FKBP12.6, may be important in regulating RyR2 function in the heart. In heart failure, it is possible that an alteration in the dual regulation of RyR2 by FKBP12 and FKBP12.6 may occur. This could contribute towards a higher RyR2 open probability, 'leaky' RyR2 channels and Ca(2+)-dependent arrhythmias.  相似文献   

5.
Preventing Ca(2+)-leak during diastole may provide a means to improve overall cardiac function. The immunosuppressant FK506-binding protein 12.6 (FKBP12.6) regulates ryanodine receptor-2 (RyR2) gating and binds to and inhibits calcineurin (Cn). It is also involved in the pathophysiology of heart failure (HF). Here, we investigated the effects of FKBP12.6 over-expression and gender on Ca(2+)-handling proteins (RyR2, SERCA2a/PLB, and NCX), and on pro-(CaMKII, Cn/NFAT) and anti-hypertrophic (GSK3β) signalling pathways in a thoracic aortic constriction (TAC) mouse model. Wild type mice (WT) and mice over-expressing FKBP12.6 of both genders underwent TAC or sham-operation (Sham). FKBP12.6 over-expression ameliorated post-TAC survival rates in both genders. Over time, FKBP12.6 over-expression reduced the molecular signature of left ventricular hypertrophy (LVH) and the transition to HF (BNP and β-MHC mRNAs) and attenuated Cn/NFAT activation in TAC-males only. The gender difference in pro- and anti-hypertrophic LVH signals was time-dependent: TAC-females exhibited earlier pathological LVH associated with concomitant SERCA2a down-regulation, CaMKII activation, and GSK3β inactivation. Both genotypes showed systolic dysfunction, possibly related to down-regulated RyR2, but only FK-TAC-males exhibited preserved diastolic LV function. Although FKBP12.6 over-expression did not impact the vicious cycle of TAC-induced HF, this study reveals some subtle sequential and temporal gender differences in Ca(2+)-signalling pathways of pathological LVH.  相似文献   

6.
The type 1 ryanodine receptor (RyR1) on the sarcoplasmic reticulum (SR) is the major calcium (Ca2+) release channel required for skeletal muscle excitation-contraction (EC) coupling. RyR1 function is modulated by proteins that bind to its large cytoplasmic scaffold domain, including the FK506 binding protein (FKBP12) and PKA. PKA is activated during sympathetic nervous system (SNS) stimulation. We show that PKA phosphorylation of RyR1 at Ser2843 activates the channel by releasing FKBP12. When FKB12 is bound to RyR1, it inhibits the channel by stabilizing its closed state. RyR1 in skeletal muscle from animals with heart failure (HF), a chronic hyperadrenergic state, were PKA hyperphosphorylated, depleted of FKBP12, and exhibited increased activity, suggesting that the channels are "leaky." RyR1 PKA hyperphosphorylation correlated with impaired SR Ca2+ release and early fatigue in HF skeletal muscle. These findings identify a novel mechanism that regulates RyR1 function via PKA phosphorylation in response to SNS stimulation. PKA hyperphosphorylation of RyR1 may contribute to impaired skeletal muscle function in HF, suggesting that a generalized EC coupling myopathy may play a role in HF.  相似文献   

7.
Abnormal release of Ca(2+) from sarcoplasmic reticulum (SR) via the cardiac ryanodine receptor (RyR2) may contribute to contractile dysfunction in heart failure (HF). We previously demonstrated that RyR2 macromolecular complexes from HF rat were significantly more depleted of FK506 binding protein (FKBP12.6). Here we assessed expression of key Ca(2+) handling proteins and measured SR Ca(2+) content in control and HF rat myocytes. Direct measurements of SR Ca(2+) content in permeabilized cardiac myocytes demonstrated that SR luminal [Ca(2+)] is markedly lowered in HF (HF: DeltaF/F(0) = 26.4+/-1.8, n=12; control: DeltaF/F(0) = 49.2+/-2.9, n=10; P<0.01). Furthermore, we demonstrated that the expression of RyR2 associated proteins (including calmodulin, sorcin, calsequestrin, protein phosphatase 1, protein phosphatase 2A), Ca(2+) ATPase (SERCA2a), PLB phosphorylation at Ser16 (PLB-S16), PLB phosphorylation at Thr17 (PLB-T17), L-type Ca(2+) channel (Cav1.2) and Na(+)- Ca(2+) exchanger (NCX) were significantly reduced in rat HF. Our results suggest that systolic SR reduced Ca(2+) release and diastolic SR Ca(2+) leak (due to defective protein-protein interaction between RyR2 and its associated proteins) along with reduced SR Ca(2+) uptake (due to down-regulation of SERCA2a, PLB-S16 and PLB-T17), abnormal Ca(2+) extrusion (due to down-regulation of NCX) and defective Ca(2+) -induced Ca(2+) release (due to down-regulation of Cav1.2) could contribute to HF.  相似文献   

8.
The skeletal muscle sarcoplasmic reticulum (SR) Ca2+ release channel or ryanodine receptor (RyR1) binds four molecules of FKBP12, and the interaction of FKBP12 with RyR1 regulates both unitary and coupled gating of the channel. We have characterized the physiologic effects of previously identified mutations in RyR1 that disrupt FKBP12 binding (V2461G and V2461I) on excitation-contraction (EC) coupling and intracellular Ca2+ homeostasis following their expression in skeletal myotubes derived from RyR1-knockout (dyspedic) mice. Wild-type RyR1-, V246I-, and V2461G-expressing myotubes exhibited similar resting Ca2+ levels and maximal responses to caffeine (10 mm) and cyclopiazonic acid (30 microm). However, maximal voltage-gated Ca2+ release in V2461G-expressing myotubes was reduced by approximately 50% compared with that attributable to wild-type RyR1 (deltaF/Fmax = 1.6 +/- 0.2 and 3.1 +/- 0.4, respectively). Dyspedic myotubes expressing the V2461I mutant protein, that binds FKBP12.6 but not FKBP12, exhibited a comparable reduction in voltage-gated SR Ca2+ release (deltaF/Fmax = 1.0 +/- 0.1). However, voltage-gated Ca2+ release in V2461I-expressing myotubes was restored to a normal level (deltaF/Fmax = 2.9 +/- 0.6) following co-expression of FKBP12.6. None of the mutations that disrupted FKBP binding to RyR1 significantly affected RyR1-mediated enhancement of L-type Ca2+ channel activity (retrograde coupling). These data demonstrate that FKBP12 binding to RyR1 enhances the gain of skeletal muscle EC coupling.  相似文献   

9.
cADP ribose (cADPR) serves as second messenger to activate the ryanodine receptors (RyRs) of the sarcoplasmic reticulum (SR) and mobilize intracellular Ca(2+) in vascular smooth muscle cells. However, the mechanisms mediating the effect of cADPR remain unknown. The present study was designed to determine whether FK-506 binding protein 12.6 (FKBP12.6), an accessory protein of the RyRs, plays a role in cADPR-induced activation of the RyRs. A 12.6-kDa protein was detected in bovine coronary arterial smooth muscle (BCASM) and cultured CASM cells by being immunoblotted with an antibody against FKBP12, which also reacted with FKBP12.6. With the use of planar lipid bilayer clamping techniques, FK-506 (0.01-10 microM) significantly increased the open probability (NP(O)) of reconstituted RyR/Ca(2+) release channels from the SR of CASM. This FK-506-induced activation of RyR/Ca(2+) release channels was abolished by pretreatment with anti-FKBP12 antibody. The RyRs activator cADPR (0.1-10 microM) markedly increased the activity of RyR/Ca(2+) release channels. In the presence of FK-506, cADPR did not further increase the NP(O) of RyR/Ca(2+) release channels. Addition of anti-FKBP12 antibody also completely blocked cADPR-induced activation of these channels, and removal of FKBP12.6 by preincubation with FK-506 and subsequent gradient centrifugation abolished cADPR-induced increase in the NP(O) of RyR/Ca(2+) release channels. We conclude that FKBP12.6 plays a critical role in mediating cADPR-induced activation of RyR/Ca(2+) release channels from the SR of BCASM.  相似文献   

10.
Arrhythmias, a common cause of sudden cardiac death, can occur in structurally normal hearts, although the mechanism is not known. In cardiac muscle, the ryanodine receptor (RyR2) on the sarcoplasmic reticulum releases the calcium required for muscle contraction. The FK506 binding protein (FKBP12.6) stabilizes RyR2, preventing aberrant activation of the channel during the resting phase of the cardiac cycle. We show that during exercise, RyR2 phosphorylation by cAMP-dependent protein kinase A (PKA) partially dissociates FKBP12.6 from the channel, increasing intracellular Ca(2+) release and cardiac contractility. FKBP12.6(-/-) mice consistently exhibited exercise-induced cardiac ventricular arrhythmias that cause sudden cardiac death. Mutations in RyR2 linked to exercise-induced arrhythmias (in patients with catecholaminergic polymorphic ventricular tachycardia [CPVT]) reduced the affinity of FKBP12.6 for RyR2 and increased single-channel activity under conditions that simulate exercise. These data suggest that "leaky" RyR2 channels can trigger fatal cardiac arrhythmias, providing a possible explanation for CPVT.  相似文献   

11.
In cardiac muscle, the ryanodine receptor (RyR2) on the sarcoplasmic reticulum (SR) releases the calcium required for muscle contraction. The magnitude of Ca2+ release by RyR2, which is subject to regulation by several physiological mediators, determines cardiac contractility. In heart failure, chronic stimulation of the β-adrenergic signaling pathway leads to hyperphosphorylation of RyR2 by protein kinase A, which dissociates calstabin2 (FKBP12.6) from the receptor. Calstabin2-depleted channels display altered channel gating and can cause diastolic Ca2+ release from the SR. This release depletes the SR Ca2+ stores, leading to reduced myocardial contractility. Mutant RyR2, found in patients with catecholaminergic polymorphic ventricular tachycardia, has decreased calstabin2 binding affinity, which can trigger ventricular arrhythmias and sudden cardiac death after stress and exercise. Thus, defects in RyR2 have been linked to heart failure and exercise-induced sudden cardiac death and might provide novel therapeutic targets for the treatment of these common diseases of the heart.  相似文献   

12.
Defective interaction between FKBP12.6 and ryanodine receptors (RyR) is a possible cause of cardiac dysfunction in heart failure (HF). Here, we assess whether the new cardioprotective agent JTV519 can correct it in tachycardia-induced HF. HF was induced in dogs by 4-wk rapid ventricular pacing, and sarcoplasmic reticulum (SR) was isolated from left ventricular muscles. In failing SR, JTV519 increased the rate of Ca(2+) release and [(3)H]ryanodine binding. RyR were then labeled in a site-directed fashion with the fluorescent conformational probe methylcoumarin acetamide. In failing SR, the polylysine induced a rapid change in methylcoumarin acetamide fluorescence, presumably because the channel opening preceding the Ca(2+) release was smaller than in normal SR (consistent with a decreased rate of Ca(2+) release in failing SR), and JTV519 increased it. In conclusion, JTV519, a new 1,4-benzothiazepine derivative, corrected the defective channel gating in RyR (increase in both the rapid conformational change and the subsequent Ca(2+) release rate) in HF.  相似文献   

13.
Calmodulin (CaM) binding to the type 2 ryanodine receptor (RyR2) regulates Ca release from the cardiac sarcoplasmic reticulum (SR). However, the structural basis of CaM regulation of the RyR2 is poorly defined, and the presence of other potential CaM binding partners in cardiac myocytes complicates resolution of CaM's regulatory interactions with RyR2. Here, we show that a fluorescence-resonance-energy-transfer (FRET)-based approach can effectively resolve RyR2 CaM binding, both in isolated SR membrane vesicles and in permeabilized ventricular myocytes. A small FRET donor was targeted to the RyR2 cytoplasmic assembly via fluorescent labeling of the FKBP12.6 subunit. Acceptor fluorophore was attached at discrete positions within either the N- or the C-lobe of CaM. FRET between FKBP12.6 and CaM bound to SR vesicles indicated CaM binding at a single high-affinity site within 60 Å of FKBP12.6. Micromolar Ca increased the apparent affinity of CaM binding and slowed CaM dissociation, but did not significantly affect maximal FRET efficiency at saturating CaM. FRET was strongest when the acceptor was attached at either of two positions within CaM's N-lobe versus sites in CaM's C-lobe, providing CaM orientation information. In permeabilized ventricular myocytes, FKBP12.6 and CaM colocalized to Z-lines, and the efficiency of energy transfer to both the N- and C-lobes of CaM was comparable to that observed in SR vesicle experiments. Results also indicate that both the location and orientation of CaM binding on the RyR2 are very similar to the skeletal muscle RyR1 isoform. Specific binding of CaM to functional RyR2 channels in the cardiac myocyte environment can be monitored using FKBP biosensors and FRET.  相似文献   

14.
Calcium ions (Ca2+) play an essential role in cardiac excitation-contraction coupling. Ca2+ is stored in the sarcoplasmic reticulum (SR) and is release via SR-Ca-release channels (ryanodine receptors, RyR2) to trigger contraction. RyR2 is a homotetramer comprising 4 pore-forming subunits. Each subunit is closely associated to regulatory proteins such as calstabine 2 (FKBP12.6), calmodulin, PKA, CamKII, calsequestrin and form a macromolecular complex that plays a critical role in pathological conditions. As a matter of fact, alterations of the channel activity and/or associated regulatory proteins can cause severe functional alterations resulting in arrhythmias and sudden death. Thus, RyR2 represent a novel therapeutic target and the discovery of a new pharmacological agent able to restore a normal RyR2 channel function represents a major challenge in the cardiac field.  相似文献   

15.
K201 (JTV519), a benzothiazepine derivative, has been shown to possess anti-arrhythmic and cardioprotective properties, but the mechanism of its action is both complex and controversial. It is believed to stabilize the closed state of the RyR2 (cardiac ryanodine receptor) by increasing its affinity for the FKBP12.6 (12.6 kDa FK506 binding protein) [Wehrens, Lehnart, Reiken, Deng, Vest, Cervantes, Coromilas, Landry and Marks (2004) Science 304, 292-296]. In the present study, we investigated the effect of K201 on spontaneous Ca2+ release induced by Ca2+ overload in rat ventricular myocytes and in HEK-293 cells (human embryonic kidney cells) expressing RyR2 and the role of FKBP12.6 in the action of K201. We found that K201 abolished spontaneous Ca2+ release in cardiac myocytes in a concentration-dependent manner. Treating ventricular myocytes with FK506 to dissociate FKBP12.6 from RyR2 did not affect the suppression of spontaneous Ca2+ release by K201. Similarly, K201 was able to suppress spontaneous Ca2+ release in FK506-treated HEK-293 cells co-expressing RyR2 and FKBP12.6. Furthermore, K201 suppressed spontaneous Ca2+ release in HEK-293 cells expressing RyR2 alone and in cells co-expressing RyR2 and FKBP12.6 with the same potency. In addition, K201 inhibited [3H]ryanodine binding to RyR2-wt (wild-type) and an RyR2 mutant linked to ventricular tachycardia and sudden death, N4104K, in the absence of FKBP12.6. These observations demonstrate that FKBP12.6 is not involved in the inhibitory action of K201 on spontaneous Ca2+ release. Our results also suggest that suppression of spontaneous Ca2+ release and the activity of RyR2 contributes, at least in part, to the anti-arrhythmic properties of K201.  相似文献   

16.
S100A1, a Ca2+-sensor protein of the EF-hand type, exerts positive inotropic effects in the heart via enhanced cardiac ryanodine receptor (RyR2) activity. Here we report that S100A1 protein (0.1microM) interacts with the RyR2 in resting permeabilized cardiomyocytes at free Ca2+-levels comparable to diastolic Ca2+-concentrations ( approximately 150nM). Alterations of RyR2 function due to S100A1 binding was assessed via analysis of Ca2+-spark characteristics. Ca2+-spark frequency, amplitude and duration were all reduced upon perfusion with 0.1microM S100A1 protein by 38%, 14% and 18%, respectively. Most likely, these effects were conveyed through the S100A1 C-terminus (S100A1-ct; amino acids 75-94) as the corresponding S100A1-ct peptide (0.1microM) inhibited S100A1 protein binding to the RyR2 and similarly attenuated frequency, amplitude and duration of Ca2+-sparks by 52%, 8% and 26%, respectively. Accordingly, the sarcoplasmic reticulum (SR) Ca2+-content was slightly increased but the stoichiometry of other accessory RyR2 modulators (sorcin/FKBP12.6) remained unaltered by S100A1. Hence, we propose S100A1 as a novel inhibitory modulator of RyR2 function at diastolic Ca2+-concentrations in rabbit ventricular cardiomyocytes.  相似文献   

17.
Neurohumoral stimulation of Gq-coupled receptors has been proposed as a central mechanism in the pathogenesis of diabetic heart disease. The resulting contractile dysfunction is closely related to abnormal intracellular Ca2+ handling with functional defects of the sarcoplasmic reticulum (SR). The present study was therefore designed to determine the role of Gq-protein signaling via Gα11 and Gαq in diabetes for the induction of functional and structural changes in the Ca2+ release complex of the SR. An experimental type 1-diabetes was induced in wild type, Gα11 knockout, and Gα11/q-knockout mice by injection of streptozotocin. Cardiac morphology and function was assessed in vivo by echocardiography. SR Ca2+ leak was tested in vitro based on a 45Ca2+ assay and protein densities as well as gene expression of ryanodine receptor (RyR2), FKBP12.6, sorcin, and annexin A7 were analyzed by immunoblot and RT-PCR. In wild type animals 8 weeks of diabetes resulted in cardiac hypertrophy and SR Ca2+ leak was increased. In addition, diabetic wild type animals showed reduced protein levels of FKBP12.6 and annexin A7. In Gα11- and Gα11/q-knockout animals, however, SR Ca2+ release and cardiac phenotype remained unchanged upon induction of diabetes. Densities of the proteins that we presently analyzed were also unaltered in Gα11-knockout mice. Gα11/q-knockout animals even showed increased expression of sorcin and annexin A7. Thus, based on the present study we suggest a signaling pathway via the Gq-proteins, Gα11 and Gαq, that could link increased neurohumoral stimulation in diabetes with defective RyR2 channel function by regulating protein expression of FKBP12.6, annexin A7, and sorcin.  相似文献   

18.
X Liu  MJ Betzenhauser  S Reiken  AC Meli  W Xie  BX Chen  O Arancio  AR Marks 《Cell》2012,150(5):1055-1067
The type 2 ryanodine receptor/calcium release channel (RyR2), required for excitation-contraction coupling in the heart, is abundant in the brain. Chronic stress induces catecholamine biosynthesis and release, stimulating β-adrenergic receptors and activating cAMP signaling pathways in neurons. In a murine chronic restraint stress model, neuronal RyR2 were phosphorylated by protein kinase A (PKA), oxidized, and nitrosylated, resulting in depletion of the stabilizing subunit calstabin2 (FKBP12.6) from the channel complex and intracellular calcium leak. Stress-induced cognitive dysfunction, including deficits in learning and memory, and reduced long-term potentiation (LTP) at the hippocampal CA3-CA1 connection were rescued by oral administration of S107, a compound developed in our laboratory that stabilizes RyR2-calstabin2 interaction, or by genetic ablation of the RyR2 PKA phosphorylation site at serine 2808. Thus, neuronal RyR2 remodeling contributes to stress-induced cognitive dysfunction. Leaky RyR2 could be a therapeutic target for treatment of stress-induced cognitive dysfunction.  相似文献   

19.
The 12.6-kDa FK506-binding protein (FKBP12.6) is considered to be a key regulator of the cardiac ryanodine receptor (RyR2), but its precise role in RyR2 function is complex and controversial. In the present study we investigated the impact of FKBP12.6 removal on the properties of the RyR2 channel and the propensity for spontaneous Ca(2+) release and the occurrence of ventricular arrhythmias. Single channel recordings in lipid bilayers showed that FK506 treatment of recombinant RyR2 co-expressed with or without FKBP12.6 or native canine RyR2 did not induce long-lived subconductance states. [(3)H]Ryanodine binding studies revealed that coexpression with or without FKBP12.6 or treatment with or without FK506 did not alter the sensitivity of RyR2 to activation by Ca(2+) or caffeine. Furthermore, single cell Ca(2+) imaging analyses demonstrated that HEK293 cells co-expressing RyR2 and FKBP12.6 or expressing RyR2 alone displayed the same propensity for spontaneous Ca(2+) release or store overload-induced Ca(2+) release (SOICR). FK506 increased the amplitude and decreased the frequency of SOICR in HEK293 cells expressing RyR2 with or without FKBP12.6, indicating that the action of FK506 on SOICR is independent of FKBP12.6. As with recombinant RyR2, the conductance and ligand-gating properties of single RyR2 channels from FKBP12.6-null mice were indistinguishable from those of single wild type channels. Moreover, FKBP12.6-null mice did not exhibit enhanced susceptibility to stress-induced ventricular arrhythmias, in contrast to previous reports. Collectively, our results demonstrate that the loss of FKBP12.6 has no significant effect on the conduction and activation of RyR2 or the propensity for spontaneous Ca(2+) release and stress-induced ventricular arrhythmias.  相似文献   

20.
Malignant hyperthermia (MH) and central core disease (CCD) are disorders of skeletal muscle Ca2+ homeostasis that are linked to mutations in the type 1 ryanodine receptor (RyR1). Certain RyR1 mutations result in an MH-selective phenotype (MH-only), whereas others result in a mixed phenotype (MH + CCD). We characterized effects on Ca2+ handling and excitation-contraction (EC) coupling of MH-only and MH + CCD mutations in RyR1 after expression in skeletal myotubes derived from RyR1-null (dyspedic) mice. Compared to wild-type RyR1-expressing myotubes, MH + CCD- and MH-only-expressing myotubes exhibited voltage-gated Ca2+ release (VGCR) that activated at more negative potentials and displayed a significantly higher incidence of spontaneous Ca2+ oscillations. However, maximal VGCR was reduced only for MH + CCD mutants (Y4795C, R2435L, and R2163H) in which spontaneous Ca2+ oscillations occurred with significantly longer duration (Y4795C and R2435L) or higher frequency (R2163H). Notably, myotubes expressing these MH + CCD mutations in RyR1 exhibited both increased [Ca2+]i and reduced sarcoplasmic reticulum (SR) Ca2+ content. We conclude that MH-only mutations modestly increase basal release-channel activity in a manner insufficient to alter net SR Ca2+ content ("compensated leak"), whereas the mixed MH + CCD phenotype arises from mutations that enhance basal activity to a level sufficient to promote SR Ca2+ depletion, elevate [Ca2+]i, and reduce maximal VGCR ("decompensated leak").  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号