首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Amino acid sequence of the drosophila retrovirus MDG4 (gypsy) structural protein Gag does not contain a canonical motif known for the majority of vertebrate retroviruses. Moreover, protein translation can theoretically begin with two separated initiation codons located within its unique open reading frame. We designed constructs for expression of two theoretically possible variants of Gag polypeptide and investigated the ability of each product to form virus-like particles in the bacterial cell, i.e., in the absence of eukaryotic cell factors. The results obtained showed that both variants of the gypsy protein Gag form globular particles in the bacterial cell.  相似文献   

2.
The structural protein (Gag) of the gypsy Drosophila retrovirus lacks matrix, but contains capsid and nucleocapsid domains. The Gag forms virus-like particles in a bacterial cell; besides, its capsid alone is able to form aggregates. However, aggregates assembled from the capsid were variable in size and displayed much less organization than particles formed by the whole Gag. The nucleocapsid exerts influence on the organization and structure of particles, and this function is directed by sequence of amino acid residues at its N-terminus (a nucleocapsid proximal part). The particle assembling occurs in the presence of any RNAs or single stranded DNA oligonucleotides.  相似文献   

3.
Applied Microbiology and Biotechnology - Conformationally complex membrane proteins (MPs) are therapeutic targets in many diseases, but drug discovery has been slowed down by the lack of efficient...  相似文献   

4.
5.
6.
Proteins of viral capsid may self-assemble into virus-like particles (VLPs) that can find many biomedical applications such as platform for drug delivery. In this paper, we describe preparation of VLPs by self-assembly of VP6, a rotavirus capsid protein that was chemically conjugated with doxorubicin (DOX), an anticancer drug. VP6 was first highly expressed in E. Coli, followed by purification and renaturation. DOX was then covalently attached to VP6 to form DOX-VP6 (DVP6) conjugates, which were subsequently self-assembled into VLPs under appropriate condition. Next, lactobionic acid (LA) was chemically linked to the surface of the VLPs. We demonstrated that the aforementioned nanosystem shows specific targeting to hepatoma cell line HepG2. The chemically functionalized VLPs, a kind of biological nanoparticles with excellent biocompatibility and biodegradability, can be prepared in large scale from E. Coli through our method, which may find practical applications in biomedicine.  相似文献   

7.
8.
In our previous study, we have observed that the isolated coat proteins (CP) of the Potyvirus Potato Virus A (PVA) virions exhibit an intrinsic tendency to self-associate into various multimeric forms containing some fractions of cross-β-structure. In this report, we studied the effect of solution conditions on the structure and dissociation of isolated PVA CP using a number of complementary physicochemical methods. Analysis of the structure of PVA CP in solution was performed by limited proteolysis with MALDI-TOF mass spectrometry analysis, transmission electron microscopy, intrinsic fluorescence spectroscopy, and synchrotron small angle X-ray scattering (SAXS). Overall structural characteristics of PVA CP obtained by combination of these methods and ab initio shape reconstruction by SAXS show that PVA CP forms large multi-subunit particles. We demonstrate that a mixture of compact virus-like particles (VLP) longer than 30 nm is assembled on dialysis of isolated CP into neutral pH buffer (at low ionic strength). Under conditions of high ionic strength (0.5 M NaCl) and high pH (pH 10.5), PVA dissociates into low compactness oval-shaped particles of approximately 30 subunits (20–30 nm). The results of limited trypsinolysis of these particles (enzyme/substrate ratio 1:100, 30 min) showed the existence of non-cleavable core-fragment, consisting of 137 amino acid residues. Trypsin treatment removed only a short N-terminal fragment in the intact virions. These particles are readily reassembled into regular VLPs by changing pH back to neutral. It is possible that these particles may represent some kind of intermediate in PVA assembly in vitro and in vivo.  相似文献   

9.
10.
Virions of polyomaviruses consist of the major structural protein VP1, the minor structural proteins VP2 and VP3, and the viral genome associated with histones. An additional structural protein, VP4, is present in avian polyomavirus (APV) particles. As it had been reported that expression of APV VP1 in insect cells did not result in the formation of virus-like particles (VLP), the prerequisites for particle formation were analyzed. To this end, recombinant influenza viruses were created to (co)express the structural proteins of APV in chicken embryo cells, permissive for APV replication. VP1 expressed individually or coexpressed with VP4 did not result in VLP formation; both proteins (co)localized in the cytoplasm. Transport of VP1, or the VP1-VP4 complex, into the nucleus was facilitated by the coexpression of VP3 and resulted in the formation of VLP. Accordingly, a mutant APV VP1 carrying the N-terminal nuclear localization signal of simian virus 40 VP1 was transported to the nucleus and assembled into VLP. These results support a model of APV capsid assembly in which complexes of the structural proteins VP1, VP3 (or VP2), and VP4, formed within the cytoplasm, are transported to the nucleus using the nuclear localization signal of VP3 (or VP2); there, capsid formation is induced by the nuclear environment.  相似文献   

11.
Bacterial FtsZ assembles and constricts after chromosomal segregation in the course of cell division. Here we examined the localization of FtsZ in multinucleated swarmer cells of Proteus mirabilis by immunostaining. FtsZ was found to localize to the point of karyomitosis in swarmer cells of P. mirabilis, which is equivalent to filamentous mutants of Escherichia coli defective in the ftsI or ftsQ genes that are involved in later steps of cell division. Thus our findings suggest that the appearance of swarmer cells results from cellular functions immediately after FtsZ assembly.  相似文献   

12.
Monkey kidney cells CV-1 were infected with recombinant vaccinia virus carrying HIV-1 gag gene with a deletion of 230 nucleotide pairs from the 3'-terminus. The main gene product detected in the lysates of infected cells was the gag precursor rp50. The protein was accumulated on the cell membranes suggesting that it had a myristylated N-terminus, and was cleaved by a recombinant virus specific protease with the formation of two proteins, p17 and p24 corresponding in molecular masses to mature gag proteins. Virus-like particles similar to immature HIV virions were budding from the surface of infected cells. They look like the ring of optically dense material covered with a lipid bilayer, of the same size (100-120 nm) and of the same density in a sucrose gradient (1.16-1.18 g/ml) as HIV-1 virions. The particles contained rp50 and cellular heterogeneous RNA. Thus, the unprocessed gag precursor with deleted 77 amino acid residues from the C-terminus is able to form virus-like particles in the absence of env proteins and virus-specific RNA, and these particles are budding from the cell surface. The question about the use of extracellular Gag-particles for AIDS diagnostic work and construction of vaccines is discussed.  相似文献   

13.
Lee EG  Linial ML 《Journal of virology》2008,82(21):10803-10810
Foamy viruses (FV) differ from orthoretroviruses in many aspects of their replication cycle. A major difference is in the mode of Pol expression, regulation, and encapsidation into virions. Orthoretroviruses synthesize Pol as a Gag-Pol fusion protein so that Pol is encapsidated into virus particles through Gag assembly domains. However, as FV express Pol independently of Gag from a spliced mRNA, packaging occurs through a distinct mechanism. FV genomic RNA contains cis-acting sequences that are required for Pol packaging, suggesting that Pol binds to RNA for its encapsidation. However, it is not known whether Gag is directly involved in Pol packaging. Previously our laboratory showed that sequences flanking the three glycine-arginine-rich (GR) boxes at the C terminus of FV Gag contain domains important for RNA packaging and Pol expression, cleavage, and packaging. We have now shown that both deletion and substitution mutations in the first GR box (GR1) prevented neither the assembly of particles with wild-type density nor packaging of RNA genomes but led to a defect in Pol packaging. Site-directed mutagenesis of GR1 indicated that the clustered positively charged amino acids in GR1 play important roles in Pol packaging. Our results suggest that GR1 contains a Pol interaction domain and that a Gag-Pol complex is formed and binds to RNA for incorporation into virions.  相似文献   

14.
Vana ML  Tang Y  Chen A  Medina G  Carter C  Leis J 《Journal of virology》2004,78(24):13943-13953
Rous sarcoma virus (RSV) budding requires an interaction of the L domain within the p2b region of Gag with cellular Nedd4-family E3 ubiquitin protein ligases. Members of our laboratories previously demonstrated that overexpression of a fragment of the chicken Nedd4-like protein (LDI-1 WW) inhibits Gag release in a dominant-negative manner (A. Kikonyogo, F. Bouamr, M. L. Vana, Y. Xiang, A. Aiyar, C. Carter, and J. Leis, Proc. Natl. Acad. Sci. USA 98:11199-11204, 2001). We have now identified the complete 3' end of LDI-1 and determined that it has a C-terminal ubiquitin ligase HECT domain, similar to other Nedd4 family members. While overexpression of the full-length LDI-1 clone (LDI-1 FL) had little effect on Gag budding, an LDI-1 FL mutant with a substitution in the HECT domain catalytic site blocked Gag release, similar to LDI-1 WW. The coexpression of Gag and hemagglutinin-tagged ubiquitin (HA-Ub) resulted in the detection of mono- and polyubiquitinated forms of Gag in cells and mostly monoubiquitinated Gag in virus-like particles (VLPs). When the Nedd4-binding site (L domain) was deleted, ubiquitinated Gag was not detected. Interestingly, the release of Gag with ubiquitin covalently linked to the C terminus (Gag-Ub) was still blocked by LDI-1 WW. To understand the mechanism of this inhibition, we examined cells expressing Gag and LDI-1 WW by electron microscopy. In the presence of LDI-1 WW, VLPs were found in electron-dense inclusion bodies in the cytoplasm of transfected cells. In contrast, when cells that coexpressed Gag-Ub and LDI-1 WW were examined, inclusion bodies were detected but did not contain VLPs. These results indicate that the ubiquitination of Gag is dependent upon Nedd4 binding to the L domain and suggest that Nedd4 has additional functions during RSV release besides the ubiquitination of Gag.  相似文献   

15.
16.
Retroviruses hijack cellular machineries to productively infect their hosts. During the early stages of viral replication, proviral integration relies on specific interactions between components of the preintegration complex and host chromatin-bound proteins. Here, analyzing the fate of incoming primate foamy virus, we identify a short domain within the C-terminus of the structural Gag protein that efficiently binds host chromosomes, by interacting with H2A/H2B core histones. While viral particle production, virus entry and intracellular trafficking are not affected by mutation of this domain, chromosomal attachment of incoming subviral complexes is abolished, precluding proviral integration. We thus highlight a new function of the structural foamy Gag protein as the main tether between incoming subviral complexes and host chromatin prior to integration.  相似文献   

17.
The Ty3/gypsy family of retroelements is closely related to retroviruses, and some of their members have an open reading frame resembling the retroviral gene env. Sequences homologous to the gypsy element from Drosophila melanogaster are widely distributed among Drosophila species. In this work, we report a phylogenetic study based mainly on the analysis of the 5' region of the env gene from several species of the obscura group, and also from sequences already reported of D. melanogaster, Drosophila virilis, and Drosophila hydei. Our results indicate that the gypsy elements from species of the obscura group constitute a monophyletic group which has strongly diverged from the prototypic D. melanogaster gypsy element. Phylogenetic relationships between gypsy sequences from the obscura group are consistent with those of their hosts, indicating vertical transmission. However, D. hydei and D. virilis gypsy sequences are closely related to those of the affinis subgroup, which could be indicative of horizontal transmission.  相似文献   

18.
The endogenous Drosophila melanogaster retrovirus gypsy (mdg4) forms virus-like particles (VLPs) which are found as extracellular particles in the medium used to culture D. melanogaster cells. The D. hydei somatic cell line DH14, which does not harbour gypsy sequences, was exposed to D. melanogaster VLPs. Subsequent PCR and Southern analysis revealed that gypsy elements had penetrated into the D. hydei cells, suggesting interspecific transmission of the retrovirus. A D. hydei cell line containing gypsy sequences was established and grown in a mixed culture together with the G418-resistant D. hydei cell line DH33, and gypsy was shown to be transmitted from cell to cell. The proportion of cells carrying gypsy increased with time. The rate of gypsy invasion of the lines DH14 and DH33 was 10(-3) and 10(-2) per cell per generation, respectively. The results demonstrate the possibility of interspecific horizontal transfer of gypsy in the form of its VLPs.  相似文献   

19.
Z Qiu  D Ou  T C Hobman    S Gillam 《Journal of virology》1994,68(6):4086-4091
Rubella virus (RV) virions contain two envelope glycoproteins (E1 and E2) and a capsid protein (C). Noninfectious RV-like particles (VLPs) containing three structural proteins were expressed in a BHK cell line (BHK-24S) by using an inducible promoter. These VLPs were found to resemble RV virons in terms of their size, their morphology, and some biological activities. In immunoblotting studies, VLPs were found to bind similarly to native RV virions with 10 of a panel of 12 RV-specific murine monoclonal antibodies. Immunization of mice with VLPs induced specific antibody responses against RV structural proteins as well as virus-neutralizing and hemagglutination-inhibiting antibodies. After immunization of mice with VLPs, in vitro challenge of isolated lymphocytes with inactivated RV and individual RV structural proteins stimulated proliferation. Our data suggest the possibility of using VLPs as immunogens for serodiagnostic assays and RV vaccines.  相似文献   

20.
Although sharing a T=1 icosahedral symmetry with other members of the Parvoviridae family, it has been suggested that the fivefold channel of the human parvovirus B19 VP2 capsids is closed at its outside end. To investigate the possibility of placing a relatively large protein moiety at this site of B19, fluorescent virus-like particles (fVLPs) of B19 were developed. The enhanced green fluorescent protein (EGFP) was inserted at the N-terminus of the structural protein VP2 and assembly of fVLPs from this fusion protein was obtained. Electron microscopy revealed that these fluorescent protein complexes were very similar in size when compared to wild-type B19 virus. Further, fluorescence correlation spectroscopy showed that an average of nine EGFP domains were associated with these virus-like structures. Atomic force microscopy and immunoprecipitation studies showed that EGFP was displayed on the surface of these fVLPs. Confocal imaging indicated that these chimeric complexes were targeted to late endosomes when expressed in insect cells. The fVLPs were able to efficiently enter cancer cells and traffic to the nucleus via the microtubulus network. Finally, immunoglobulins present in human parvovirus B19 acute and past-immunity serum samples were able to detect antigenic epitopes present in these fVLPs. In summary, we have developed fluorescent virus-like nanoparticles displaying a large heterologous entity that should be of help to elucidate the mechanisms of infection and pathogenesis of human parvovirus B19. In addition, these B19 nanoparticles serve as a model in the development of targetable vehicles designed for delivery of biomolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号