首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endo-β-1,4-D-glucanases (EGases) are a widespread and vital group of glycosyl hydrolases that generally break the β-1,4-glucosyl linkages. Studies of plant EGases have mainly been concentrated on vegetative growth, while little is currently known about their role in reproductive processes. Using the GUS reporter aided analysis of promoter activities, we identified the expression patterns of two putative Arabidopsis EGases genes (At3g43860 and At4g39000) whose promoters conferred specific localization of the GUS activity in reproductive organs. We found that At3g43860, which is similar to KOR in its protein structural organization, is expressed in mature pollen and the pollen tube, implying that it may have a role in pollen and pollen tube growth. At4g39000 was found to be activated in the developing ovules and seeds, especially at the micropylar end of the inner integuments and nucellus in a proximal-distal pattern. Our results suggested that the two EGases play specific roles in Arabidopsis sexual reproduction.  相似文献   

2.
植物体内的α,β-不饱和活性醛类化合物对植物细胞具有毒害作用,清除这些α,β-不饱和活性醛类化合物对于植物细胞维持正常的生命活动至关重要。前人研究报道通过体外酶活测定和异源瞬时表达鉴定拟南芥 At3g04000基因编码的蛋白为 NADPH 依赖的叶绿体醛还原酶(Arabidopsis NADPH-dependent chloroplastic aldehyde reductases, AtChlADRs),推测其在清除叶绿体中长链(≥5)α,β-不饱和醛类物质中具有重要的功能。该研究主要构建了拟南芥 At3g04000基因的表达模式分析载体 ProAt3g04000:GUS、亚细胞定位分析载体At3g04000-EGFP 和过量表达载体 At3g04000-OE,并获得了转基因拟南芥,并通过实时定量 PCR 分析了At3g04000基因在拟南芥不同组织中的转录水平。结果表明:拟南芥 At3g04000基因在幼苗中的转录水平最高,在莲座叶、茎生叶、花序和角果中均有较高的转录水平;而在根部和茎秆中的转录水平较低。通过对ProAt3g04000:GUS 转基因植株的 GUS 染色分析可知,At3g04000基因在子叶、莲座叶和萼片的维管组织和保卫细胞中均有较强的表达,在根的维管组织中有较弱的表达。通过共聚焦显微镜对 At3g04000-EGFP 转基因植株的观察和分析发现,At3g04000不是定位于叶绿体中,而是定位在细胞质和细胞核中。该研究结果为深入研究拟南芥醛还原酶编码基因 At3g04000的功能奠定了基础。  相似文献   

3.
在基因序列和表达信息分析的基础上,重点研究初选出的两个拟南芥果胶甲酯酶基因At8g47550和At4g02330的表达和功能。半定量RT-PCR和转基因植株检测表明,At2g47550主要在花粉粒中大量表达,其次在微管组织中有明显表达。然而,At4g02330在拟南芥花和荚果整个发育时期都有不同程度的表达。主要在花的离层组织、柱头、微管组织和花粉粒中表达。结果说明,At2g47550可能参与花粉粒和花粉管的发育,而At4g02330则可能通过参与细胞壁中果胶代谢,从而达到调控细胞分离和花瓣脱落的目的。  相似文献   

4.
李文超  赵淑清 《遗传》2012,34(3):348-355
DUF647 (Domain of unknown function 647) 蛋白家族是在真核生物中广泛存在的、高度保守的蛋白家族。拟南芥中该基因家族共有6个成员, 迄今为止拟南芥DUF647家族中4个成员的功能尚不清楚。文章以拟南芥内源MIR319a前体为骨架, 构建了敲减DUF647家族中2个基因At1g13770和At2g23470表达的人工microRNAs(Artifical microRNAs, amiRNAs)。利用WMD(Web microRNA designer)平台设计分别靶向At1g13770和At2g23470基因的amiRNAs序列, 通过重叠PCR置换拟南芥MIR319a前体序列。构建融合amiRNAs前体的植物表达载体pCHF3-amiRNAs, 在农杆菌介导下转化拟南芥。RT-PCR分析表明, amiRNAs能够显著抑制At1g13770和At2g23470基因的表达, 获得了抑制效果明显的转基因株系。At2g23470-amiRNA转基因植株At2g23470转录水平的下调导致育性严重下降。文章为进一步研究这两个基因的功能奠定了良好的基础。  相似文献   

5.
人工microRNAs对拟南芥At1g13770和At2g23470基因的特异沉默   总被引:1,自引:0,他引:1  
Li WC  Zhao SQ 《遗传》2012,34(3):348-355
DUF647(Domain of unknown function 647)蛋白家族是在真核生物中广泛存在的、高度保守的蛋白家族。拟南芥中该基因家族共有6个成员,迄今为止拟南芥DUF647家族中4个成员的功能尚不清楚。文章以拟南芥内源MIR319a前体为骨架,构建了敲减DUF647家族中2个基因At1g13770和At2g23470表达的人工microRNAs(Artifical microRNAs,amiRNAs)。利用WMD(Web microRNA designer)平台设计分别靶向At1g13770和At2g23470基因的amiRNAs序列,通过重叠PCR置换拟南芥MIR319a前体序列。构建融合amiRNAs前体的植物表达载体pCHF3-amiRNAs,在农杆菌介导下转化拟南芥。RT-PCR分析表明,amiRNAs能够显著抑制At1g13770和At2g23470基因的表达,获得了抑制效果明显的转基因株系。At2g23470-amiRNA转基因植株At2g23470转录水平的下调导致育性严重下降。文章为进一步研究这两个基因的功能奠定了良好的基础。  相似文献   

6.
The Arabidopsis thaliana genome contains at least 32 terpenoid synthase (AtTPS) genes [Aubourg et al., Mol. Genet. Genom. 267 (2002) 730] a few of which have recently been characterized. Based on hierarchical cluster analysis of AtTPS gene expression, measured by microarray profiling and validated with published expression data, we identified two groups of predominantly root expressed AtTPS genes containing five members with previously unknown biochemical functions (At4g13280, At4g13300, At5g48110, At1g33750, and At3g29410). Among the root expressed AtTPS genes, a pair of tandem-organized genes, At4g13280 (AtTPS12) and At4g13300 (AtTPS13), shares 91% predicted amino acid identity indicating recent gene duplication. Bacterial expression of cDNAs and enzyme assays showed that both At4g13280 and At4g13300 encode sesquiterpene synthases catalyzing the conversion of farnesyl diphosphate to (Z)-gamma-bisabolene and the additional minor products E-nerolidol and alpha-bisabolol. Expression of beta-glucuronidase (GUS) reporter gene fused to upstream genomic regions of At4g13280 or At4g13300 showed constitutive promoter activities in the cortex and sub-epidermal layers of Arabidopsis roots. In addition, highly localized promoter activities were found in leaf hydathodes and flower stigmata. Mechanical wounding of Arabidopsis leaves induced local expression of At4g13280 and At4g13300. The functional characterization of At4g13280 gene product AtTPS12 and At4g13230 gene product AtTPS13 as (Z)-gamma-bisabolene synthases, together with the recent characterization of two flower-specific AtTPS [At5g23960 and At5g44630; Tholl et al., Plant J. 42 (2005) 757], concludes the biochemical functional annotation of all four predicted Arabidopsis sesquiterpene synthase genes. Our data suggest biological functions for At4g13280 and At4g13300 in the rhizosphere with additional roles in aerial plant tissues.  相似文献   

7.
The expression of At4g34880 gene encoding amidase in Arabidopsis was characterized in this study. A promoter region of 1.5 kb on the upstream of the start codon of the gene (referred as AmidP) was fused with uidA (GUS) reporter gene, and transformed into Arabidopsis plant for determining its spatial expression. The results indicated that AmidP drived GUS expression in vascular system, predominately in leaves. Truncation analysis of AmidP demonstrated that VASCULAR VEIN ELEMENT (VVE) motif with a region of 176 bp sequence (−1500 to −1324) was necessary and sufficient to direct the vascular vein specific GUS expression in the transgenic plant. Tandem copy of VVE increased vascular system expression, and 5′- and 3′- deletions of VVE motif in combination with a truncated −65 CaMV 35S minimal promoter showed that 11bp cis-acting element, naming DOF2 domain, played an essential role for the vascular vein specific expression. Meanwhile, it was also observed that the other cis-acting elements among the VVE region are also associated with specificity or strength of GUS activities in vascular system.  相似文献   

8.
9.
F-box蛋白作为SCF(Skpl,Cullin and anF-boxprotein)复合体的成员,参与调节植物的生长发育过程。At5g22700为功能未知的F-box基因家族成员。本研究通过酵母双杂交分析At5g22700蛋白与ASK(Arabidop-sis-SKP1-1ike)家族蛋白的相互作用,发现At5g22700蛋白的F-box结构域与ASK4蛋白相互作用。实时定量PCR分析该基因在不同组织器官中的表达,发现该基因在根和花中的表达量最高,说明At5g2700可能在根和花的发育中具有重要作用。以At5g22700基因的T—DNA插入突变体和过量表达转基因株系为材料,分析不同光照条件下幼苗的表型,发现蓝光下At5g22700过量表达转基因幼苗的主根比野生型长。这些研究结果表明,At5g22700在植物体内可能形成SCF复合体,并在植物幼苗主根伸长生长中起促进作用。  相似文献   

10.
The Arabidopsis AtSUC1 protein has previously been characterized as a plasma membrane H+-sucrose symporter. This paper describes the sites of AtSUC1 gene expression and AtSUC1 protein localization and assigns specific functions to this sucrose transporter in anther development and pollen tube growth. RNase protection assays revealed AtSUC1 expression exclusively in floral tissue, which was confirmed by analyses of AtSUC1 promoter-beta-glucuronidase (GUS) plants. In situ hybridizations identified AtSUC1 expression in anther connective tissue, in funiculi and in fully developed pollen grains. Indirect immuno-fluorescence analyses with anti-AtSUC1 antiserum confirmed AtSUC1 protein localization in the connective tissue and funiculi. In mature pollen grains, however, despite high AtSUC1 mRNA levels no AtSUC1 protein was found. Only after pollination of stylar papillae was AtSUC1 protein detected inside the pollen and later inside the growing pollen tubes, suggesting a translation of pre-existing AtSUC1 mRNA after pollination. Pollen germination analyses underlined the important role of sucrose for pollen tube growth. The data presented suggest a role of AtSUC1 in the controlled dehiscence of Arabidopsis anthers. It is postulated that an important function of AtSUC1 is the cell-specific modulation of water potentials.  相似文献   

11.
Successful male reproductive function in plants is dependent on the correct development and functioning of stamens and pollen. AGP6 and AGP11 are two homologous Arabidopsis genes encoding cell wall-associated arabinogalactan glycoproteins (AGPs). Both genes were found to be specifically expressed in stamens, pollen grains and pollen tubes, suggesting that these genes may play a role in male organ development and function. RNAi lines with reduced AGP6 and AGP11 expression were generated. These, together with lines harboring point mutations in the coding region of AGP6, were used to show that loss of function in AGP6 and AGP11 led to reduced fertility, at least partly as a result of inhibition of pollen tube growth. Our results also suggest that AGP6 and AGP11 play an additional role in the release of pollen grains from the mature anther. Thus, our study demonstrates the involvement of specific AGPs in pollen tube growth and stamen function.  相似文献   

12.
Plant endo‐β‐1,4‐glucanases (EGases) include cell wall‐modifying enzymes that are involved in nematode‐induced growth of syncytia (feeding structures) in nematode‐infected roots. EGases in the α‐ and β‐subfamilies contain signal peptides and are secreted, whereas those in the γ‐subfamily have a membrane‐anchoring domain and are not secreted. The Arabidopsis α‐EGase At1g48930, designated as AtCel6, is known to be down‐regulated by beet cyst nematode (Heterodera schachtii) in Arabidopsis roots, whereas another α‐EGase, AtCel2, is up‐regulated. Here, we report that the ectopic expression of AtCel6 in soybean roots reduces susceptibility to both soybean cyst nematode (SCN; Heterodera glycines) and root knot nematode (Meloidogyne incognita). Suppression of GmCel7, the soybean homologue of AtCel2, in soybean roots also reduces the susceptibility to SCN. In contrast, in studies on two γ‐EGases, both ectopic expression of AtKOR2 in soybean roots and suppression of the soybean homologue of AtKOR3 had no significant effect on SCN parasitism. Our results suggest that secreted α‐EGases are likely to be more useful than membrane‐bound γ‐EGases in the development of an SCN‐resistant soybean through gene manipulation. Furthermore, this study provides evidence that Arabidopsis shares molecular events of cyst nematode parasitism with soybean, and confirms the suitability of the Arabidopsis–H. schachtii interaction as a model for the soybean–H. glycines pathosystem.  相似文献   

13.
4-coumarate::CoA ligase (4CL) gene family members are involved in channeling carbon flow into branch pathways of phenylpropanoid metabolism. Transgenic Arabidopsis plants containing the At4CL1 or At4CL2 promoter fused to the beta-glucuronidase (GUS) reporter gene show developmentally regulated GUS expression in the xylem tissues of the root and shoot. To identify regulatory genes involved in the developmental regulation of At4CL and other phenylpropanoid-specific genes, we generated ethyl methyl sulfate mutagenized populations of At4CL1::GUS and At4CL2::GUS transgenic lines and screened approximately 16,000 progeny for reduced or altered GUS expression. Several lines with reproducible patterns of reduced GUS expression were identified. However, the GUS-expression phenotype segregated in a non-Mendelian manner in all of the identified lines. Also, GUS expression was restored by 5-azacytidine (aza) treatment, suggesting inhibitory DNA methylation of the transgene. Southern analysis confirmed DNA methylation of the proximal promoter sequences of the transgene only in the mutant lines. In addition, retransformation of At4CL::GUS lines with further At4CL promoter constructs enhanced the GUS-silencing phenotype. Taken together, these results suggest that the isolated mutants are epimutants. Apparently, two different modes of silencing were engaged in the At4CL1::GUS and At4CL2::GUS silenced lines. While silencing in the seedlings of the At4CL1::GUS lines was root specific in seedlings, it affected all organs in the At4CL2::GUS lines. Also, At4CL1::GUS transgene silencing was confined to the transgene but At4CL2::GUS silencing extended to the endogenous At4CL2 gene. Organ-specific silencing of the At4CL1::GUS transgene cannot be explained by current models in the literature.  相似文献   

14.
The fertilization process of plants is governed by different kinds of cell-cell interactions. In higher plants, these interactions are required both for recognition of the pollen grain by the female reproductive system and to direct the growth of the pollen tube inside the ovary. Despite many years of study, the signaling mechanisms that guide the pollen tube toward its target, the ovule, are largely unknown. Two distinct types of principles, mechanical and chemotropic, have been suggested to account for the directed growth of the pollen tube. The first of these two types of models implies that the guidance of the pollen tube depends on the architecture and chemical properties of the female reproductive tissues, whereas the latter suggests that the ovule provides a signal for the target-directed growth of the pollen tube. To examine such a role for the ovules, we analyzed the growth path of pollen tubes in mutants defective in ovule development in Arabidopsis. The results presented here provide unique in vivo evidence for an ovule-derived, long-range activity controlling pollen tube guidance. A morphological comparison of the ovule mutants used in this study indicates that within the ovule, the haploid embryo sac plays an important role in this long-range signaling process.  相似文献   

15.
Pollen tubes are among the fastest tip-growing plant cells and represent an excellent experimental system for studying the dynamics and spatiotemporal control of polarized cell growth. However, investigating pollen tube tip growth in the model plant Arabidopsis remains difficult because in vitro pollen germination and pollen tube growth rates are highly variable and largely different from those observed in pistils, most likely due to growth-promoting properties of the female reproductive tract. We found that in vitro grown Arabidopsis pollen respond to brassinosteroid (BR) in a dose-dependent manner. Pollen germination and pollen tube growth increased nine- and fivefold, respectively, when media were supplemented with 10 µM epibrassinolide (epiBL), resulting in growth kinetics more similar to growth in vivo. Expression analyses show that the promoter of one of the key enzymes in BR biosynthesis, CYP90A1/CPD, is highly active in the cells of the reproductive tract that form the pathway for pollen tubes from the stigma to the ovules. Pollen tubes grew significantly shorter through the reproductive tract of a cyp90a1 mutant compared to the wild type, or to a BR perception mutant. Our results show that epiBL promotes pollen germination and tube growth in vitro and suggest that the cells of the reproductive tract provide BR compounds to stimulate pollen tube growth.  相似文献   

16.
A subset of genes in Arabidopsis thaliana is known to be up-regulated in response to a wide range of different environmental stress factors. However, not all of these genes are characterized as yet with respect to their functions. In this study, we used transgenic knockout, overexpression and reporter gene approaches to try to elucidate the biological roles of five unknown multiple-stress responsive genes in Arabidopsis. The selected genes have the following locus identifiers: At1g18740, At1g74450, At4g27652, At4g29780 and At5g12010. Firstly, T-DNA insertion knockout lines were identified for each locus and screened for altered phenotypes. None of the lines were found to be visually different from wildtype Col-0. Secondly, 35S-driven overexpression lines were generated for each open reading frame. Analysis of these transgenic lines showed altered phenotypes for lines overexpressing the At1g74450 ORF. Plants overexpressing the multiple-stress responsive gene At1g74450 are stunted in height and have reduced male fertility. Alexander staining of anthers from flowers at developmental stage 12–13 showed either an absence or a reduction in viable pollen compared to wildtype Col-0 and At1g74450 knockout lines. Interestingly, the effects of stress on crop productivity are most severe at developmental stages such as male gametophyte development. However, the molecular factors and regulatory networks underlying environmental stress-induced male gametophytic alterations are still largely unknown. Our results indicate that the At1g74450 gene provides a potential link between multiple environmental stresses, plant height and pollen development. In addition, ruthenium red staining analysis showed that At1g74450 may affect the composition of the inner seed coat mucilage layer. Finally, C-terminal GFP fusion proteins for At1g74450 were shown to localise to the cytosol.  相似文献   

17.
We determined the solution structure of At3g28950 from A. thaliana, a homolog of At5g39720, whose structure we solved earlier. The secondary structure of the 165-aa protein consists of a 5-strand antiparallel beta-barrel domain flanked by two alpha-helices and a 2-strand beta-sheet; an additional free C-terminal alpha-helix extends into solution. Bioinformatic searches and analyses suggest that members of this growing set of structurally related proteins have been recruited to serve a wide variety of functions ranging from gamma-glutamyl cyclotransferase activity to participation in plant responses to chemical and biotic stimuli. Expression of a human homolog is elevated in bladder cancer tissues. Expression patterns for At3g28950 and its Arabidopsis paralogs suggest that each one evolved a different physiological role. The At3g28950 structure was solved as part of a structural genomics effort, and the results demonstrate how such a project can further understanding of genome evolution in addition to sequence-structure and structure-function relationships. Proteins 2008. (c) 2008 Wiley-Liss, Inc.  相似文献   

18.
Unraveling the role of genes annotated as protein of unknown function is of importance in progression of plant science. l-Galactono-1,4-lactone (l-GalL) is the terminal precursor for ascorbic acid (AsA) biosynthesis in Arabidopsis thaliana, and a previous study showed two DUF (domains of unknown function) 642 family genes (At1g80240 and At5g25460, designated as DGR1 and DGR2, respectively) to be sensitive to it. In this work, leaves from wild-type Arabidopsis were fed with d-glucose, l-galactose, l-GalL and AsA, and the expression level of the At1g80240 and At5g25460 genes showed a specific response to l-GalL, but not to the other supplements despite the increases of the tissue AsA contents. Analysis of promoter-β-glucuronidase (GUS) transgenic plants showed the two genes to be complementarily expressed at the root apex and in the rest of the root excluding the apex, respectively, in both young and old seedlings, and to be expressed at the leaf primordia. The GUS activity under the control of the At5g25460 promoter was high in the cotyledon and leaf veins of young seedlings. These findings were consistent with the results of quantitative real-time PCR. Interestingly, the T-DNA insertion mutant of At5g25460 (SALK_125079) displayed shorter roots and smaller rosettes than Col-0; however, no phenotypic difference was observed between the T-DNA insertion mutant of At1g80240 and the wild type. This is the first report on the expression and functional analysis of these two DUF642 family genes, with the results revealing the contribution of DGR genes to the development of Arabidopsis.  相似文献   

19.
20.
In flowering plants, pollen tubes are attracted to the ovule by secreted peptides to release the sperm cells for double fertilization.This process is species-specific and acts as an important stage of reproductive isolation between species. Here we identified a cysteine-rich peptide TICKET2 in Arabidopsis thaliana and its orthologs in Arabidopsis lyrata and Capsella rebella that can attract the conspecific pollen tubes, but not the pollen tubes of relative species in Brassicaceae. Genetic knockout of the AtTICKET subclade compromised the pollen tube attraction efficiency. This study identified a new pollen tube attracting signal and shed light on the molecular basis of reproductive isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号