共查询到20条相似文献,搜索用时 15 毫秒
1.
Involvement of DNA polymerase alpha in simian virus 40 DNA replication. 总被引:28,自引:0,他引:28
2.
Smith RW Steffen C Grosse F Nasheuer HP 《The Journal of biological chemistry》2002,277(23):20541-20548
Human cell extracts support the replication of SV40 DNA, whereas mouse cell extracts do not. Species specificity is determined at the level of initiation of DNA replication, and it was previously found that this requires the large subunit, p180, of DNA polymerase alpha-primase to be of human origin. Furthermore, a functional interaction between SV40 large T antigen (TAg) and p180 is essential for viral DNA replication. In this study we determined that the N-terminal regions of human p180, which contain the TAg-binding sites, can be replaced with those of murine origin without losing the ability to support SV40 DNA replication in vitro. The same substitutions do not prevent SV40 TAg from stimulating the activity of DNA polymerase alpha-primase on single-stranded DNA in the presence of replication protein A. Furthermore, biophysical studies show that the interactions of human and murine DNA polymerase alpha-primase with SV40 TAg are of a similar magnitude. These studies strongly suggest that requirement of SV40 DNA replication for human DNA polymerase alpha depends neither on the TAg-binding site being of human origin nor on the strength of the binary interaction between SV40 TAg and DNA polymerase alpha-primase but rather on sequences in the C-terminal region of human p180. 相似文献
3.
Purification of DNA polymerase delta as an essential simian virus 40 DNA replication factor. 总被引:10,自引:0,他引:10
DNA replication from the SV40 origin can be reconstituted in vitro using purified SV40 large T antigen, cellular topoisomerases I and II, replication factor A (RF-A), proliferating cell nuclear antigen (PCNA), replication factor C (RF-C), and a phosphocellulose fraction (IIA) made from human cell extracts (S100). Fraction IIA contains all DNA polymerase activity required for replication in vitro in addition to other factors. A newly identified factor has been purified from fraction IIA. This factor is required for complete reconstitution of SV40 DNA replication and co-purifies with a PCNA-stimulated DNA polymerase activity. This DNA polymerase activity is sensitive to aphidicolin, but is not inhibited by butylanilinodeoxyadenosine triphosphate or by monoclonal antibodies which block synthesis by DNA polymerase alpha. The polymerase activity is synergistically stimulated by the combination of RF-A, PCNA, and RF-C in an ATP-dependent manner. Purified calf thymus polymerase delta can fully replace the purified factor in DNA replication assays. We conclude that this factor, required for reconstitution of SV40 DNA replication in vitro, corresponds to human DNA polymerase delta. 相似文献
4.
Applying an in situ cell fractionation procedure, we analyzed structural systems of the cell nucleus for the presence of mature and replicating simian virus 40 (SV40) DNA. Replicating SV40 DNA intermediates were tightly and quantitatively associated with the nuclear matrix, indicating that elongation processes of SV40 DNA replication proceed at this structure. Isolated nuclei as well as nuclear matrices were able to continue SV40 DNA elongation under replication conditions in situ, arguing for a coordinated and functional association of SV40 DNA and large T molecules at nuclear structures. SV40 DNA replication also was terminated at the nuclear matrix. While the bulk of newly synthesized, mature SV40 DNA molecules then remained at this structure, some left the nuclear matrix and accumulated at the chromatin. 相似文献
5.
Non-specific termination of simian virus 40 DNA replication. 总被引:4,自引:0,他引:4
Axial X-ray diffraction patterns have been studied from relaxed, contracted and rigor vertebrate striated muscles at different sarcomere lengths to determine which features of the patterns depend on the interaction of actin and myosin. The intensity of the myosin layer lines in a live, relaxed muscle is sometimes less in a stretched muscle than in the muscle at rest-length; the intensity depends not only on the sarcomere length but on the time that has elapsed since dissection of the muscle. The movement of cross-bridges giving rise to these intensity changes are not caused solely by the withdrawal of actin from the A-band.When a muscle contracts or passes into rigor many changes occur that are independent of the sarcomere length: the myosin layer lines decrease in intensity to about 30% of their initial value when the muscle contracts, and disappear completely when the muscle passes into rigor. Both in contracting and rigor muscles at all sarcomere lengths the spacings of the meridional reflections at 143 Å and 72 Å are 1% greater than from a live relaxed muscle at rest-length. It is deduced that the initial movement of cross-bridges from their positions in resting muscle does not depend on the interaction of each cross-bridge with actin, but on a conformational change in the backbone of the myosin filament: occurring as a result of activation. The possibility is discussed that the conformational change occurs because the myosin filament, like the actin filament, has an activation control mechanism. Finally, all the X-ray diffraction patterns are interpreted on a model in which the myosin filament can exist in one of two possible states: a relaxed state which gives a diffraction pattern with strong myosin layer lines and an axial spacing of 143.4 Å, and an activated state which gives no layer lines but a meridional spacing of 144.8 Å. 相似文献
6.
DNA primase-DNA polymerase alpha from simian cells: sequence specificity of initiation sites on simian virus 40 DNA. 总被引:8,自引:4,他引:8 下载免费PDF全文
Unique single-stranded regions of simian virus 40 DNA, phage M13 virion DNA, and several homopolymers were used as templates for the synthesis of (p)ppRNA-DNA chains by CV-1 cell DNA primase-DNA polymerase alpha. Intact RNA primers, specifically labeled with an RNA capping enzyme, were typically 6 to 8 ribonucleotides long, although their lengths ranged from 1 to 9 bases. The fraction of intact RNA primers 1 to 4 ribonucleotides long was 14 to 73%, depending on the template used. RNA primer length varied among primers initiated at the same nucleotide, as well as with primers initiated at different sites. Thus, the size of an RNA primer depended on template sequence. Initiation sites were identified by mapping 5' ends of nascent RNA-DNA chains on the template sequence, identifying the 5'-terminal ribonucleotide, and partially sequencing one RNA primer. A total of 56 initiation events were identified on simian virus 40 DNA, an average of 1 every 16 bases. Some sites were preferred over others. A consensus sequence for initiation sites consisted of either 3'-dCTTT or 3'-dCCC centered within 7 to 25 pyrimidine-rich residues; the 5' ends of RNA primers were complementary to the dT or dC. High ATP/GTP ratios promoted initiation of RNA primer synthesis at 3'-dCTTT sites, whereas low ATP/GTP ratios promoted initiation at 3'-dCCC sites. Similarly, polydeoxythymidylic acid and polydeoxycytidylic acid were the only effective homopolymer templates. Thus, both template sequence and ribonucleoside triphosphate concentrations determine which initiation sites are used by DNA primase-DNA polymerase alpha. Remarkably, initiation sites selected in vitro were strikingly different from initiation sites selected during simian virus 40 DNA replication in vivo. 相似文献
7.
Exogenously added simian virus 40 (SV40) DNA can be replicated semiconservatively in vitro by a mixture of a soluble extract of HeLa cell nuclei and the cytoplasm from SV40-infected CosI cells. When cloned DNA was used as a template, the clone containing the SV40 origin of DNA replication was active, but a clone lacking the SV40 origin was inactive. The major products of the in vitro reaction were form I and form II SV40 DNAs and a small amount of form III. DNA synthesis in extracts began at or near the in vivo origin of SV40 DNA synthesis and proceeded bidirectionally. The reaction was inhibited by the addition of anti-large T hamster serum, aphidicolin, or RNase but not by ddNTP. Furthermore, this system was partially reconstituted between HeLa nuclear extract and the semipurified SV40 T antigen instead of the CosI cytoplasm. It is clear from these two systems that the proteins containing SV40 T antigen change the nonspecific repair reaction performed by HeLa nuclear extract alone to the specific semiconservative DNA replication reaction. These results show that these in vitro systems closely resemble SV40 DNA replication in vivo and provide an assay that should be useful for the purification and subsequent characterization of viral and cellular proteins involved in DNA replication. 相似文献
8.
DNA polymerase alpha from the nuclear matrix of cells infected with simian virus 40. 总被引:6,自引:1,他引:6 下载免费PDF全文
The nuclear matrix prepared from normal, simian virus 40 (SV40)-infected, and SV40-transformed cells contained DNA polymerase activities. Approximately 12% of the total DNA polymerase activities in isolated nuclei remained with the nuclear matrix. alpha-polymerase was the major matrix DNA polymerase activity as judged by sensitivity to various inhibitors: aphidicolin, dideoxy-TTP, and N-ethylmaleimide. Approximately 2-4 fold higher DNA polymerase activity was detected in matrices obtained from lytically infected and virus-transformed cells than that found in normal cells. In lytically infected cells, 30-50% of the matrix-bound DNA polymerase activity solubilized by sonication co-sedimented with majority of the matrix T-antigen, and was co-precipitated with anti-T sera. The results suggest that alpha-polymerase and viral T-antigen may form a functional complex in the matrix. 相似文献
9.
Studies of simian virus 40 (SV40) DNA replication in vitro have identified a small (approximately 30-nucleotide) RNA-DNA hybrid species termed primer-DNA. Initial experiments indicated that T antigen and the polymerase alpha-primase complex are required to form primer-DNA. Proliferating cell nuclear antigen, and presumably proliferating cell nuclear antigen-dependent polymerases, is not needed to form this species. Herein, we present an investigation of the stages at which primer-DNA functions during SV40 DNA replication in vitro. Hybridization studies indicate that primer-DNA is initially formed in the origin region and is subsequently synthesized in regions distal to the origin. At all time points, primer-DNA is synthesized from templates for lagging-strand DNA replication. These studies indicate that primer-DNA functions during both initiation and elongation stages of SV40 DNA synthesis. Results of additional experiments suggesting a precursor-product relationship between formation of primer-DNA and Okazaki fragments are presented. 相似文献
10.
Role of the p68 subunit of human DNA polymerase alpha-primase in simian virus 40 DNA replication 下载免费PDF全文
Ott RD Rehfuess C Podust VN Clark JE Fanning E 《Molecular and cellular biology》2002,22(16):5669-5678
DNA polymerase alpha-primase (pol-prim) is a heterotetramer with DNA polymerase and primase activities. The polymerase (p180) and primase (p48 and p58) subunits synthesize primers and extend them, but the function of the remaining subunit (p68) is poorly understood. Genetic studies in yeast suggested an essential role for the p68 ortholog in early S phase prior to the hydroxyurea-sensitive step, possibly a regulatory role in initiation of DNA replication, but found no evidence for an essential function of p68 later in S phase. To investigate whether the human p68 subunit has an essential role in DNA replication, we examined the ability of a purified trimeric human pol-prim lacking p68 to initiate simian virus 40 DNA replication in vitro and to synthesize and elongate primers on single-stranded DNA in the presence of T antigen and replication protein A (RPA). Both activities of trimeric pol-prim were defective, but activity was recovered upon addition of separately purified p68. Phosphorylation of p68 by cyclin A-dependent protein kinase also inhibited both activities of pol-prim. The data strongly suggest that the p68 subunit is required for priming activity of pol-prim in the presence of RPA and T antigen, both during initiation at the origin and during lagging strand replication. 相似文献
11.
Initiation of simian virus 40 DNA replication requires the interaction of a specific domain of human DNA polymerase alpha with large T antigen. 总被引:14,自引:7,他引:14 下载免费PDF全文
Initiation of cell-free simian virus 40 (SV40) DNA replication requires the interaction of DNA polymerase alpha/primase with a preinitiation complex containing the viral T antigen and cellular proteins, replication protein A, and topoisomerase I or II. To further understand the molecular mechanisms of the transition from preinitiation to initiation, the intermolecular interaction between human DNA polymerase alpha and T antigen was investigated. We have demonstrated that the human DNA polymerase alpha catalytic polypeptide is able to associate with SV40 large T antigen directly under physiological conditions. A physical association between these two proteins was detected by coimmunoprecipitation with monoclonal antibodies from insect cells coinfected with recombinant baculoviruses. A domain of human polymerase alpha physically interacting with T antigen was identified within the amino-terminal region from residues 195 to 313. This domain of human polymerase alpha was able to form a nonproductive complex with T antigen, causing inhibition of the SV40 DNA replication in vitro. Kinetics of the inhibition indicated that this polymerase domain can inhibit viral replication only during the preinitiation stage. Extra molecules of T antigen could partially overcome the inhibition only prior to initiation complex formation. The data support the conclusion that initiation of SV40 DNA replication requires the physical interaction of T antigen in the preinitiation complex with the amino-terminal domain of human polymerase alpha from amino acid residues 195 to 313. 相似文献
12.
Essentially all of the Okazaki fragments on replicating Simian virus 40 (SV40)DNA could be grouped into one of three classes. Class I Okazaki fragments (about 20%) were separated from longer nascent DNA chains by a single phosphodiester bond interruption (nick) and were quantitatively identified by treating purified replicating DNA with Escherichia coli DNA ligase and then measuring the fraction of Okazaki fragments joined to longer nascent DNA chains. Similarly, class II Okazaki fragments (about 30%) were separated by a region of single-stranded DNA template (gap) that could be filled and sealed by T4 DNA polymerase plus E. coli DNA ligase, and class III fragments (about 50%) were separated by RNA primers that could be removed with E. coli DNA olymerase I, allowing the fragments to be joined with E. coli DNA ligase. These results were obtained with replicating SV40 DNA that had been briefly labeled with radioactive precursors in either intact cells or isolated nuclei. When isolated nuclei were further incubated in the presence of cytosol, all of the Okazaki fragments were converted into longer DNA strands as expected for intermediates in DNA synthesis. However, when washed nuclei were incubated in the abscence of cytosol, both class I and class II Okazaki fragments accumulated despite the excision of RNA primers: class III Okazaki fragments and RNA-DNA covalent linkages both disappeared at similar rates. These data demonstrate the existence of RNA primers in whole cells as well as in isolated nuclei, and identify a unique gap-filling step that is not simply an extension of the DNA chain elongation process concomitant with the excision of RNA primers. One or more factos found in cytosol, in addition to DNA polymerase alpha, are specifically involved in the gap-filling and ligation steps. The sizes of mature Okazaki fragments (class I) and Okazaki fragments whose synthesis was completed by T4 DNA polymerase were measured by gel electrophoresis and found to be broadly distributed between 40 and 290 nucleotides with an average length of 135 nucleotides. Since 80% and 90% of the Okazaments does not occur at uniformly spaced intervals along the DNA template. During the excision of RNA primers, nascent DNA chains with a single ribonucleotide covalently attached to the 5' terminus were identified as transient intermediates. These intermediates accumulated during excision of RNA primers in the presence of adenine 9-beta-D-arabinoside 5'-triphosphate, and those Okazaki fragments blocked by RNA primers (class III) were found to have originated the farthest from the 5' ends of long nascent DNA strands. Thus, RNA primers appear to be excised in two steps with the second step, removal of the final ribonucleotide, being stimulated by concomitant DNA synthesis. These and other data were used to construct a comprehensive metabolic pathway for the initiation, elongation, and maturation of Okazaki fragments at mammalian DNA replication forks. 相似文献
13.
Growing CV1 cells were infected with simian virus 40 (SV40), and the levels of DNA polymerases-alpha, -beta, and -gamma were analyzed in the cytoplasm, nuclear Triton wash, and nucleus. In the cytoplasmic fraction, the amount of alpha-, beta-, or gamma-polymerase remained unaltered after SV40 infection. The activity of DNA polymerase-alpha increased five- to sixfold in the nuclear Triton wash and threefold in the nuclei and then remained enhanced only inside the nuclei. That of DNA polymerases-beta and gamma increased mostly in the nuclei after infection. These results suggest that DNA polymerase-alpha could be the major enzyme involved in SV40 DNA replication. 相似文献
14.
Species-specific replication of simian virus 40 DNA in vitro requires the p180 subunit of human DNA polymerase alpha-primase. 总被引:1,自引:0,他引:1 下载免费PDF全文
F Stadlbauer C Voitenleitner A Brückner E Fanning H P Nasheuer 《Molecular and cellular biology》1996,16(1):94-104
Human cell extracts efficiently support replication of simian virus 40 (SV40) DNA in vitro, while mouse cell extracts do not. Since human DNA polymerase alpha-primase is the major species-specific factor, we set out to determine the subunit(s) of DNA polymerase alpha-primase required for this species specificity. Recombinant human, mouse, and hybrid human-mouse DNA polymerase alpha-primase complexes were expressed with baculovirus vectors and purified. All of the recombinant DNA polymerase alpha-primases showed enzymatic activity and efficiently synthesized the complementary strand on an M13 single-stranded DNA template. The human DNA polymerase alpha-primase (four subunits [HHHH]) and the hybrid DNA polymerase alpha-primase HHMM (two human subunits and two mouse subunits), containing human p180 and p68 and mouse primase, initiated SV40 DNA replication in a purified system. The human and the HHMM complex efficiently replicated SV40 DNA in mouse extracts from which DNA polymerase alpha-primase was deleted, while MMMM and the MMHH complex did not. To determine whether the human p180 or p68 subunit was required for SV40 DNA replication, hybrid complexes containing only one human subunit, p180 or p68, together with three mouse subunits (HMMM and MHMM) or three human subunits and one mouse subunit (MHHH and HMHH) were tested for SV40 DNA replication activity. The hybrid complexes HMMM and HMHH synthesized oligoribonucleotides in the SV40 initiation assay with purified proteins and replicated SV40 DNA in depleted mouse extracts. In contrast, the hybrid complexes containing mouse p180 were inactive in both assays. We conclude that the human p180 subunit determines host-specific replication of SV40 DNA in vitro. 相似文献
15.
cis-active elements from mouse chromosomal DNA suppress simian virus 40 DNA replication. 总被引:1,自引:2,他引:1 下载免费PDF全文
Simian virus 40 (SV40)-containing DNA was rescued after the fusion of SV40-transformed VLM cells with permissive COS1 monkey cells and cloned, and prototype plasmid clones were characterized. A 2-kilobase mouse DNA fragment fused with the rescued SV40 DNA, and derived from mouse DNA flanking the single insert of SV40 DNA in VLM cells, was sequenced. Insertion of the intact rescued mouse sequence, or two nonoverlapping fragments of it, into wild-type SV40 plasmid DNA suppressed replication of the plasmid in TC7 monkey cells, although the plasmids expressed replication-competent T antigen. Rat cells were transformed with linearized wild-type SV40 plasmid DNA with or without fragments of the mouse DNA in cis. Although all of the rat cell lines expressed approximately equal amounts of T antigen and p53, transformants carrying SV40 DNA linked to either of the same two replication suppressor fragments produced significantly less free SV40 DNA after fusion with permissive cells than those transformed by SV40 DNA without a cellular insert or with a cellular insert lacking suppressor activity. The results suggest that two independent segments of cellular DNA act in cis to suppress SV40 replication in vivo, either as a plasmid or integrated in chromosomal DNA. 相似文献
16.
17.
DNA replication and chromatin structure of simian virus 40 insertion mutants. 总被引:15,自引:10,他引:15 下载免费PDF全文
Insertion of DNA segments into the nuclease-sensitive region of simian virus 40 alters both replication efficiency and chromatin structure. Mutants containing large insertions between the simian virus 40 origin of replication (ori site) and the 21-base-pair repeated sequences replicated poorly when assayed by transfection into COS-1 cells. Replication of mutants with shorter insertions was moderately reduced. This effect was cis-acting and independent of the nucleotide sequence of the insert. The nuclease-sensitive chromatin structure was retained in these mutants, but the pattern of cleavage sites was displaced in the late direction from the ori site. New cleavage sites appeared within the inserted sequences, suggesting that information specifying the nuclease-sensitive chromatin structure is located on the late side of the inserts. Accessibility to BglI (which cleaves within the ori site) was reduced in the larger insertion mutants. These results support the conclusion that efficient function of the viral origin of replication is correlated with its proximity to an altered chromatin structure. 相似文献
18.
Transformed monkey cell lines (CMT and BMT) that inducible express simian virus 40 (SV40) T antigen from the metallothionein promoter have been isolated and characterized. Immunoprecipitation of pulse-labeled T antigen demonstrates a 5- to 12-fold increase in the rate of synthesis on addition of heavy-metal inducers to the culture medium. Radioimmunoassay of cell extracts indicates the accumulation of three- to fourfold more total T antigen after 2 days of induction by comparison with uninduced controls. A direct correlation was found between the level of T-antigen synthesis and the extent of SV40 DNA replication in inducible cells. Inducible BMT cells expressing a low basal level of T antigen were efficiently transformed by a vector carrying the neomycin resistance marker and an SV40 origin of replication. These vector sequences were maintained in an episomal form in most G418-resistant cell lines examined and persisted even in the absence of biochemical selection. Extensive rearrangements were observed only if the vector contained bacterial plasmid sequences. Expression of a protein product under the control of the SV40 late promoter in such vectors was increased after heavy-metal-dependent amplification of the template. These results demonstrate the ability of BMT cells to maintain a cloned eucaryotic gene in an amplifiable episomal state. 相似文献
19.
In vitro initiation of DNA replication in simian virus 40 chromosomes 总被引:15,自引:0,他引:15
R S Decker M Yamaguchi R Possenti M K Bradley M L DePamphilis 《The Journal of biological chemistry》1987,262(22):10863-10872
A soluble system has been developed that can initiate DNA replication de novo in simian virus 40 (SV40) chromatin isolated from virus-infected monkey cells as well as in circular plasmid DNA containing a functional SV40 origin of replication (ori). Initiation of DNA replication in SV40 chromatin required the soluble fraction from a high-salt nuclear extract of SV40-infected cells, a low-salt cytosol fraction, polyethylene glycol, and a buffered salts solution containing all four standard deoxyribonucleoside triphosphates. Purified SV40 large tumor antigen (T-ag) partially substituted for the high-salt nucleosol, and monoclonal antibodies directed against SV40 T-ag inhibited DNA replication. Replication began at ori and proceeded bidirectionally to generate replicating DNA intermediates in which the parental strands remained covalently closed, as observed in vivo. Partial inhibition of DNA synthesis by aphidicolin resulted in accumulation of newly initiated replicating intermediates in this system, a phenomenon not observed under conditions that supported completion of replication only. However, conditions that were optimal for initiation of replication repressed conversion of late-replicating intermediates into circular DNA monomers. Most surprising was the observation that p-n-butylphenyl-dGTP, a potent and specific inhibitor of DNA polymerase-alpha, failed to inhibit replication of SV40 chromatin under conditions that completely inhibited replication of plasmid DNA containing the SV40 ori and either purified or endogenous DNA polymerase-alpha activity. In contrast, all of these DNA synthesis activities were inhibited equally by aphidicolin. Therefore, DNA replication in mammalian cells is carried out either by DNA polymerase-alpha that bears a unique association with chromatin or by a different enzyme such as DNA polymerase-delta. 相似文献
20.
Linear simian virus 40 DNA fragments exhibit a propensity for rolling-circle replication. 总被引:2,自引:0,他引:2 下载免费PDF全文
A linear simian virus 40 origin-containing DNA fragment replicated in monkey COS cells, generating tandemly repeated (head-to-tail) structures. Electron microscopy revealed circle-and-tail configurations characteristic of rolling-circle replication intermediates. Circularization of the same DNA before transfection led to a theta type of replication which generated supercoiled DNA molecules. 相似文献