首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Interactions of rhizobia with rice and wheat   总被引:1,自引:0,他引:1  
Webster  G.  Gough  C.  Vasse  J.  Batchelor  C.A.  O'Callaghan  K.J.  Kothari  S.L.  Davey  M.R.  Dénarié  J.  Cocking  E.C. 《Plant and Soil》1997,194(1-2):115-122
Recently, evidence has been obtained that naturally occurring rhizobia, isolated from the nodules of non-legume Parasponia species and from some tropical legumes, are able to enter the roots of rice, wheat and maize at emerging lateral roots by crack entry. We have now investigated whether Azorhizobium caulinodans strain ORS571, which induces root and stem nodules on the tropical legume Sesbania rostrata as a result of crack entry invasion of emerging lateral roots, might also enter rice and wheat by a similar route. Following inoculation with ORS571 carrying a lacZ reporter gene, azorhizobia were observed microscopically within the cracks associated with emerging lateral roots of rice and wheat. A high proportion of inoculated rice and wheat plants had colonized lateral root cracks. The flavanone naringenin at 10 and 10 M stimulated significantly the colonization of lateral root cracks and also intercellular colonization of wheat roots. Naringenin does not appear to be acting as a carbon source and may act as a signal molecule for intercellular colonization of rice and wheat by ORS571 by a mechanism which is nod gene-independent, unlike nodule formation in Sesbania rostrata. The opportunity now arises to compare and to contrast the ability of Azorhizobium caulinodans with that of other rhizobia, such as Parasponia rhizobia, to intercellularly colonize the roots of non-legume crops.  相似文献   

2.
A nonpolar mutation was made in the oac2 gene of Azorhizobium caulinodans. oac2 is an ortholog of the Salmonella typhimurium rfbD gene that encodes a dTDP-L-rhamnose synthase. The knockout of oac2 changed the lipopolysaccharide (LPS) pattern and affected the extracellular polysaccharide production but had no effect on bacterial hydrophobicity. Upon hot phenol extraction, the wild-type LPS partitioned in the phenol phase. The LPS fraction of ORS571-oac2 partitioned in the water phase and had a reduced rhamnose content and truncated LPS molecules on the basis of faster migration in detergent gel electrophoresis. Strain ORS571-oac2 induced ineffective nodule-like structures on Sesbania rostrata. There was no clear demarcation between central and peripheral tissues, and neither leghemoglobin nor bacteroids were present. Light and electron microscopy revealed that the mutant bacteria were retained in enlarged, thick-walled infection threads. Infection centers emitted a blue autofluorescence under UV light. The data indicate that rhamnose synthesis is important for the production of surface carbohydrates that are required to sustain the compatible interaction between A. caulinodans and S. rostrata.  相似文献   

3.
The symbiosis of Azorhizobium caulinodans and an annul legume Sesbania rostrata was recently found to be tolerant to cadmium pollution by an unknown mechanism. In this study, A. caulinodans ORS571 and ZY-20 showed much stronger tolerance to cadmium than a mutant ORS571-X15 and a common Rhizobium sp., with minimum inhibitory concentration values as high as 4 and 5 mM (versus 1 and 0.1 mM) on yeast extract mannitol agar medium, respectively. Although Cd uptake by all three strains of A. caulinodans were mostly from absorption rather than binding (both loosely or tightly) on cell surface, in resistant strains a higher portion of extractable Cd was bound on the cell surface vs. absorbed (about 1:2.5 ratio) compared to the sensitive mutant (about 1:35.1 ratio). These results suggest that certain level of metal exclusion by a permeability barrier was involved in the mechanism of resistance to Cd by A. caulinodans ORS571 and ZY-20. Over the 12-h period of cultivation in yeast extract mannitol agar medium with Cd addition, the Cd concentrations in the outer membrane and periplasm and spheroplast were the highest at the first 3 h, and declined steadily over time. The fact that Cd concentrations in spheroplast of all three strains were many folds higher than those in outer membrane and periplasm, suggests that extracellular sequestration was not the only mechanism of Cd tolerance in A. caulinodans. The decline of Cd concentrations was significantly faster and started earlier in strains ORS571 and ZY-20 than in ORS571-X15. This suggests a second, probably more substantial, mechanism involves active transport of the metal from the cell, e.g., some efflux system for maintaining homeostasis under cadmium stress.  相似文献   

4.
Azorhizobium caulinodans ORS571, a bacterium capable of nodulating roots and stems of the tropical legume Sesbania rostrata, has been shown to have no nodD-like gene located immediately upstream from its common nodABC locus. A clone carrying a functional nodD gene of strain ORS571 has now been isolated from a pLAFR1 gene library by screening for naringenin-induced expression of the common nod genes in an Agrobacterium background. Tn5 mutagenesis of the cloned insert DNA delimited the inducing activity to a +/- 0.8-kilobase-pair fragment. One of the Tn5 insertions in the activator locus was homogenotized in the ORS571 genome. This resulted in a mutant strain (ORS571-3) that was unable to induce common nod gene expression in the presence of host plant exudate or the flavanone naringenin and that had lost the capacity to nodulate the roots and stems of S. rostrata. Complementation of both mutant phenotypes was achieved upon introduction of the cloned nodD gene. Sequencing of the nodD locus indicated the presence of a single, 942-base-pair-long open reading frame (ORFD) with significant homology to the nodD gene of (brady)rhizobia. The level of homology, however, is the lowest thus far reported for this kind of gene. ORFD most likely initiates translation with a TTG start codon. Upstream from ORFD, a divergently oriented nod box-like sequence is present, the function of which remains to be determined.  相似文献   

5.
Improved conditions were used for the aseptic growth of Arabidopsis thaliana to investigate whether xylem colonization of A. thaliana by Azorhizobium caulinodans ORS571 might occur. When seedlings were inoculated with ORS571 (pXLGD4) tagged with the lacZ reporter gene, nearly all of the plants showed blue regions of ORS571 colonization at lateral root cracks (LRC). The flavonoids naringenin and liquiritigenin significantly stimulated colonization of LRC by ORS571. Blue bands of ORS571 (pXLGD4) bacteria were observed histochemically in the xylem of intact roots of inoculated plants. Detailed microscopic analysis of sections of primary and lateral roots from inoculated A. thaliana confirmed xylem colonization. Xylem colonization also occurred with an ORS571 nodC mutant deficient in nodulation factors. There was no significant difference in the percentage of plants with xylem colonization or in the mean length of xylem colonized per plant between plants inoculated with either ORS571 (pXLGD4) or ORS571::nodC (pXLGD4), with or without naringenin.  相似文献   

6.
Azorhizobium caulinodans ORS571, a symbiont of the tropical leguminous plant Sesbania rostrata, showed low, constitutive levels of endoglucanase (Egl) activity. A clone carrying the gene responsible for this phenotype was isolated via introduction of a genomic library into the wild-type strain and screening for transconjugants with enhanced Egl activity. By subcloning and expression in Escherichia coli, the Egl phenotype was allocated to a 3-kb EcoRI-BamHI fragment. However, sequence analysis showed the egl gene to be much larger, consisting of an open reading frame of 1,836 amino acids. Within the deduced polypeptide, three kinds of putative domains were identified: a catalytic domain, two cellulose-binding domains, and an eightfold reiterated motif. The catalytic domain belongs to the family A of cellulases. A C-terminal stretch of 100 amino acids was similar to family II cellulose-binding domains. A second copy of this domain occurred near the middle of the polypeptide, flanked by reiterated motifs. ORS571 mutants carrying a Tn5 insertion in the egl gene had lost the Egl activity. These mutants as well as Egl-overproducing strains showed a normal nodulation behavior, indistinguishable from wild-type nodulation on Sesbania rostrata under laboratory conditions.  相似文献   

7.
8.
Gough  Clare  Vasse  Jacques  Galera  Christine  Webster  Gordon  Cocking  Edward  Dénarié  Jean 《Plant and Soil》1997,194(1-2):123-130
When interactions between diazotrophic bacteria and non-legume plants are studied within the context of trying to extend biological nitrogen fixation to non-legume crops, an important first step is to establish reproducible internal colonization at high frequency of these plants. Using Azorhizobium caulinodans ORS571 (which induces stem and root nodules on the tropical legume Sesbania rostrata), tagged with a constitutively expressed lacZ reporter gene, we have studied the possibilities of internal colonization of the root system of the model dicot Arabidopsis thaliana. ORS571 was found to be able to enter A. thaliana roots after first colonizing lateral root cracks (LRCs), at the points of emergence of lateral roots. Cytological studies showed that after LRC colonization, bacteria moved into the intercellular space between the cortical and endodermal cell layers of roots. In our experimental conditions, this LRC and intercellular colonization are reproducible and occur at high frequency, although the level of colonization at each site is low. The flavonoids naringenin and daidzein, at low concentrations, were found to significantly stimulate (at the p=0.01 level) the frequency of LRC and intercellular colonization of A. thaliana roots by A. caulinodans. The role in colonization of the structural nodABC genes, as well as the regulatory gene nodD, was studied and it was found that both colonization and flavonoid stimulation of colonization are nod gene-independent. These systems should now enable the various genetic and physiological factors which are limiting both for rhizobial colonization and for endophytic nitrogen fixation in non-legumes, to be investigated. In particular, the use of A. thaliana, which has many advantages over other plants for molecular genetic studies, to study interactions between diazotrophic bacteria and non-legume dicots, should provide the means of identifying and understanding the mechanisms by which plant genes are involved in these interactions.  相似文献   

9.
Azorhizobium caulinodans ORS571 is able to nodulate roots and stems of the tropical legume Sesbania rostrata. An ORS571 Tn5 insertion mutant, strain ORS571-X15, had a rough colony morphology, was nonmotile, and showed clumping behavior on various media. When this pleiotropic mutant was inoculated on roots or stems of the host, no nodules developed (Nod-). Compared with the wild type, strain ORS571-X15 produced lipopolysaccharides (LPS) with an altered ladder pattern on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, suggestive of a different O-antigen structure with a lower degree of polymerization. A cosmid clone, pRG20, that fully complemented all phenotypes of ORS571-X15 was isolated. With a 6-kb EcoRI subfragment of pRG20, clumping was relieved and nodulation was almost completely restored, but the strain was still nonmotile. LPS preparations from these complemented strains resembled the wild-type LPS, although minor quantitative and qualitative differences were evident. The sequence of the locus hit by the Tn5 in ORS571-X15 (the oac locus) revealed a striking homology with the rfb locus of Salmonella typhimurium, which is involved in O-antigen biosynthesis. The Tn5 insertion position was mapped to the oac3 gene, homologous to rfbA, encoding dTDP-D-glucose synthase. Biochemical assaying showed that ORS571-X15 is indeed defective in dTDP-D-glucose synthase activity, essential for the production of particular deoxyhexoses. Therefore, it was proposed that the O antigen of the mutant strain is devoid of such sugars.  相似文献   

10.
A plasmid vector, pGV910, and a derived cosmid, pRG930, have been constructed. Both contain the ColE1 and pVS1 origins of replication and are stably maintained in Escherichia coli, Agrobacterium tumefaciens, and Azorhizobium caulinodans ORS571. They are compatible with commonly used IncP cloning vectors, although pVS1 was classified as an IncP plasmid, unable to replicate in E. coli (Y. Itoh, J.M. Watson, D. Haas, and T. Leisinger, Plasmid 11:206-220, 1984). Promoter selection vectors were derived from both of these plasmids by using a promoterless beta-glucuronidase and/or beta-galactosidase gene. These vectors facilitate the study of gene expression in bacteria under particular environmental conditions. This is illustrated by the expression of the gusA gene under the control of a nod promoter in A. caulinodans nodulating stem-located infection sites on Sesbania rostrata.  相似文献   

11.
12.
The molecular and physiological mechanisms behind the maturation and maintenance of N(2)-fixing nodules during development of symbiosis between rhizobia and legumes still remain unclear, although the early events of symbiosis are relatively well understood. Azorhizobium caulinodans ORS571 is a microsymbiont of the tropical legume Sesbania rostrata, forming N(2)-fixing nodules not only on the roots but also on the stems. In this study, 10,080 transposon-inserted mutants of A. caulinodans ORS571 were individually inoculated onto the stems of S. rostrata, and those mutants that induced ineffective stem nodules, as displayed by halted development at various stages, were selected. From repeated observations on stem nodulation, 108 Tn5 mutants were selected and categorized into seven nodulation types based on size and N(2) fixation activity. Tn5 insertions of some mutants were found in the well-known nodulation, nitrogen fixation, and symbiosis-related genes, such as nod, nif, and fix, respectively, lipopolysaccharide synthesis-related genes, C(4) metabolism-related genes, and so on. However, other genes have not been reported to have roles in legume-rhizobium symbiosis. The list of newly identified symbiosis-related genes will present clues to aid in understanding the maturation and maintenance mechanisms of nodules.  相似文献   

13.
Abstract Asymbiotic nitrogenase activity was investigated in rhizobia strains isolated from stem and root nodules of severa Aeschynomene species. All isolated from stem-nodulating species were able to develop nitrogenase activity ex planta in the presence or in the absence of combined nitrogen, whereas root isolates from Aeschynomene species related to the cowpea group of plants showed little or no activity. Nitrogenase activity in soft-agar and in liquid cultures displayed by strains ORS310 and ORS322, isolated from stem nodules of A. indica and A. afraspera respectively, was of the same order of magnitude as that found for Azorhizobium caulinodans ORS571 and ten times higher than for Bradyrhizobium strain CB756. Furthermore, like A. caulinodans ORS571, strains ORS310 and ORS322 were able to use atmospheric nitrogen as sole nitrogen source for growth.  相似文献   

14.
Bacterial nodulation factors (NFs) are essential signaling molecules for the initiation of a nitrogen-fixing symbiosis in legumes. NFs are perceived by the plant and trigger both local and distant responses, such as curling of root hairs and cortical cell divisions. In addition to their requirement at the start, NFs are produced by bacteria that reside within infection threads. To analyze the role of NFs at later infection stages, several phases of nodulation were studied by detailed light and electron microscopy after coinoculation of adventitious root primordia of Sesbania rostrata with a mixture of Azorhizobium caulinodans mutants ORS571-V44 and ORS571-X15. These mutants are deficient in NF production or surface polysaccharide synthesis, respectively, but they can complement each other, resulting in functional nodules occupied by ORS571-V44. The lack of NFs within the infection threads was confirmed by the absence of expression of an early NF-induced marker, leghemoglobin 6 of S. rostrata. NF production within the infection threads is shown to be necessary for proper infection thread growth and for synchronization of nodule formation with bacterial invasion. However, local production of NFs by bacteria that are taken up by the plant cells at the stage of bacteroid formation is not required for correct symbiosome development.  相似文献   

15.
The structure and expression of the early nodulin gene Enod2 from the stem-nodulated tropical legume Sesbania rostrata (SrEnod2) was examined. Genomic clones carrying the single SrEnod2locus were isolated and the DNA sequence of the gene was determined. The SrEnod2 gene was found to lack introns and to encode a protein consisting primarily of a 55-fold repeat of short proline-rich oligopeptides. A putative signal sequence, which may be responsible for targeting of the Enod2 protein to the cell wall, was found to precede this repeat. The temporal expression of the SrEnod2 gene was found to be different in S. rostrata stem versus root nodules induced by Azorhizobium caulinodans ORS571. SrEnod2 gene expression was shown to be induced specifically and rapidly by physiologically significant concentrations of exogenously supplied cytokinins. The SrEnod2 gene was also found to be highly expressed in S. rostrata crown gall tumors induced by wild-type Agrobacterium tumefaciens strains, but not in tumors induced by an A. tumefaciens strain carrying a mutation in the cytokinin biosynthesis gene 4. Implications of these observations with regard to cytokinin-induced plant gene expression and a possible role for cytokinin as a symbiotic signal are discussed.  相似文献   

16.
D'Haeze W  Gao M  Holsters M 《Plasmid》2004,51(3):185-191
Compared with other labeling techniques, the use of the green fluorescent protein (GFP) is advantageous to visualize bacteria because observations can be performed in real time. This feature is particularly interesting to study invasion events of rhizobia during nodule development on their legume host plant. To investigate the symbiotic interaction between Azorhizobium caulinodans ORS571 and Sesbania rostrata, we constructed two plasmids, pMP220-hem-gfp5 and pBBR5-hem-gfp5-S65T, that carry a modified gfp gene, the expression of which is controlled by the constitutive hem promoter. Introduction of either of these plasmids into A. caulinodans allowed the visualization of single bacteria. Determination of the plasmid stability in cultured bacteria and in nodules demonstrated that pBBR5-hem-gfp5-S65T is more stable than pMP220-hem-gfp5. The plasmid pBBR5-hem-gfp5-S65T can be used to study early invasion events during nodule development on hydroponic roots of S. rostrata.  相似文献   

17.
In response to phenolic compounds exuded by the host plant, symbiotic Rhizobium bacteria produce signal molecules (Nod factors), consisting of lipochitooligosaccharides with strain-specific substitutions. In Azorhizobium caulinodans strain ORS571 these modifications are an O -arabinosyl group, an O -carbamoyl group, and an N -methyl group. Several lines of evidence indicate that the nodS gene located in the nodABCSUIJ operon is implicated in the methylation of Nod factors. Previously we have shown that NodS is an S -adenosyl- l -methionine (SAM)-binding protein, essential for the l -[3H-methyl]-methionine labelling of ORS571 Nod factors in vivo . Here, we present an in vitro assay showing that NodS from either A. caulinodans or Rhizobium species NGR234 methylates end-deacetylated chitooligosaccharides, using [3H-methyl]-SAM as a methyl donor. The enzymatic and SAM-binding activity were correlated with the nodS gene and localized within the soluble protein fraction. The A. caulinodans nodS gene was expressed in Escherichia coli and a glutathione- S -transferase—NodS fusion protein purified. This protein bound SAM and could methylate end-deacetylated chitooligosaccharides, but could not fully methylate acetylated chitooligosaccharides or unmethylated lipo-chitooligosaccharides. These data implicate that the methylation step in the biosynthesis pathway of ORS571 Nod factors occurs after deacetylation and prior to acylation of the chitooligosaccharides.  相似文献   

18.
19.
Following inoculation with Azorhizobium caulinodans ORS571 (pXLGD4), lateral root development of rice and colonization of lateral root cracks by bacteria were shown to be stimulated by the flavonoid naringenin. Rice seedlings growing aseptically in the presence of naringenin were inoculated with ORS571 (pXLGD4), carrying the lacZ reporter gene. By microscopic analysis of sections of inoculated rice roots, it has been demonstrated that the xylem of rice roots can be colonized by Azorhizobium caulinodans. We discuss whether this colonization of the xylem of rice roots by azorhizobia could provide a suitable niche for endophytic nitrogen fixation.  相似文献   

20.
The narrow host range bacterial strain Azorhizobium caulinodans ORS571 induces the formation of nitrogen-fixing nodules on the root and stem of the tropical legume Sesbania rostrata. Here, a new flavonoid-inducible locus of ORS571 is described, locus 4. The locus was identified and isolated via the occurrence of particular sequences, the gamma and delta elements. These elements are reiterated in the ORS571 genome, linked to symbiotic loci. Sequencing of locus 4 showed the presence of an open reading frame (ORF6) that is flanked downstream by a gamma element and upstream by a delta element. The gamma element is approximately 180 bp in size, and shows homology to the insertion element ISRm3, an insertion sequence belonging to a distinct class of IS elements. The delta element is about 300 bp in size and has homology with repeated sequences found in other Rhizobiaceae. The ORF6 gene product shows a low, but significant homology to the mouse mastocytoma antigen P35B (Szikora et al., EMBO J. 9: 1041-1050, 1990) and to a class of NAD/NADP-binding sugar epimerase/dehydrogenases (Pissowotzki et al., Mol. Gen. Genet. 231: 113-213, 1991). Immediately upstream from ORF6, a nod box-related sequence is present, the arrangement of which is fully consistent with a recently presented model for the nod box structure (Goethals et al., Proc. Natl. Acad. Sci. USA 89: 1646-1650, 1992). Insertional inactivation of ORF6 did not affect the nodulation and fixation performance on S. rostrata. However, on S. formosa roots the nodulation kinetics of such a mutant was clearly affected (about 5 days delay). We propose to call this new symbiotic gene nolK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号