共查询到20条相似文献,搜索用时 15 毫秒
1.
Mónica Suárez Bruno GonzálezZorn Yolanda Vega Isabel ChicoCalero José-A. Vázquez-Boland 《Cellular microbiology》2001,3(12):853-864
We assessed the role of the actin-polymerizing protein, ActA, in host cell invasion by Listeria monocytogenes . An in frame Δ actA mutant was constructed in a hyperinvasive strain of prfA * genotype, in which all genes of the PrfA-dependent virulence regulon, including actA , are highly expressed in vitro . Loss of ActA production in prfA * bacteria reduced entry into Caco-2, HeLa, MDCK and Vero epithelial cells to basal levels. Reintroduction of actA into the Δ actA prfA * mutant fully restored invasiveness, demonstrating that ActA is involved in epithelial cell invasion. ActA did not contribute to internalization by COS-1 fibroblasts and Hepa 1-6 hepatocytes. Expression of actA in Listeria innocua was sufficient to promote entry of this non-invasive species into epithelial cell lines, but not into COS-1 and Hepa 1-6 cells, indicating that ActA directs an internalization pathway specific for epithelial cells. Scanning electron microscopy of infected Caco-2 human enterocytes suggested that this pathway involves microvilli. prfA * bacteria, but not wild-type bacteria (which express PrfA-dependent genes very weakly in vitro ) or prfA *Δ actA bacteria, efficiently invaded differentiated Caco-2 cells via their apical surface. Microvilli played an active role in the phagocytosis of the prfA * strain, and actA was required for their remodelling into pseudopods mediating bacterial uptake. Thus, ActA appears to be a multifunctional virulence factor involved in two important aspects of Listeria pathogenesis: actin-based motility and host cell tropism and invasion. 相似文献
2.
3.
Pickard A Cichon AC Barry A Kieran D Patel D Hamilton P Salto-Tellez M James J McCance DJ 《The EMBO journal》2012,31(14):3092-3103
Stromal-derived growth factors are required for normal epithelial growth but are also implicated in tumour progression. We have observed inactivation of the retinoblastoma protein (Rb), through phosphorylation, in cancer-associated fibroblasts in oro-pharyngeal cancer specimens. Rb is well known for its cell-autonomous effects on cancer initiation and progression; however, cell non-autonomous functions of Rb are not well described. We have identified a cell non-autonomous role of Rb, using three-dimensional cultures, where depletion of Rb in stromal fibroblasts enhances invasive potential of transformed epithelia. In part, this is mediated by upregulation of keratinocyte growth factor (KGF), which is produced by the depleted fibroblasts. KGF drives invasion of epithelial cells through induction of MMP1 expression in an AKT- and Ets2-dependent manner. Our data identify that stromal fibroblasts can alter the invasive behaviour of the epithelium, and we show that altered expression of KGF can mediate these functions. 相似文献
4.
Many cells, including neuronal and glial progenitor cells, stem cells and microglial cells, have the capacity to move through the extracellular spaces of the developing and mature brain. This is particularly pronounced in astrocyte-derived tumors, gliomas, which diffusely infiltrate the normal brain. Although a significant body of literature exists regarding signals that are involved in the guidance of cells and their processes, little attention has been paid to cell-shape and cell-volume changes of migratory cells. However, extracellular spaces in the brain are very narrow and represent a major obstacle that requires cells to dynamically regulate their volume. Recent studies in glioma cells show that this involves the secretion of Cl(-) and K(+) with water. Pharmacological inhibition of Cl(-) channels impairs their ability to migrate and limits tumor progression in experimental tumor models. One Cl(-)-channel inhibitor, chlorotoxin, is currently in Phase II clinical trials to treat malignant glioma. This article reviews our current knowledge of cell-volume changes and the role of ion channels during the migration of glioma cells. It also discusses evidence that supports the importance of channel-mediated cell-volume changes in the migration of immature neurons and progenitor cells during development. New unpublished data is presented, which demonstrates that Cl(-) and K(+) channels involved in cell shrinkage localize to lipid-raft domains on the invadipodia of glioma cells and that their presence might be regulated by trafficking of these proteins in and out of lipid rafts. 相似文献
5.
Sontheimer H 《Journal of neurochemistry》2008,105(2):287-295
The vast majority of primary brain tumors derive from glial cells and are collectively called gliomas. While, they share some genetic mutations with other cancers, they do present with a unique biology and have developed adaptations to meet specific biological needs. Notably, glioma growth is physically restricted by the skull, and, unless normal brain cells are destroyed, tumors cannot expand. To overcome this challenge, glioma cells release glutamate which causes excitotoxic death to surrounding neurons, thereby vacating room for tumor expansion. The released glutamate also explains peritumoral seizures which are a common symptom early in the disease. Glutamate release occurs via system Xc , a cystine–glutamate exchanger that releases glutamate in exchange for cystine being imported for the synthesis of the cellular antioxidant GSH. It protects tumor cells from endogenously produced reactive oxygen and nitrogen species but also endows tumors with an enhanced resistance to radiation- and chemotherapy. Pre-clinical data demonstrates that pharmacological inhibition of system Xc causes GSH depletion which slows tumor growth and curtails tumor invasion in vivo . An Food and Drug Administration approved drug candidate is currently being introduced into clinical trials for the treatment of malignant glioma. 相似文献
6.
Skibinski G Elborn JS Ennis M 《American journal of physiology. Lung cellular and molecular physiology》2007,293(1):L69-L76
Proliferation of bronchial epithelial cells is an important biological process in physiological conditions and various lung diseases. The objective of this study was to determine how bronchial fibroblasts influence bronchial epithelial cell proliferation. The proliferative activity in cocultures was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and direct cells counts. Concentration of cytokines was measured in cell culture supernatants by means of ELISA. In primary cell cocultures, fibroblasts or fibroblast-conditioned medium enhanced 1.85-fold the proliferation of primary bronchial epithelial cells (P < 0.02) compared with bronchial epithelial cells cultured alone. The proliferative activity in cocultures and in fibroblast-conditioned medium was reduced by neutralizing antibody to hepatocyte growth factor (HGF) and HGF receptor c-met. Neutralizing antibodies to FGF-7 and IGF-1 had no effect. Treatment of fibroblast-epithelial cocultures with anti-IL-6 and anti-TNF-alpha neutralizing antibodies and with indomethacin decreased production of HGF. These results indicate that cytokines and PGE(2) may indirectly mediate epithelial cell proliferation via the regulation of HGF in bronchial stromal cells and that HGF plays a crucial role in proinflammatory cytokine-induced proliferation in the experimental system studied. 相似文献
7.
Epstein-Barr-virus-encoded LMP2A induces primary epithelial cell migration and invasion: possible role in nasopharyngeal carcinoma metastasis 总被引:5,自引:0,他引:5 下载免费PDF全文
Pegtel DM Subramanian A Sheen TS Tsai CH Golub TR Thorley-Lawson DA 《Journal of virology》2005,79(24):15430-15442
Nonkeratinizing nasopharyngeal carcinomas (NPC) are >95% associated with the expression of the Epstein-Barr virus (EBV) LMP2A latent protein. However, the role of EBV, in particular, LMP2A, in tumor progression is not well understood. Using Affymetrix chips and a pattern-matching computational technique (neighborhood analysis), we show that the level of LMP2A expression in NPC biopsy samples correlates with that of a cellular protein, integrin-alpha-6 (ITGalpha6), that is associated with cellular migration in vitro and metastasis in vivo. We have recently developed a primary epithelial model from tonsil tissue to study EBV infection in epithelial cells. Here we report that LMP2A expression in primary tonsil epithelial cells causes them to become migratory and invasive, that ITGalpha6 RNA levels are up-regulated in epithelial cells expressing LMP2, and that ITGalpha6 protein levels are increased in the migrating cells. Blocking antibodies against ITGalpha6 abrogated LMP2-induced invasion through Matrigel by primary epithelial cells. Our results provide a link between LMP2A expression, ITGalpha6 expression, epithelial cell migration, and NPC metastasis and suggest that EBV infection may contribute to the high incidence of metastasis in NPC progression. 相似文献
8.
Alain Limat Thomas Hunziker Colette Boillat Friedrich Noser Ulrich Wiesmann 《In vitro cellular & developmental biology. Plant》1990,26(7):709-712
Summary In vitro, human dermal fibroblasts (HDF) differentiate through morphologically and biochemically identified compartments.
In the course of this spontaneous differentiation through mitotic and postmitotic states, a tremendous increase in cellular
and nuclear size occurs. Induction of postmitotic states can be accelerated by chemical (e.g., mitomycin C) or physical (e.g.,
x-ray) treatments. Such experimentally induced postmitotic HDF cells support very efficiently the growth of cutaneous epithelial
cells, i.e. interfollicular keratinocytes and follicular outer root sheath cells, especially in primary cultures starting
from very low cell seeding densities. The HDF feeder system provides more fundamental and also practical advantages, i.e.
use of initially diploid human fibroblasts from known anatomic locations, easy handling and excellent reproducibility, and
the possibility of long-term storage by incubation at 37°C. Conditions for the cryogenic storage of postmitotic HDF cells
in liquid nitrogen are presented and related to the feeder capacity for epithelial cell growth. Because postmitotic HDF cells
preserve intact feeder properties after long-term storage, the immediate availability of feeder cells and the possibility
to repeat experiments with identical materials further substantiate the usefulness of this feeder system. 相似文献
9.
10.
Wang Y Srinivasan K Siddiqui MR George SP Tomar A Khurana S 《The Journal of biological chemistry》2008,283(14):9454-9464
Apoptosis is a key regulator for the normal turnover of the intestinal mucosa, and abnormalities associated with this function have been linked to inflammatory bowel disease and colorectal cancer. Despite this, little is known about the mechanism(s) mediating intestinal epithelial cell apoptosis. Villin is an actin regulatory protein that is expressed in every cell of the intestinal epithelium as well as in exocrine glands associated with the gastrointestinal tract. In this study we demonstrate for the first time that villin is an epithelial cell-specific anti-apoptotic protein. Absence of villin predisposes mice to dextran sodium sulfate-induced colitis by promoting apoptosis. To better understand the cellular and molecular mechanisms of the anti-apoptotic function of villin, we overexpressed villin in the Madin-Darby canine kidney Tet-Off epithelial cell line to demonstrate that expression of villin protects cells from apoptosis by maintaining mitochondrial integrity thus inhibiting the activation of caspase-9 and caspase-3. Furthermore, we report that the anti-apoptotic response of villin depends on activation of the pro-survival proteins, phosphatidylinositol 3-kinase and phosphorylated Akt. The results of our studies shed new light on the previously unrecognized function of villin in the regulation of apoptosis in the gastrointestinal epithelium. 相似文献
11.
Mathematical modeling and computational analysis are essential for understanding the dynamics of the complex gene networks that control normal development and homeostasis, and can help to understand how circumvention of that control leads to abnormal outcomes such as cancer. Our objectives here are to discuss the different mechanisms by which the local biochemical and mechanical microenvironment, which is comprised of various signaling molecules, cell types and the extracellular matrix (ECM), affects the progression of potentially-cancerous cells, and to present new results on two aspects of these effects. We first deal with the major processes involved in the progression from a normal cell to a cancerous cell at a level accessible to a general scientific readership, and we then outline a number of mathematical and computational issues that arise in cancer modeling. In Section 2 we present results from a model that deals with the effects of the mechanical properties of the environment on tumor growth, and in Section 3 we report results from a model of the signaling pathways and the tumor microenvironment (TME), and how their interactions affect the development of breast cancer. The results emphasize anew the complexities of the interactions within the TME and their effect on tumor growth, and show that tumor progression is not solely determined by the presence of a clone of mutated immortal cells, but rather that it can be ‘community-controlled’. 相似文献
12.
13.
Neurotrophins act on embryonic cells through TRK receptors to inhibit apoptosis by phosphorylation of AKT. In a recent paper in Nature Biotechnology, show that the presence of selected neurotrophins enables cloning of trypsinized single embryonic stem cells and potentially increases the availability and usefulness of these stem cells. 相似文献
14.
The physiological and pharmacological roles of peroxisome proliferator-activated receptor-beta (PPARbeta-also referred to as PPARdelta) are just beginning to emerge. It has recently become clear that PPARbeta has a function in epithelial tissues, but controversy exists due to inconsistencies in the literature. There is strong evidence that ligand activation of PPARbeta can induce terminal differentiation of keratinocytes, with a concomitant inhibition of cell proliferation. However, the role of PPARbeta in keratinocyte-specific apoptosis is less clear. Additionally, the role of PPARbeta in colonic epithelium remains unclear due to conflicting evidence suggesting that ligand activation of PPARbeta can potentiate, as well as attenuate, intestinal cancer. Recent studies revealed that ligand activation of PPARbeta can induce fatty acid catabolism in skeletal muscle and is associated with improved insulin sensitivity, attenuated weight gain and elevated HDL levels thus demonstrating promising potential for targeting PPARbeta for treating obesity, dyslipidemias and type 2 diabetes. Therefore, it becomes critical to determine the safety of PPARbeta ligands. This review focuses on recent literature describing the role of PPARbeta in epithelial tissues and highlights critical discrepancies that need to be resolved for a more comprehensive understanding of how this receptor modulates epithelial homeostasis. 相似文献
15.
Timmer AM Kristian SA Datta V Jeng A Gillen CM Walker MJ Beall B Nizet V 《Molecular microbiology》2006,62(1):15-25
Serum opacity factor (SOF) is a bifunctional cell surface protein expressed by 40-50% of group A streptococcal (GAS) strains comprised of a C-terminal domain that binds fibronectin and an N-terminal domain that mediates opacification of mammalian sera. The sof gene was recently discovered to be cotranscribed in a two-gene operon with a gene encoding another fibronectin-binding protein, sfbX. We compared the ability of a SOF(+) wild-type serotype M49 GAS strain and isogenic mutants lacking SOF or SfbX to invade cultured HEp-2 human pharyngeal epithelial cells. Elimination of SOF led to a significant decrease in HEp-2 intracellular invasion while loss of SfbX had minimal effect. The hypoinvasive phenotype of the SOF(-) mutant could be restored upon complementation with the sof gene on a plasmid vector, and heterologous expression of sof49 in M1 GAS or Lactococcus lactis conferred marked increases in HEp-2 cell invasion. Studies using a mutant sof49 gene lacking the fibronectin-binding domain indicated that the N-terminal opacification domain of SOF contributes to HEp-2 invasion independent of the C-terminal fibronectin binding domain, findings corroborated by observations that a purified SOF N-terminal peptide could promote latex bead adherence to HEp-2 cells and inhibit GAS invasion of HEp-2 cells in a dose-dependent manner. Finally, the first in vivo studies to employ a single gene allelic replacement mutant of SOF demonstrate that this protein contributes to GAS virulence in a murine model of necrotizing skin infection. 相似文献
16.
A role for immunology in invasion biology 总被引:1,自引:0,他引:1
Invasive species are of increasing conservation and economic concern, yet mechanisms underlying invasions remain poorly understood. We propose that variation in immune defences might help explain why only some introduced populations become invasive. Introduced species escape many of their native diseases, but also face novel pathogens that can induce costly, and sometimes deadly, immune responses in na?ve hosts. Therefore, favouring less resource-demanding and dangerous defence mechanisms and allocating a greater proportion of resources to growth and reproduction should favour invasion. Specifically, we argue that successful invaders should reduce costly systemic inflammatory responses, which are associated with fever and metabolic and behavioural changes, and rely more heavily on less expensive antibody-mediated immunity. Here we provide supporting arguments for this hypothesis and generate predictions that are testable using tools from the growing field of ecological immunology. 相似文献
17.
The present notions on the pathways of phosphoinositide metabolism in a cell and on the functional significance of the given process are reported. The enzymic systems providing catabolism of phosphoinositides are analyzed. The data indicating the dose interrelation between the stimulation of the phosphatidyl inosite and polyphosphoinositides metabolism by hormones and the Ca2+ transport into a cell are generalized. Universality, biochemical mechanisms and functional significance of the "phosphatidyl inosite" response are discussed. The phosphoinositide metabolism is considered from the standpoint of its significance for other cell processes: synthesis of eicosanoids, provision of Ca2+-dependent processes in the synapse, cell proliferation, activation and the "anchoring" of enzymes on membranes. 相似文献
18.
19.
Dorscheid DR Wojcik KR Yule K White SR 《American journal of physiology. Lung cellular and molecular physiology》2001,281(4):L982-L992
Our laboratory recently demonstrated the pattern of cell surface glycosylation of nonsecretory central airway epithelium (Dorscheid DR, Conforti AE, Hamann KJ, Rabe KF, and White SR. Histochem J 31: 145-151, 1999), but the role of glycosylation in airway epithelial cell migration and repair is unknown. We examined the functional role of cell surface carbohydrates in wound repair after mechanical injury of 1HAEo(-) human airway epithelial and primary bronchial epithelial monolayers. Wound repair stimulated by epidermal growth factor was substantially attenuated by 10(-7) M tunicamycin (TM), an N-glycosylation inhibitor, but not by the inhibitors deoxymannojirimycin or castanospermine. Wound repair of 1HAEo(-) and primary airway epithelial cells was blocked completely by removal of cell surface terminal fucose residues by alpha-fucosidase. Cell adhesion to collagen matrix was prevented by TM but was only reduced ~20% from control values with prior alpha-fucosidase treatment. Cell migration in Blind Well chambers stimulated by epidermal growth factor was blocked by pretreatment with TM but alpha-fucosidase pretreatment produced no difference from control values. These data suggest that cell surface N-glycosylation has a functional role in airway epithelial cell adhesion and migration and that N-glycosylation with terminal fucosylation plays a role in the complex process of repair by coordination of certain cell-cell functions. 相似文献
20.
The role of acidity in solid tumour growth and invasion 总被引:2,自引:0,他引:2
Acidic pH is a common characteristic of human tumours. It has a significant impact on tumour progression and response to therapies. In this paper, we develop a simple model of three-dimensional tumour growth to examine the role of acidosis in the interaction between normal and tumour cell populations. Both vascular and avascular tumour dynamics are investigated, and a number of different behaviours are observed. Whilst an avascular tumour always proceeds to a benign steady state, a vascular tumour may display either benign or invasive dynamics, depending on the value of a critical parameter. Analysis of the model allows us to assess novel therapies directed towards changing the level of acidity within the tumour. 相似文献