首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypersensitive response-assisting protein (HRAP) has been previously reported as an amphipathic plant protein isolated from sweet pepper that intensifies the harpin(Pss)-mediated hypersensitive response (HR). The hrap gene has no appreciable similarity to any other known sequences, and its activity can be rapidly induced by incompatible pathogen infection. To assess the function of the hrap gene in plant disease resistance, the CaMV 35S promoter was used to express sweet pepper hrap in transgenic tobacco. Compared with wild-type tobacco, transgenic tobacco plants exhibit more sensitivity to harpin(Pss) and show resistance to virulent pathogens (Pseudomonas syringae pv. tabaci and Erwinia carotovora subsp. carotovora). This disease resistance of transgenic tobacco does not originate from a constitutive HR, because endogenous level of salicylic acid and hsr203J mRNA showed similarities in transgenic and wildtype tobacco under noninfected conditions. However, following a virulent pathogen infection in hrap transgenic tobacco, hsr203J was rapidly induced and a micro-HR necrosis was visualized by trypan blue staining in the infiltration area. Consequently, we suggest that the disease resistance of transgenic plants may result from the induction of a HR by a virulent pathogen infection.  相似文献   

2.
3.
4.
5.
The hypersensitive response (HR) is a form of cell death associated with plant resistance to pathogen infection. Harpinpss, an elicitor from the bacterium Pseudomonas syringae pv. syringae, induces a HR in non-host plants. Previously, we reported an amphipathic protein from sweet pepper interfering with harpinpss-mediated HR. In this report, we isolated and characterized a cDNA clone encoded that amphipathic protein from sweet pepper. This protein is designated as PFLP (plant ferredoxin-like protein) by virtue of its high homology with plant ferredoxin protein containing an N-terminal signal peptide responsible for chloroplast targeting and a putative 2Fe-2S domain responsible for redox activity. Recombinant PFLP obtained from Escherichia coliwas able to significantly increase active oxygen species (AOS) generation when mixed with harpinpss in tobacco suspension cells. It also showed enhanced HR when co-infiltrated with harpinpss in tobacco leaves. We used a transgenic tobacco suspension cells system that constitutively expresses the Pflpgene driven by the CaMV 35S promoter to study the function of PFLP in enhancing harpinpss-mediated hypersensitive cell death in vivo. In response to harpinpss, suspension cells derived from Pflptransgenic tobacco showed a significant increase both in the generation of AOS and in cell death as compared to the wild type. AOS inhibitors diphenylene iodonium chloride (DPI) and lanthanum chlorate (LaCl3) were used to study the involvement of AOS in harpinpss-induced cell death. Our results demonstrate enhanced generation of AOS is necessary to cause enhanced hypersensitive cell death in Pflp transgenic tobacco cells and it is plasma membrane-bound NADPH-oxidase-dependent. Sub-cellular localization studies showed that PFLP is present in the cytoplasm and chloroplast of Pflp transgenic tobacco cells, but only in the chloroplast, not in the cytoplasm, of wild-type tobacco cells. It is possible that PFLP can change the redox state of the cell upon harpinpss inoculation to increase AOS generation and hypersensitive cell death. Overall, this study will provide a new insight in the functional properties of ferredoxin in hypersensitive cell death.  相似文献   

6.
7.
Incompatible plant-pathogen interactions result in the rapid cell death response known as hypersensitive response (HR) and activation of host defense related genes. To understand the cellular mechanism controlling defense response better, a novel pathogenesis-related (PR) gene and putative cell wall protein gene, CaTin2, was isolated through differential screening of a hot pepper cDNA library and characterized. CaTin2 gene was locally and systemically induced in hot pepper plants upon TMV-P0 inoculation which induces HR. However, CaTin2 gene wasn't regulated by bacterial HR-specific signal pathway. The full-length cDNA for CaTin2, which is 864 nucleotides long, contained the open reading frame of 200 amino acids including cell wall targeting sequences of 26 amino acids. CaTin2 gene has no sequence similarity with other cell wall protein genes except the signal sequence and exists as only one copy in hot pepper genome. CaTin2 gene contains repeated helix-turn-helix motif consisting of 39 amino acids. CaTin2 mRNA accumulation was induced in response to various treatments such as ethylene, SA, MeJA, ABA, methyl viologen, NaCl and wounding at early time points. Subcelluar localization of CaTin2 was confirmed in the cell wall in hot pepper leaves by making CaTin2::smGFP fusion protein. The transgenic plants overexpressing CaTin2 cDNA were resistant to TMV and CMV inoculation. From these results, CaTin2 gene may encode a virus-related new cell wall protein member.  相似文献   

8.
Hot pepper (Capsicum annuum) plants exhibit a hypersensitive response (HR) against infection by many tobamoviruses. A clone (CaPR-4) encoding a putative pathogenesis-related protein 4 was isolated by differential screening of a cDNA library prepared from resistant pepper plant leaves inoculated with tobacco mosaic virus (TMV) pathotype P0. The predicted amino acid sequence of CaPR-4 is very similar to those of other plant PR-4s. Southern blot analysis showed that small gene families of PR-4-related sequences were present in the pepper genome. Hot pepper cultivar Bugang, resistant to TMV-P0 and susceptible to TMV-P1.2, induced CaPR-4 expression by pathotype P0 inoculation in inoculated and systemic leaves, but not by pathotype P1.2. Effects of exogenously applied abiotic elicitors upon the CaPR-4 expression were also examined. The expression of the CaPR-4 gene was stimulated by methyl jasmonate (MeJA), ethephon and wounding treatment. However, application of salicylic acid (SA) did not trigger the expression. Evidence is emerging that jasmonic acid and ethylene play key roles in the SA-independent pathways of plant-pathogen interaction. Taken together, these results suggest that the CaPR-4 gene is one of the defense-related genes conferring resistance on pepper plants by the SA-independent pathway and the cross-talk between signaling compounds, jasmonic acid and ethylene could have a great regulatory potential in a plant's defense against TMV.  相似文献   

9.
用RT-PCR和RACE-PCR技术,从热激处理的甜椒叶片总RNA中扩增出了细胞质小分子量热激蛋白(sHSP)全长779 bp的cDNA基因序列,包含一个480 bp开放阅读框,编码159个氨基酸.Southern杂交结果表明在甜椒基因组中有该基因的小的多基因家族.Northern结果显示该基因在甜椒根、茎、叶中的表达受热激和低温的诱导.原核表达分析表明该基因在高温以及低温条件下可以提高大肠杆菌的生存能力.  相似文献   

10.
11.
12.
13.
A novel Arabidopsis mutant has been identified with constitutive expression of GST1-GUS using plants with a pathogen-responsive reporter transgene containing the beta-glucuronidase (GUS) coding region driven by the GST1 promoter. The recessive mutant, called agd2 (aberrant growth and death2), has salicylic acid (SA)-dependent increased resistance to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae, elevated SA levels, a low level of spontaneous cell death, callose deposition, and enlarged cells in leaves. The enhanced resistance of agd2 to virulent P. syringae requires the SA signaling component NONEXPRESSOR OF PR1 (NPR1). However, agd2 renders the resistance response to P. syringae carrying avrRpt2 NPR1-independent. Thus agd2 affects both an SA- and NPR1-dependent general defense pathway and an SA-dependent, NPR1-independent pathway that is active during the recognition of avirulent P. syringae. agd2 plants also fail to show a hypersensitive cell death response (HR) unless NPR1 is removed. This novel function for NPR1 is also apparent in otherwise wild-type plants: npr1 mutants show a stronger HR, while NPR1-overproducing plants show a weaker HR when infected with P. syringae carrying the avrRpm1 gene. Spontaneous cell death in agd2 is partially suppressed by npr1, indicating that NPR1 can suppress or enhance cell death depending on the cellular context. agd2 plants depleted of SA show a dramatic exacerbation of the cell-growth phenotype and increased callose deposition, suggesting a role for SA in regulating growth and this cell-wall modification. AGD2 may function in cell death and/or growth control as well as the defense response, similarly to what has been described in animals for the functions of NFkappaB.  相似文献   

14.
15.
Characterization of MADS box genes from hot pepper.   总被引:1,自引:0,他引:1  
  相似文献   

16.
17.
The 22 kDa auxin-binding proteins in higher plants have received considerable attention as candidates for an auxin receptor. A cDNA clone Ca-ERabp1 of hot pepper (Capsicum annum) was isolated using the oligonucleotides as PCR primers. The cDNA codes for a polypeptide related to the major 22 kDa auxin-binding protein from maize and Arabidopsis ERabp1. The deduced amino acid sequence contains an endoplasmic reticulum retention signal, the KDEL sequence located at the C-terminal end, and has two possible auxin-binding sites, HRHSCE and YDDWSVPHTA conserved sequences. Northern hybridization analysis revealed that the Ca-ERabp1 gene is differentially expressed in total RNA isolated from different organs of a pepper plant, showing the highest level of expression in fruits but barely detectable in leaves and roots.  相似文献   

18.
19.
20.
A xyloglucan-specific endo-β-1,4-glucanase inhibitor cDNA, NbXEGIP1 , was amplified from diseased leaves of Nicotiana benthamiana . The sequence was similar to the tomato xyloglucan-specific endo-β-1,4-glucanase inhibitor (XEGIP) and tobacco nectarin IV genes that have been described as binding and inactivating fungal Family 12 xyloglucan-specific endo-β-1,4-glucanases. Expression of NbXEGIP1 was not detected in healthy leaves, but the gene was induced during the later stages of infection by the fungi Colletotrichum destructivum and C. orbiculare . Induction of NbXEGIP1 also occurred during disease development by the bacterium Pseudomonas syringae pv. tabaci and during the hypersensitive response produced by P. syringae pv. tabaci expressing avrPto . A portion of NbXEGIP1 was cloned into a tobacco rattle virus vector for virus-induced gene silencing in N. benthamiana . Silencing NbXEGIP1 did not affect the interactions with either Colletotrichum species but did significantly reduce population levels of P. syringae pv. tabaci in the compatible interaction and P. syringae pv. tabaci expressing avrPto in the incompatible interaction. In the susceptible response to P. syringae pv. tabaci , silencing of NbXEGIP1 also resulted in visibly wilted leaves several hours prior to necrosis, which was not observed in control plants. This was related to a significantly higher level of electrolyte leakage and higher expression of a defensin gene from infected NbXEGIP1 -silenced leaves compared with control leaves. Silencing appeared to be specific as it did not affect expression of a related gene, NbXEGIP2 . NbXEGIP1 may act as an inhibitor of a bacterial enzyme that degrades the xyloglucan–cellulose plant cell-wall network, and degradation of the cell wall results in host membrane disruption and signalling of defence responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号