首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different species of African dung beetles emerge from the soil at characteristic times of the day to fly and colonize the freshly-deposited dung of mammalian herbivores. Onitine dung beetles in their natural habitat displayed one of five distinctive daily flight behaviours: dusk crepuscular (Onitis alexis Klug, O. caffer Boheman, O. fulgidus Klug, O. tortuosus Houston, O. vanderkelleni Lansberge, O. westermanni Lansberge); dusk/dawn crepuscular (O. pecuarius Lansberge and O. viridulus Boheman); dusk/dawn crepuscular and nocturnal (O. aygulus (Fabricius), O. mendax Gillet, O. uncinatus Klug); late afternoon-dusk and dawn-early morning [Heteronitis castelnaui (Harold)]; or diurnal flight activity [O. belial (Fabricius), O. ion (Olivier)]. These diagnostic daily flight behaviours span a light intensity range of over 6 orders of magnitude and have been retained in selected species introduced into Australia. Ambient light intensity appears to be the primary determinant of the daily flight period in onitine dung beetles. Because the dung of mobile herbivores is rapidly exploited by onitine species for feeding and breeding purposes, different flight behaviours result in a spatial and temporal partitioning of species in the local dung beetle community. The timing of flight may contribute to, or lead to avoidance of, competition between species which may ultimately affect colonization success. Many onitines show a strong preference for dung of specific herbivores, which may further reduce interspecific competition. All crepuscular-nocturnal species examined raised their thoracic temperatures endothermically to between 35°C and 40°C before the onset of flight. In O. aygulus the thoracic temperature excess was as large as 19.3°C. The thermal threshold below which the frequency of flight onsets drops off rapidly is about 12°C for O. aygulus and 17°C for O. alexis and O. pecuarius. Radiant loss of body heat during cool nights and dawns may explain why smaller species (<0.4 g body weight), in particular, are adapted behaviourally so that they fly only during the day or early dusk.  相似文献   

2.
Summary Sensitivity to light was investigated in the refracting superposition eye of the dung beetle Onitis alexis using electrophysiological measurements and optical modelling. Intracellular recordings were made from single retinula cells over 24-h periods, with cells light and dark adapted, in order to measure the response/intensity (V-LogI) functions. The combined effects of a circadian rhythm and light adaptation allow the determination of the relative contributions of screening-pigment migration and transduction gain to changes in sensitivity in the eye. Between the extremes of dark adaptation at night and light adaptation during the day, the maximum sensitivity change possible is at least 4 log units, of which approximately 2 log units can be accounted for by changes in the transduction gain and at least 2 log units by screening-pigment migration. The role of the superposition aperture (the number of facets that contribute light to one rhabdom) in 3 species of dung beetle was investigated with an optical ray-tracing model of the eye. The facets of the superposition aperture do not contribute light equally to the target rhabdom; except in one species, the greatest contribution comes from facets located away from both the centre and periphery of the aperture. Light adaptation increases the optical density of the superposition aperture and decreases its size.  相似文献   

3.
Summary The superposition eyes and simple eyes of many arthropods have apertures (A) with a diameter bigger than, or about the same size as, the focal length of the eye (f). That is, these eyes have low F-numbers (f/A). Many of the light rays focussed onto a photoreceptor will not be trapped by total internal reflection in the photoreceptor and will therefore pass through and be absorbed in photoreceptors other than that for which the light was intended. This spread of light in the retina leads to a broadening of the angular-sensitivity function and a consequent degrading of the image at the retinal level. A number of solutions to this problem are found in nature, with the most effective that of isolating the photoreceptors with a sheath of either light-absorbing pigment or reflecting tapetum. A ray-tracing model was used to assess the relative merits of the tapetal and pigment sheath designs in low F-number superposition eyes, and also to investigate the effect of changing the refractive index and absorption coefficient of the rhabdom. Which sheathing solution is best depends on the quality of the image on the retina, on the spacing of the rhabdoms in the retina and on the intensity of light normally experienced by the eye. In a retina with closely packed rhabdoms, the model predicts full sheathing to be the optimal solution if the image is well-focussed, partial sheathing if poorly focussed and no sheathing if moderately well-focussed. In a retina with rhabdoms spaced apart and a well-focussed image, the model predicts partial sheathing to be optimal. A pigment sheath is predicted to be useful in eyes which experience bright light and have no need for high sensitivity. A tapetal sheath is predicted to be useful at any intensity. A survey of arthropod eyes with low F-number supports the predictions of the model.  相似文献   

4.
Many insect species have darkly coloured eyes, but distinct colours or patterns are frequently featured. A number of exemplary cases of flies and butterflies are discussed to illustrate our present knowledge of the physical basis of eye colours, their functional background, and the implications for insect colour vision. The screening pigments in the pigment cells commonly determine the eye colour. The red screening pigments of fly eyes and the dorsal eye regions of dragonflies allow stray light to photochemically restore photoconverted visual pigments. A similar role is played by yellow pigment granules inside the photoreceptor cells which function as a light-controlling pupil. Most insect eyes contain black screening pigments which prevent stray light to produce background noise in the photoreceptors. The eyes of tabanid flies are marked by strong metallic colours, due to multilayers in the corneal facet lenses. The corneal multilayers in the gold-green eyes of the deer fly Chrysops relictus reduce the lens transmission in the orange-green, thus narrowing the sensitivity spectrum of photoreceptors having a green absorbing rhodopsin. The tapetum in the eyes of butterflies probably enhances the spectral sensitivity of proximal long-wavelength photoreceptors. Pigment granules lining the rhabdom fine-tune the sensitivity spectra.  相似文献   

5.
The focal length of the vertebrate eye is a function of wavelength, i.e. the eye suffers from longitudinal chromatic aberration. Chromatic defocus is a particularly severe problem in eyes with high light-gathering ability, since depth of field is small due to a pupillary opening that is large in relation to the focal length of the eye. Calculations show that in such eyes only a narrow spectral band of light can be in focus on the retina. For the major part of the visual spectrum, spatial resolution should be limited by the optics of the eye and far lower than the resolving power achievable by the retinal cone photoreceptor mosaic. To solve this problem, fishes with irises unresponsive to light have developed lenses with multiple focal lengths. Well-focused images are created at the wavelengths of maximum absorbance of all spectral cone types. Multifocal lenses also appear to be present in some terrestrial species. In eyes with mobile irises, multifocal lenses are correlated with pupil shapes that allow all zones of the lens, with different refractive powers, to participate in the imaging process, irrespective of the state of pupil constriction. Accepted: 6 November 1998  相似文献   

6.
The afocal apposition optics of butterfly eyes was examined from both a geometrical optics and a wave optics point of view. We used several different species of butterfly but put special emphasis on a common Australian nymphalid,Heteronympha merope. From the anatomy of the retina, the optics of isolated components of the eye and the ophthalmoscopy of the intact living eye we derived the following.
1.  The proximal part of the crystalline cone behaves as a powerful lens which, according to our measurements of optical power, turns the complete optical system into an afocal telescope with an angular magnification of 6.4 (inHeteronympha). The rhabdom tip lies in the exit pupil of the telescope and is imaged into the cornea with a magnification of 9.1 (in the same species).
2.  Using light reflected from the eye's tapetum, we studied the waveguide mode phenomena of the rhabdom. Different butterflies showed either one, two or three waveguide modes, depending on the rhabdom diameter. The mode patterns were observed at four different optical planes: at the cornea, at infinity, at the back focal plane of the corneal lens — which, for this measurement, was optically neutralised — and at the plane of the deep pseudopupil.
3.  During light adaptation the closure of the pupil caused the modes to disappear in sequence, starting with the highest order. The behaviour of the fading modes indicates that the pupil acts by absorption rather than by a change of refractive index around the rhabdom.
4.  The modes were used to measure the waveguide parameter of the rhabdom, from which its refractive index was deduced to be 1.36.
5.  The distinction between near-field and farfield versions of the mode patterns provided further evidence in favour of an afocal optical system.
Two different interpretations of the butterfly optical system are discussed and we present a hypothesis to explain how both afocal apposition and refracting superposition optical systems evolved in insect eyes.  相似文献   

7.
The eyes of galatheid squat lobsters (Munida rugosa) are shown to be of the reflecting superposition type. In the dark-adapted state corneal lenses focus light at the level of the rhabdoms and light from more than 1000 facets is redirected to the superposition focus by the reflecting surfaces of the crystalline cones. When the eye is light adapted, apposition optics are used. In this state paraxial light is focused by the corneal lens and the parabolic proximal end of the cone onto the distal end of a rhabdomeric lightguide. The latter transmits light across the clear zone to the rhabdom layer. In the dorsal part of the eye the individual ommatidia become progressively shorter until the cones and rhabdoms are no longer separated by a clear zone. Although formerly considered to be developing ommatidia, they are shown to be retained specifically for scanning the downwelling irradiance.Abbreviations RI refractive index - SEM scanning electron microscope  相似文献   

8.
The exceptionally preserved eyes of an Eocene dolichopodid fly contained in Baltic amber show remarkable detail, including features at micrometre and submicrometre levels. Based on this material, we establish that it is likely that the neural superposition compound eye existed as far back as 45 Ma. The ommatidia have an open rhabdom with a trapezoidal arrangement of seven rhabdomeres. Such a structure is uniquely characteristic of the neural superposition compound eye of present-day flies. Optical analysis reveals that the fossil eyes had a sophisticated and efficient optical system.  相似文献   

9.
Vision plays a major role in many spiders, being involved in prey hunting, orientation or substrate choice, among others. In Misumena vatia, which experiences morphological color changes, vision has been reported to be involved in substrate color matching. Electrophysiological evidence reveals that at least two types of photoreceptors are present in this species, but these data are not backed up by morphological evidence. This work analyzes the functional structure of the eyes of this spider and relates it to its color-changing abilities. A broad superposition of the visual field of the different eyes was observed, even between binocular regions of principal and secondary eyes. The frontal space is simultaneously analyzed by four eyes. This superposition supports the integration of the visual information provided by the different eye types. The mobile retina of the principal eyes of this spider is organized in three layers of three different types of rhabdoms. The third and deepest layer is composed by just one large rhabdom surrounded by dark screening pigments that limit the light entry. The three pairs of secondary eyes have all a single layer of rhabdoms. Our findings provide strong support for an involvement of the visual system in color matching in this spider.  相似文献   

10.
The black carpet beetle, Attagenus megatoma (Fab.), has been reported to exhibit negative phototaxis immediately after emergence. In later adult life, after the period during which most oviposition has occurred, the beetles are found to be photopositive. The compound eyes of one-day-old (Post-emergence) and nine-day-old (Post-ovipositional) female beetles were studied by electron microscopy and a number of strong differences were found between eyes at the two ages. The corneal facets of one-day eyes had the form of convex-concave lenses, while those of nine-day beetles were double-convex lenses. The primary and secondary pigment cells of young eyes were large and contained much endoplasmic reticulum and little accessory pigment. In the older eyes the pigment cells were reduced and contained much pigment, the proportion of endoplasmic reticulum being greatly reduced by comparison with the one-day eye. The cross-sectional area of the rhabdom was greater in the older eye. The possible relationships between age-related changes in eye morphology and behavioral changes during the same period are discussed.  相似文献   

11.
Retinal fine structure and optics of the eye of the dung beetle Euoniticellus africanus have been studied and compared with those of three other scarabaeid beetles: Repsimus manicatus, Anoplognathus pallidicollis and Sericesthis geminata. The eye of Euoniticellus, in common with that of the other three species, possesses a dioptric system in which light first passes through a thick optically homogeneous cornea, and then enters a non-homogeneous crystalline cone. The lens cylinder properties of the latter cause the light rays to become partially focused across the clear-zone upon the rhabdom layer. Rays traced through a large scale drawing of the eye, with refractive indices measured for each component, predict an acceptance angle of approximately 26°. Since no significant aperture changes, lengthening of crystalline thread, cell or pigment migrations appear to be associated with dark/light adaptation, the eye may be assumed to be permanently poorly focused. In optomotor experiments the beetles did not show their characteristic antennal following response to black and white stripes when the latter had repeat periods of <30°. Structurally the eye of Euoniticellus differs markedly from that of other scarabaeids. It is totally divided into dorsal and ventral eye which are of a different size (the dorsal eye is smaller), but whose structural organization is basically the same. Principal pigment cells (they do not fully surround the cone) as well as accessory pigment cells (they accompany the retinula cells in an extraordinarily regular fashion as far as to the basement membrane) exhibit some unusual features. On the proximal side of the clear-zone, at a level where all retinula cell membranes form complex meanders and convolutions, cell 1 is the first to possess a rhabdomere. In it, all microvilli run parallel. This rhabdomere becomes part of the rectangular proximal rhabdom over the upper 20% of its length. Below this level the rhabdom consists of 6 rhabdomeres, but throughout its length microvilli are oriented in 2 orthogonal directions. It is thought that polarization sensitivity in dung beetles generally is related to the rhabdom organization described for Euoniticellus. An eighth (basal) cell is present in each ommatidium, but it lacks a rhabdomere. A tracheal tapetum is not developed. Finally, the point is made not to regard all different eye structures in insects as perfect adaptations to a particular environment or way of living, for specializations of photoreceptors may either follow, parallel or precede any ecological adaptation.  相似文献   

12.
With a body length of only 2 mm, the nepticulid Stigmella microtheriella (Stainton, 1854) is one of the smallest moths known to date. We investigated the optical design of its lemon‐shaped compound eyes, which measure 83.60 μm in anterior–posterior and 119.77 μm in dorso‐ventral direction. The eyes consist of about 123 facets, each of the latter just 9.9 μm in diameter. Transmission electron microscopy reveals an optical design with features intermediate between apposition and superposition optics similar to that known from two other small species of moths (one Nepticulid and one Gracillarid). Size‐related evolutionary adaptations of the ommatidial organization include (1) the involvement of only five rhabdomeres in the formation of the distal rhabdom (2) the complete absence of a rhabdomere of the eighth (= basal) retinula cell, (3) the “hourglass” shape of the rhabdom with a characteristic narrow waist separating distal from proximal portion, and (4) the reduction to one single layer of tracheoles as an adaptation to the overall restricted space available in this minute eye. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
We explore the physiological constraints of body temperature as related to body mass and ambient temperature during flight in endothermic dung beetles showing a mass-related breakpoint where species show strong vs. weak endothermy. We found two different strategies in the dung beetles prior to flight; larger beetles (>1.9 g) elevate and maintain their body temperature (T(b)) at levels well above ambient temperature (T(a)) whereas smaller beetles' (<1.9 g) T(b) tends to conform with T(a). Physiological constraints analysis revealed a constant maximum tolerated temperature (in flight) of 42 degrees C and a minimum temperature for flight of around 25 degrees C. These, with body mass, may play a role in thermal niche partitioning and geographical distribution patterns.  相似文献   

14.
Hornets, the largest social wasps, have a reputation of being facultatively nocturnal. Here we confirm flight activity of hornet workers in dim twilight. We studied the eyes and ocelli of European hornets (Vespa crabro) and common wasps (Vespula vulgaris) with the goal to find the optical and anatomical adaptations that enable them to fly in dim light. Adaptations described for obligately nocturnal hymenoptera such as the bees Xylocopa tranquebarica and Megalopta genalis and the wasp Apoica pallens include large ocelli and compound eyes with wide rhabdoms and large facet lenses. Interestingly, we did not find any such adaptations in hornet eyes or ocelli. On the contrary, their eyes are even less sensitive than those of the obligately diurnal common wasps. Therefore we conclude that hornets, like several facultatively nocturnal bee species such as Apis mellifera adansonii, A. dorsata and X. tenuiscapa are capable of seeing in dim light simply due to the large body and thus eye size. We propose that neural pooling strategies and behavioural adaptations precede anatomical adaptations in the eyes and ocelli when insects with apposition compound eyes turn to dim light activity.  相似文献   

15.
The structure and optics of the mesopelagic double-eyed mysid crustacean Euchaetomera typica Sars, 1884 are described for the first time. The lateral eye is a typical refracting superposition eye with a wide field of view (172°) and low resolution (interommatidial angle of 7.3°). The antero-dorsal part of the eye is elongated due to the extension of the clear zone. This dorsal eye has a restricted field of view (33°) but much higher resolution (1.5°). The dorsal eye also uses refracting superposition optics, although the optical array is unusual as many of the peripheral ommatidia lack crystalline cones. The centre of curvature of the cornea is in front of the flattened rhabdom layer whereas the axes of the crystalline cones are centred on a point about twice as deep as the rhabdom layer. This results in a well-focused eye, free of spherical aberration. There is a remarkable similarity in eye structure between this species and some mesopelagic double-eyed euphausiid crustaceans.  相似文献   

16.
We evaluated the effects of different land-use systems on the ability of dung beetles to control the population of detritus-feeding flies. We tested the hypotheses that intensification of land use will reduce dung beetles richness, abundance and biomass and, consequently, their dung burial ability, affecting the interaction between dung beetles and flies and reducing its effectiveness as a natural biological control. In the Brazilian Amazon we sampled dung beetles, fly larvae and adults; and recorded the rate of dung removal by dung beetles across a gradient of land-use intensity from primary forest, secondary forest, agroforestry, agriculture to pasture. Our results provide evidence that land-use intensification results in a reduction of the richness, abundance and biomass of dung beetles, and this in turn results in lower rates of dung removal in the most simplified systems. We found no significant differences in the abundance of fly larvae between the different systems of land use. However, the number of adult flies differed significantly between land-use systems, presenting higher abundance in those sites with greater intensity of use (pasture and agriculture) and a lower abundance of adult flies in forested systems (primary and secondary forests, and agroforestry). Information-theoretic model selection based on AICc revealed strong support for the influence of land-use systems, dung removal rates and dung beetle abundance, biomass and richness on adult dung-fly abundance. Our results also reveal that dung beetles are not solely responsible for fly control and that other factors linked to land use are influencing the populations of these detritus-feeding insects.  相似文献   

17.
Egg to pupal survival of bush fly,Musca vetustissima Walker, under field conditions was examined during 1987/88 in an area of south-eastern Australia that had not been colonised by exotic dung beetles. In pads of cattle dung containing only the native fauna, fly survival ranged from 0.3% to 12.5%. The addition of 2 species of exotic dung beetles,Euoniticellus fulvus (Goeze) andOnthophagus taurus (Schreber) to field pads, in numbers similar to those observed at the collection site, reduced fly survival to between 0.3% and 4.4%. Fly survival in the presence of the native and exotic dung fauna was sufficiently low to keep fly breeding below their mean replacement level of 3% for most of the season. Widespread dispersal and establishment of exotic dung beetles in south-eastern Australia, alongside the native fauna, should lead to long-term reduction of the bush fly problem.   相似文献   

18.
A brief review of the work on crustacean compound eyes is given. Two main types of eye have been recognized: apposition and superposition. The ontogeny of the eyes of the common prawn Palaemon serratus is examined using a variety of methods: photography of live specimens, histological sections, SEM and TEM. In common with other decapod larvae, the common prawn hatches with apposition eyes having circular lenses packed hexagonally. After metamorphosis the gradual squaring of the eye facets, begun during the larval phase, is completed. This is an essential prerequisite for the functioning of the facultative superposition reflecting optics found in long-bodied decapods (e.g. shrimps, prawns and lobsters) and some Anomura. The possible phylogenetical significance of superposition, reflecting optics is also discussed.  相似文献   

19.
Summary Wolf spiders have four pairs of eyes distributed in three rows. The first row which lie in the frontal region of the caparace, just above the chelicera, contains four eyes: a medial pair known as the anterior medial eyes (AM eyes or principal eyes) and two smaller eyes known as the anterior lateral eyes (AL eyes). The second row which is located also in the frontal region of the prosoma consists of two big eyes. These are the posterior median eyes (PM eyes). The third row contains the posterior lateral eyes (PL eyes) which lie in the flanks of the prosomal caparace. The AL, PM and PL eyes are the so-called secondary eyes.The electron microscope shows that the AM eye photoreceptor cells have the rhabdomere in their distal segment, just behind the vitreous body. The rhabdomere consists of closely packed microvilli about 0.5 long exhibiting a uniform diameter of 500 Å. Each rhabdom consists of two rhabdomeres. The distal segment of the photoreceptor has a prismatic shape with four or five faces depending of their location within the retina.The distribution of the rhabdoms follows two different patterns or organization. In the peripheral portion of the retina they lie oriented either parallel or perpendicular to the retinal radii. In this zone most cells have four sides while in the central region five sided cells are predominant. These cells bear microvilli in three of their five faces and the rhabdoms show no preferential mode of orientation. Each retina contains approximately 450 photoreceptors. In the secondary eyes the rhabdoms lie far from the vitreous body behind the level of the cell nuclei. A light reflecting layer or tapetum is present in the three pairs of secondary eyes. The microvilli forming the rhabdomeres of the AL eyes are 0.5 long and 500 Å wide, while the microvilli of the rhabdomeres in the PM and PL eyes are longer and thicker (1.5 long and 550–660 Å wide). In these eyes the rhabdomeres are surrounded by abundant extracellular material. Like in the principal eyes each rhabdom consists of two rhabdomeres.In the AL eyes the photoreceptor cells send out collateral branches which end, without any specialization, in contact with other photoreceptors. Clear fibers running parallely to the tapetum have been found in the secondary eyes. These fibers show specialized regions corresponding to the zones of contact with the photoreceptor cells. These areas are characterized by an increased density of the membranes and groups of vesicles (the vesicles lie within the fibers).The optic nerves consist of photoreceptor axons, glial cells and a fibrous perineural sheath. The AM and AL eyes are connected to the CNS by a single compact optic nerve while in the PM and PL eyes the optic nerve consists of several individual bundles. The total number of optic fibers entering into the brain is about 12.000.A layer of glial cytoplasm covers each photoreceptor axon and the mesaxons appear as double lines which bifurcate frequently.Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant Nr. 618-64.  相似文献   

20.
Aspects of visual optics were investigated in the American toad (Bufo americanus). The development of the refractive state of the eye during metamorphosis was followed with IR photoretinoscopy. Frozen sections documented the changes in optical parameters before and after metamorphosis. There is a difference in light sensitivity between juvenile and adult toads. Binocular accommodation in adult toads was observed. 1. IR photoretinoscopic measurements showed that the refractive state of the eye changed very rapidly during metamorphosis, about 10 D/h while the animal entered the terrestrial habitat. 2. Frozen sections showed that the almost spherical lens in a tadpole eye had flattened in a just metamorphosed toad's eye while at the same time the distance of the lens to the retina had decreased. However, the morphological measurements were not sufficiently sensitive to record the relatively small changes in ocular dimensions that were responsible for the rapid changes in refractive state during metamorphosis. 3. Schematic eyes, with homogeneous and non homogeneous lenses, were constructed for tadpoles, juvenile toads, and adult toads. 4. Nonparaxial raytracing studies in schematic eyes suggested that the lenses of animals of the three developmental stages tadpole, juvenile toad, and adult are not homogeneous but have a refractive index gradient. The raytracing studies indicated that the refractive index gradient is different for the different developmental stages, being highest in the tadpole lens. 5. The observations of toads during feeding behavior at different light levels showed an increased light sensitivity in the adult nocturnal toads in contrast to the juvenile animals, which are diurnal. The increased light sensitivity could partly be explained with an increase in aperture and an increase in red rod outer segments. To fully explain the higher light sensitivity in adult toads, changes in neuronal parameters had to be assumed. 6. Retinoscopic measurements of the resting refractive state in the adult toad showed a hyperopic defocus of about +8 D. By subtracting the measurement artefact for retinoscopy, the true resting focus was found to be nearly emmetropic. 7. The amount of natural accommodation in adult toads during normal feeding behavior was investigated with IR photoretinoscopy. Binocular accommodation of about 8 D was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号