首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Huang SY  Hu JF  Gong HQ  Liang PJ 《生理学报》2006,58(5):407-414
我们实验室以前发现,视网膜视锥与亮度型水平细胞(luminosity—type horizontal cell,LHC)之间的突触传递效率具有可塑性。重复性刺激红敏视锥增加了LHC对红光的超极化反应幅度,而且这种增强作用是可逆的。在本文中,我们运用细胞内记录技术和药理学分析的方法来考察重复性红光刺激引起的反应增强的可能机制。当通过胞内注射Ca^2+的螯合剂EGTA来降低LHC内的Ca^2+浓度后,重复性红光引起的反应增强被抑制,提示突触后钙信号是反应增强的一个重要因素。另外,反应增强现象还可以被钙离子通透的AMPA受体(Ca^2+-permeable AMPA receptor,CP-AMPAR)的拈抗剂阻断,说明通过钙离子通透的谷氨酸受体内流的Ca^2+与胞内Ca^2+浓度的改变有关。进一步发现,胞外灌流ryanodine或caffeine也可以消除反应增强现象,说明由钙诱导的钙释放(calcium—induced calcium release,CICR)引起的钙信号可能也参与了反应增强现象的产生。结果提示,CICR和CP—AMPAR与重复性红光刺激引起的LHC对红光的反应增强有关。  相似文献   

6.
Selection against migrants is key to maintaining genetic differences between populations linked by dispersal. However, migrants may mitigate fitness costs by proactively choosing among available habitats, or by phenotypic plasticity. We previously reported that a reciprocal transplant of lake and stream stickleback (Gasterosteus aculeatus) found little support for divergent selection. Here, we revisit that experiment to test whether phenotypic plasticity in gene expression may have helped migrants adjust to unfamiliar habitats. We measured gene expression profiles in stickleback via TagSeq and tested whether migrants between lake and stream habitats exhibited a plastic response to their new environment that allowed them to converge on the expression profile of adapted natives. We report extensive gene expression differences between genetically divergent lake and stream stickleback, despite gene flow . But for many genes, expression was highly plastic. Fish transplanted into the adjoining habitat partially converged on the expression profile typical of natives from their new habitat. This suggests that expression plasticity may soften the impact of migration. Nonetheless, lake and stream fish differed in survival rates and parasite infection rates in our study, implying that expression plasticity is not fast or extensive enough to fully homogenize fish performance.  相似文献   

7.
大脑神经回路高度有序的神经元活动是高级脑功能的基础,神经元之间的突触联结是神经回路的关键功能节点。神经突触根据神经元活动调整其传递效能的能力,亦即突触可塑性,被认为是神经回路发育和学习与记忆功能的基础。其异常则可能导致如抑郁症和阿尔茨海默病等精神、神经疾病。将介绍这两种疾病与突触可塑性的关系,聚焦于相关分子和细胞机制以及新的研究、治疗手段等进展。  相似文献   

8.
Calcium ions play critical roles in neuronal differentiation. We have recorded transient, repeated elevations of calcium in embryonic Xenopus spinal neurons over periods of 1 h in vitro and in vivo, confocally imaging fluo 3-loaded cells at 5 s intervals. Calcium spikes and calcium waves are found both in neurons in culture and in the intact spinal cord. Spikes rise rapidly to approximately 400% of baseline fluorescence and have a double exponential decay, whereas waves rise slowly to approximately 200% of baseline fluorescence and decay slowly as well. Imaging of fura 2-loaded neurons indicates that intracellular calcium increases from 50 to 500 nM during spikes. Both spikes and waves are abolished by removal of extracellular calcium. Developmentally, the incidence and frequency of spikes decrease, whereas the incidence and frequency of waves are constant. Spikes are generated by spontaneous calcium-dependent action potentials and also utilize intracellular calcium stores. Waves are produced by a mechanism that does not involve classic voltage-dependent calcium channels. Spikes are required for expression of the transmitter GABA and for potassium channel modulation. Waves in growth cones are likely to regulate neurite extension. The results demonstrate the roles of a novel signaling system in regulating neuronal plasticity, that operates on a time scale 104 times slower than that of action potentials. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
During development, dynamic changes in the axonal growth cone and dendrite are necessary for exploratory movements underlying initial axo‐dendritic contact and ultimately the formation of a functional synapse. In the adult central nervous system, an impressive degree of plasticity is retained through morphological and molecular rearrangements in the pre‐ and post‐synaptic compartments that underlie the strengthening or weakening of synaptic pathways. Plasticity is regulated by the interplay of permissive and inhibitory extracellular cues, which signal through receptors at the synapse to regulate the closure of critical periods of developmental plasticity as well as by acute changes in plasticity in response to experience and activity in the adult. The molecular underpinnings of synaptic plasticity are actively studied and it is clear that the cytoskeleton is a key substrate for many cues that affect plasticity. Many of the cues that restrict synaptic plasticity exhibit residual activity in the injured adult CNS and restrict regenerative growth by targeting the cytoskeleton. Here, we review some of the latest insights into how cytoskeletal remodeling affects neuronal plasticity and discuss how the cytoskeleton is being targeted in an effort to promote plasticity and repair following traumatic injury in the central nervous system.  相似文献   

10.
11.
12.
Phenotypic plasticity allows organisms to adapt quickly to local environmental conditions and could facilitate adaptive radiations. Cichlids have recently undergone an adaptive radiation in Lake Malawi where they inhabit diverse light environments and tune their visual sensitivity through differences in cone opsin expression. While cichlid opsin expression is known to be plastic over development, whether adults remain plastic is unknown. Adult plasticity in visual tuning could play a role in cichlid radiations by enabling survival in changing environments and facilitating invasion into novel environments. Here we examine the existence of and temporal changes in adult visual plasticity of two closely related species. In complementary experiments, wild adult Metriaclima mbenji from Lake Malawi were moved to the lab under UV‐deficient fluorescent lighting; while lab raised M. benetos were placed under UV‐rich lighting designed to mimic light conditions in the wild. Surprisingly, adult cichlids in both experiments showed significant changes in the expression of the UV‐sensitive single cone opsin, SWS1, in only 3 days. Modeling quantum catches in the light environments revealed a possible link between the light available to the SWS1 visual pigment and SWS1 expression. We conclude that adult cichlids can undergo rapid and significant changes in opsin expression in response to environmental light shifts that are relevant to their habitat and evolutionary history in Lake Malawi. This could have contributed to the rapid divergence characteristic of these fantastic fishes.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Using mRNA differential display to identify cerebral ischemia-responsive mRNAs, we isolated and cloned a cDNA derived from a novel gene, that has been designated LCHN. Antisense mRNA in situ hybridization and immunoblotting confirmed LCHN expression to be induced in the rat hippocampus following transient forebrain ischemia. The deduced amino acid sequence of the novel LCHN cDNA contains an open reading frame of 455 amino acids, encoding a protein with a predicted molecular mass of approximately 51 kDa. Although LCHN is highly conserved between rat, mouse, and human, the deduced amino acid sequence of LCHN does not possess significant homology to other known genes. LCHN immunoreactivity is detected within the somatodendritic compartment of neurons, is also present on dendritic growth cones, but is not detected on astrocytes. The induction of LCHN in the hippocampus following ischemic injury may have functional consequences, as the ectopic over-expression of LCHN generated neurons with longer and more branched axons and dendrites. Taken together, these data suggest that LCHN could play a role in neuritogenesis, as well as in neuronal recovery and/or restructuring in the hippocampus following transient cerebral ischemia.  相似文献   

20.
Neuronal plasticity is an important process for learning, memory and complex behaviour. Rapid remodelling of the actin cytoskeleton in the postsynaptic compartment is thought to have an important function for synaptic plasticity. However, the actin‐binding proteins involved and the molecular mechanisms that in vivo link actin dynamics to postsynaptic physiology are not well understood. Here, we show that the actin filament depolymerizing protein n‐cofilin is controlling dendritic spine morphology and postsynaptic parameters such as late long‐term potentiation and long‐term depression. Loss of n‐cofilin‐mediated synaptic actin dynamics in the forebrain specifically leads to impairment of all types of associative learning, whereas exploratory learning is not affected. We provide evidence for a novel function of n‐cofilin function in synaptic plasticity and in the control of extrasynaptic excitatory AMPA receptors diffusion. These results suggest a critical function of actin dynamics in associative learning and postsynaptic receptor availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号