首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purification and cDNA Cloning of Maize Poly(ADP)-Ribose Polymerase   总被引:1,自引:0,他引:1       下载免费PDF全文
Poly(ADP)-ribose polymerase (PADPRP) has been purified to apparent homogeneity from suspension cultures of the maize (Zea mays) callus line. The purified enzyme is a single polypeptide of approximately 115 kD, which appears to dimerize through an S-S linkage. The catalytic properties of the maize enzyme are very similar to those of its animal counterpart. The amino acid sequences of three tryptic peptides were obtained by microsequencing. Antibodies raised against peptides from maize PADPRP cross-reacted specifically with the maize enzyme but not with the enzyme from human cells, and vice versa. We have also characterized a 3.45-kb expressed-sequence-tag clone that contains a full-length cDNA for maize PADPRP. An open reading frame of 2943 bp within this clone encodes a protein of 980 amino acids. The deduced amino acid sequence of the maize PADPRP shows 40% to 42% identity and about 50% similarity to the known vertebrate PADPRP sequences. All important features of the modular structure of the PADPRP molecule, such as two zinc fingers, a putative nuclear localization signal, the automodification domain, and the NAD+-binding domain, are conserved in the maize enzyme. Northern-blot analysis indicated that the cDNA probe hybridizes to a message of about 4 kb.  相似文献   

2.
3.
Polymerase chain reaction (PCR) was used to amplify a specific 1.8-kb sequence of mitochondrial DNA from single juveniles and eggs from 17 populations of Meloidogyne incognita, M. hapla, M. javanica, and M. arenaria. Approximately 2 μg amplified product were produced per reaction. Restriction digestion of the amplified product with HinfI permitted discrimination of clonal lineages of the four species. Meloidogyne javanica, however, could not be separated from M. hapla by the enzymes used in these experiments. Various amplification conditions and nematode lysis procedures were examined in order to optimize the speed and quality of identifications.  相似文献   

4.
5.
6.
Mutations in the human mitochondrial polymerase (polymerase-γ (Pol-γ)) are associated with various mitochondrial disorders, including mitochondrial DNA (mtDNA) depletion syndrome, Alpers syndrome, and progressive external opthamalplegia. To correlate biochemically quantifiable defects resulting from point mutations in Pol-γ with their physiological consequences, we created “humanized” yeast, replacing the yeast mtDNA polymerase (MIP1) with human Pol-γ. Despite differences in the replication and repair mechanism, we show that the human polymerase efficiently complements the yeast mip1 knockouts, suggesting common fundamental mechanisms of replication and conserved interactions between the human polymerase and other components of the replisome. We also examined the effects of four disease-related point mutations (S305R, H932Y, Y951N, and Y955C) and an exonuclease-deficient mutant (D198A/E200A). In haploid cells, each mutant results in rapid mtDNA depletion, increased mutation frequency, and mitochondrial dysfunction. Mutation frequencies measured in vivo equal those measured with purified enzyme in vitro. In heterozygous diploid cells, wild-type Pol-γ suppresses mutation-associated growth defects, but continuous growth eventually leads to aerobic respiration defects, reduced mtDNA content, and depolarized mitochondrial membranes. The severity of the Pol-γ mutant phenotype in heterozygous diploid humanized yeast correlates with the approximate age of disease onset and the severity of symptoms observed in humans.  相似文献   

7.
Small GTPases share a biochemical mechanism and act as binary molecular switches. One important function of small GTPases in the cell is nucleocytoplasmic transport of both proteins and RNA. Here, we show the stable association of human GPN1 and GPN3, small GTPases related to Ran, with RNA polymerase II (RNAPII) isolated from either the cytoplasmic or nuclear fraction. GPN1 and GPN3 directly interact with RNAPII subunit 7 (RPB7)/RPB4 and the C-terminal domain (CTD) of RNAPII. Depletion of GPN1 or GPN3 using small interfering RNAs led to decreased RNAPII levels in the nucleus and an accumulation of this enzyme in the cytoplasm of human cells. Furthermore, isolation of a GPN1/GPN3/RNAPII complex from stable cell lines expressing a dominant negative GPN1 harboring mutations in the GTP-binding pocket demonstrated a role for these proteins in nuclear import of RNAPII. Thus, GPN1/GPN3 define a new family of small GTPases that are specialized for the transport of RNA polymerase II into the nucleus.  相似文献   

8.
9.
10.
11.
Leishmania donovani is the known causative agent of both cutaneous (CL) and visceral leishmaniasis in Sri Lanka. CL is considered to be under-reported partly due to relatively poor sensitivity and specificity of microscopic diagnosis. We compared robustness of three previously described polymerase chain reaction (PCR) based methods to detectLeishmania DNA in 38 punch biopsy samples from patients presented with suspected lesions in 2010. Both, Leishmaniagenus-specific JW11/JW12 KDNA and LITSR/L5.8S internal transcribed spacer (ITS)1 PCR assays detected 92% (35/38) of the samples whereas a KDNA assay specific forL. donovani (LdF/LdR) detected only 71% (27/38) of samples. All positive samples showed a L. donovani banding pattern upon HaeIII ITS1 PCR-restriction fragment length polymorphism analysis. PCR assay specificity was evaluated in samples containing Mycobacterium tuberculosis, Mycobacterium leprae, and human DNA, and there was no cross-amplification in JW11/JW12 and LITSR/L5.8S PCR assays. The LdF/LdR PCR assay did not amplify M. leprae or human DNA although 500 bp and 700 bp bands were observed in M. tuberculosis samples. In conclusion, it was successfully shown in this study that it is possible to diagnose Sri Lankan CL with high accuracy, to genus and species identification, using Leishmania DNA PCR assays.  相似文献   

12.
A polymerase chain reaction (PCR) method for discriminating Meloidogyne incognita, M. arenaria, M. javanica, M. hapla, and M. chitwoodi was developed. Single juveniles were ruptured in a drop of water and added directly to a PCR reaction mixture in a microcentrifuge tube. Primer annealing sites were located in the 3'' portion of the mitochondrial gene coding for cytochrome oxidase subunit II and in the 16S rRNA gene. Following PCR amplification, fragments of three sizes were detected. The M. incognita and M. javanica reactions produced a 1.7-kb fragment; the M. arenaria reaction, a 1.1-kb fragment; and the M. hapla and M. chitwoodi reactions resulted in a 0.52-kb fragment. Digestion of the amplified product with restriction endonucleases allowed discrimination among species with identically sized amplification products. Dra I digestions of the 0.52-kb amplification product produced a characteristic three-banded pattern in M. chitwoodi, versus a two-banded pattern in M. hapla. Hinf I digestion of the 1.7-kb fragment produced a two-banded pattern in M. javanica, versus a three-banded pattern in M. incognita. Amplification and digestion of DNA from juveniles from single isolates of M. marylandi, M. naasi, and M. nataliei indicated that the diagnostic application of this primer set may extend to less frequently encountered Meloidogyne species.  相似文献   

13.
14.
We have evaluated the potential of DNA-based methods to identify and differentiate Bursaphelenchus spp. and isolates. The isolation of a DNA probe, designated X14, and development of a DNA fingerprinting method for the identification and differentiation of Bursaphelenchus species and strains is described. Polymerase chain reaction (PCR) amplification of DNA isolated from Bursaphelenchus species using two primers derived from the sequence of the cloned repetitive DNA fragment X14 resulted in multiple band profiles. A 4-kb fragment thus amplified from B. xylophilus DNA was not amplified from B. mucronatus or B. fraudulentus DNA. In addition to this fragment, several other fragments are amplified from the three species. The banding patterns obtained allowed species identification and may have value in determining taxonomic affinities.  相似文献   

15.
16.
Sensitive, specific and rapid diagnostic tests for the detection of Orientia tsutsugamushi (O. tsutsugamushi) and Rickettsia typhi (R. typhi), the causative agents of scrub typhus and murine typhus, respectively, are necessary to accurately and promptly diagnose patients and ensure that they receive proper treatment. Recombinase polymerase amplification (RPA) assays using a lateral flow test (RPA-nfo) and real-time fluorescent detection (RPA-exo) were developed targeting the 47-kDa gene of O. tsutsugamushi or 17 kDa gene of R. typhi. The RPA assay was capable of detecting O. tsutsugamushi or R. typhi at levels comparable to that of the quantitative PCR method. Both the RPA-nfo and RPA-exo methods performed similarly with regards to sensitivity when detecting the 17 kDa gene of R. typhi. On the contrary, RPA-exo performed better than RPA-nfo in detecting the 47 kDa gene of O. tsutsugamushi. The clinical performance of the O. tsutsugamushi RPA assay was evaluated using either human patient samples or infected mouse samples. Eight out of ten PCR confirmed positives were determined positive by RPA, and all PCR confirmed negative samples were negative by RPA. Similar results were obtained for R. typhi spiked patient sera. The assays were able to differentiate O. tsutsugamushi and R. typhi from other phylogenetically related bacteria as well as mouse and human DNA. Furthermore, the RPA-nfo reaction was completed in 20 minutes at 37oC followed by a 10 minute incubation at room temperature for development of an immunochromatographic strip. The RPA-exo reaction was completed in 20 minutes at 39oC. The implementation of a cross contamination proof cassette to detect the RPA-nfo fluorescent amplicons provided an alternative to regular lateral flow detection strips, which are more prone to cross contamination. The RPA assays provide a highly time-efficient, sensitive and specific alternative to other methods for diagnosing scrub typhus or murine typhus.  相似文献   

17.
Deinococcus radiodurans is an extraordinarily radioresistant bacterium that is able to repair hundreds of radiation-induced double-stranded DNA breaks. One of the players in this pathway is an X family DNA polymerase (PolXDr). Deletion of PolXDr has been shown to decrease the rate of repair of double-stranded DNA breaks and increase cell sensitivity to gamma-rays. A 3′→5′ exonuclease activity that stops cutting close to DNA loops has also been demonstrated. The present crystal structure of PolXDr solved at 2.46-Å resolution reveals that PolXDr has a novel extended conformation in stark contrast to the closed “right hand” conformation commonly observed for DNA polymerases. This extended conformation is stabilized by the C-terminal PHP domain, whose putative nuclease active site is obstructed by its interaction with the polymerase domain. The overall conformation and the presence of non standard residues in the active site of the polymerase X domain makes PolXDr the founding member of a novel class of polymerases involved in DNA repair but whose detailed mode of action still remains enigmatic.DNA replication and repair are functions that are of vital importance for the maintenance of cellular life. These functions are carried out by various DNA replicating engines, most of them acting as multiprotein complexes. Deinococcus radiodurans, a Gram-positive bacterium, is characterized by an extraordinary resistance to ionizing radiation and desiccation. After radiation induced cutting of its 3.28-megabase genome into hundreds of small fragments, it is capable of reassembling it completely (1). Different hypotheses have been suggested to explain this radioresistance. A recently proposed mechanism involves the creation of long linear DNA intermediates by an extended synthesis-dependent strand annealing process, where overlapping chromosomal fragments are used both as primers and as templates for synthesis of complementary single strands (2). Recircularization of chromosomes would be assured by homologous recombination. Although DNA polymerase I is one of the main enzymes involved in this process, it was shown that other proteins affect double strand break repair efficiency in D. radiodurans. One of these is an X family DNA polymerase (PolXDr)5 (3). Cells devoid of PolXDr protein show increased sensitivity to γ-irradiation and a longer delay in the restoration of an intact genome after irradiation. It was therefore proposed that PolXDr has an important role in double strand break repair in D. radiodurans. The contribution of PolXDr may become essential for instance when damage gets too important or, alternatively, it may act in different repair pathways from polymerase I. Indeed, some of the X DNA polymerases, such as Saccharomyces cerevisiae Pol4 and human polymerase λ (4) have been proposed to play important roles in different DNA repair processes, including non-homologous end-joining (5). It was shown that PolXDr also has strong 3′→5′ exonuclease activity that is stimulated by Mn2+ (6). This activity is associated with proofreading mechanisms in other polymerase families and encoded by protein domains or subunits distinct from the polymerase catalytic domain (7). Curiously the exonuclease activity of PolXDr is modulated upon encounter of a stem-loop structure. The combination of both activities leads to the hypothesis that PolXDr might be involved in DNA repair, potentially non-homologous end-joining, by processing damaged DNA or repair intermediates, thus generating substrates for other repair proteins (6). Very recently an orthologue of PolX from Bacillus subtilis was characterized. It was shown that PolXBs is a template-directed DNA polymerase acting on DNA gaps with a downstream 5′ phosphate group, suggesting it may play a role in base excision repair (8).DNA polymerases all combine a catalytic palm domain, a thumb domain, binding double-stranded DNA, and a finger domain that fixes the incoming nucleotide. The polymerase domain of the X family belongs to the Polβ-like nucleotidyltransferase superfamily, sharing ∼25% amino acid identity with the DNA polymerase domains of Polλ, Pol4, and Polβ. PolXDr has a second domain at the C terminus called PHP, with strong sequence identity with the histidinol phosphatase involved in histidine transport in bacteria. Due to its similarity to histidinol phosphatase and the presence of a trinuclear zinc site, the PolXDr PHP domain is thought to function as phosphoesterase (9). In the context of DNA polymerases, this activity might be responsible for the degradation of pyrophosphate, thus driving the polymerization reaction, or contributes to a nuclease reaction that would be involved in proofreading the newly synthesized strand. The deletion of the PHP domain also had a negative effect on survival of γ-irradiated cells suggesting that this domain possesses a function in DNA repair. Unexpectedly, deletion of the PHP domain destroys structure modulated but not the general 3′→5′ exonuclease activity (6). No activity could be demonstrated for the PHP domain alone.In this report we present the crystal structure of PolXDr at 2.46-Å resolution. Surprisingly, PolXDr adopts a stretched out conformation instead of the commonly observed closed right hand conformation. In the active site of the polymerase catalytic domain, the two universally conserved aspartates are replaced by two glutamates, whereas the active site of the PHP domain is obstructed by its interaction with the polymerase domain.  相似文献   

18.
19.
DinB, the E. coli translesion synthesis polymerase, has been shown to bypass several N 2-alkylguanine adducts in vitro, including N 2-furfurylguanine, the structural analog of the DNA adduct formed by the antibacterial agent nitrofurazone. Recently, it was demonstrated that the Fe(II)- and α-ketoglutarate-dependent dioxygenase AlkB, a DNA repair enzyme, can dealkylate in vitro a series of N 2-alkyguanines, including N 2-furfurylguanine. The present study explored, head to head, the in vivo relative contributions of these two DNA maintenance pathways (replicative bypass vs. repair) as they processed a series of structurally varied, biologically relevant N 2-alkylguanine lesions: N 2-furfurylguanine (FF), 2-tetrahydrofuran-2-yl-methylguanine (HF), 2-methylguanine, and 2-ethylguanine. Each lesion was chemically synthesized and incorporated site-specifically into an M13 bacteriophage genome, which was then replicated in E. coli cells deficient or proficient for DinB and AlkB (4 strains in total). Biochemical tools were employed to analyze the relative replication efficiencies of the phage (a measure of the bypass efficiency of each lesion) and the base composition at the lesion site after replication (a measure of the mutagenesis profile of each lesion). The main findings were: 1) Among the lesions studied, the bulky FF and HF lesions proved to be strong replication blocks when introduced site-specifically on a single-stranded vector in DinB deficient cells. This toxic effect disappeared in the strains expressing physiological levels of DinB. 2) AlkB is known to repair N 2-alkylguanine lesions in vitro; however, the presence of AlkB showed no relief from the replication blocks induced by FF and HF in vivo. 3) The mutagenic properties of the entire series of N 2-alkyguanines adducts were investigated in vivo for the first time. None of the adducts were mutagenic under the conditions evaluated, regardless of the DinB or AlkB cellular status. Taken together, the data indicated that the cellular pathway to combat bulky N 2-alkylguanine DNA adducts was DinB-dependent lesion bypass.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号