首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Résumé Chez une enfant anormale, on observe un excès de matériel chromosomique sur la paire 1:1q+, et une translocation t(1q+;10q-) est dépistée dans la famille.L'analyse du caryotype après «dénaturation thermique ménagée» a permis d'individualiser le chromosome C anormal (10q-), de définir l'emplacement exact des points de cassure et de lier essentiellement l'état pathologique du patient à une trisomie partielle du bras long du chromosome 10.Cette trisomie se traduit principalement par une arriération mentale, une hypotrophie, des anomalies oculaires, une fente palatine, une mal-implantation des oreilles, un micrognathisme, des anomalies du squelette et une cardiopathie.
Partial trisomy 10 due to hereditary translocation t(1;10) (q44;q22)
Summary A chromosome 1q+was observed in an abnormal girl. A balanced t(1q+;10q-) was found in the family.Application of a controlled thermic denaturation technique allowed recognition of the abnormal C as a 10q-and localization of the break points (1q44 and 10q22).The partial trisomy 10q of the proband had induced mental retardation, severe retardation of growth, ocular anomalies, agenesis of the palate, low implantation of the ears, micrognathia bone anomalies and cardiac malformation.

Zusammenfassung Bei einem Mädchen mit Mißbildungen wurde ein Chromosom 1q+beobachtet. Eine balancierte t(1q+, 10q-) fand sich in der Familie.Die Identifikation des abnormen C als 10q- wurde durch Anwendung kontrollierter Wärmedenaturierung erreicht; auf diesem Wege wurden auch die Bruchpunkte identifiziert.Die partielle Trisomie 10q hatte bei dem Probanden einen geistigen Entwicklungsrückstand, eine schwere Wachstumsstörung, Augenanomalien, Fehlen des Gaumens, tief ansetzende Ohren, eine Mikrognathie, Knochenanomalien und eine Herzmißbildung zur Folge.


Chargée de Recherche I.N.S.E.R.M. Chef de Service à l'Institut Pasteur de Lyon.

Chargés de Recherche C.N.R.S.  相似文献   

4.
5.
scube1 (signal peptide-CUB (complement protein C1r/C1s, Uegf, and Bmp1)-EGF domain-containing protein 1), the founding member of a novel secreted and cell surface SCUBE protein family, is expressed predominantly in various developing tissues in mice. However, its function in primitive hematopoiesis remains unknown. In this study, we identified and characterized zebrafish scube1 and analyzed its function by injecting antisense morpholino-oligonucleotide into embryos. Whole-mount in situ hybridization revealed that zebrafish scube1 mRNA is maternally expressed and widely distributed during early embryonic development. Knockdown of scube1 by morpholino-oligonucleotide down-regulated the expression of marker genes associated with early primitive hematopoietic precursors (scl) and erythroid (gata1 and hbbe1), as well as early (pu.1) and late (mpo and l-plastin) myelomonocytic lineages. However, the expression of an early endothelial marker fli1a and vascular morphogenesis appeared normal in scube1 morphants. Overexpression of bone morphogenetic protein (bmp) rescued the expression of scl in the posterior lateral mesoderm during early primitive hematopoiesis in scube1 morphants. Biochemical and molecular analysis revealed that Scube1 could be a BMP co-receptor to augment BMP signaling. Our results suggest that scube1 is critical for and functions at the top of the regulatory hierarchy of primitive hematopoiesis by modulating BMP activity during zebrafish embryogenesis.  相似文献   

6.
7.
Both neuroprotective and neurotoxic roles have previously been described for histone deacetylase-1 (HDAC1). Here we report that HDAC1 expression is elevated in vulnerable brain regions of two mouse models of neurodegeneration, the R6/2 model of Huntington disease and the Ca2+/calmodulin-dependent protein kinase (CaMK)/p25 double-transgenic model of tauopathic degeneration, suggesting a role in promoting neuronal death. Indeed, elevating HDAC1 expression by ectopic expression promotes the death of otherwise healthy cerebellar granule neurons and cortical neurons in culture. The neurotoxic effect of HDAC1 requires interaction and cooperation with HDAC3, which has previously been shown to selectively induce the death of neurons. HDAC1-HDAC3 interaction is greatly elevated under conditions of neurodegeneration both in vitro and in vivo. Furthermore, the knockdown of HDAC3 suppresses HDAC1-induced neurotoxicity, and the knockdown of HDAC1 suppresses HDAC3 neurotoxicity. As described previously for HDAC3, the neurotoxic effect of HDAC1 is inhibited by treatment with IGF-1, the expression of Akt, or the inhibition of glycogen synthase kinase 3β (GSK3β). In addition to HDAC3, HDAC1 has been shown to interact with histone deacetylase-related protein (HDRP), a truncated form of HDAC9, whose expression is down-regulated during neuronal death. In contrast to HDAC3, the interaction between HDRP and HDAC1 protects neurons from death, an effect involving acquisition of the deacetylase activity of HDAC1 by HDRP. We find that elevated HDRP inhibits HDAC1-HDAC3 interaction and prevents the neurotoxic effect of either of these two proteins. Together, our results suggest that HDAC1 is a molecular switch between neuronal survival and death. Its interaction with HDRP promotes neuronal survival, whereas interaction with HDAC3 results in neuronal death.  相似文献   

8.
The presence of extensive reciprocal conformational freedom between the catalytic and the hemopexin-like domains of full-length matrix metalloproteinase-1 (MMP-1) is demonstrated by NMR and small angle x-ray scattering experiments. This finding is discussed in relation to the essentiality of the hemopexin-like domain for the collagenolytic activity of MMP-1. The conformational freedom experienced by the present system, having the shortest linker between the two domains, when compared with similar findings on MMP-12 and MMP-9 having longer and the longest linker within the family, respectively, suggests this type of conformational freedom to be a general property of all MMPs.Matrix metalloproteinases (MMP)2 are extracellular hydrolytic enzymes involved in a variety of processes including connective tissue cleavage and remodeling (13). All 23 members of the family are able to cleave simple peptides derived from connective tissue components such as collagen, gelatin, elastin, etc. A subset of MMPs is able to hydrolyze more resistant polymeric substrates, such as cross-linked elastin, and partially degraded collagen forms, such as gelatin and type IV collagens (4). Intact triple helical type I–III collagen is only attacked by collagenases MMP-1, MMP-8, and MMP-13 and by MMP-2 and MMP-14 (512). Although the detailed mechanism of cleavage of single chain peptides by MMP has been largely elucidated (1319), little is known about the process of hydrolysis of triple helical collagen. In fact, triple helical collagen cannot be accommodated in the substrate-binding groove of the catalytic site of MMPs (9).All MMPs (but MMP-7) in their active form are constituted by a catalytic domain (CAT) and a hemopexin-like domain (HPX) (2022). The CAT domain contains two zinc ions and one to three calcium ions. One zinc ion is at the catalytic site and is responsible for the activity, whereas the other metal ions have structural roles. The isolated CAT domains retain full catalytic activity toward simple peptides and single chain polymeric substrates such as elastin, whereas hydrolysis of triple helical collagen also requires the presence of the HPX domain (9, 2325). It has been shown that the isolated CAT domain regains a small fraction of the activity of the full-length (FL) protein when high amounts of either inactivated full-length proteins or isolated HPX domains are added to the assay solution (9). Finally, it has been shown that the presence of the HPX domain alone alters the CD spectrum of triple helical collagen in a way that suggests its partial unwinding (26, 27). It is tempting to speculate that full-length collagenases attack collagen by first locally unwinding the triple helical structure with the help of the HPX domain and then cleaving the resulting, exposed, single filaments (9, 28).Until 2007, three-dimensional structures of full-length MMPs had been reported only for collagenase MMP-1 (2931) and gelatinase MMP-2 (32). The structures of the two proteins are very similar and show a compact arrangement of the two domains, which are connected by a short linker (14 and 20 amino acids, respectively). It is difficult to envisage that rigid and compact molecules of this type can interact with triple helical collagen in a way that can lead to first unwinding and then cleavage of individual filaments. It has been recently suggested that such concerted action could occur much more easily if the two domains could enjoy at least a partial conformational independence (9). Slight differences in the reciprocal orientation of the CAT and HPX domains of MMP-1 in the presence (29) and absence (30, 31) of the prodomain were indeed taken as a hint that the two domains could experience relative mobility (29).Two recent solution studies have shown that conformational independence is indeed occurring in gelatinase MMP-9 (33) and elastase MMP-12 (34), whereas the x-ray structure of the latter (34) is only slightly less compact than those of MMP-1 (2931) and MMP-2 (32). Among MMPs, MMP-9 features an exceptionally long linker (68 amino acid) (33, 35), which in fact constitutes a small domain by itself (the O-glycosylated domain) (33), and therefore, this inspiring observation can hardly be taken as evidence that conformational freedom is a general characteristic of the two-domain MMPs. MMP-12 features a much more normal 16-amino acid linker, thereby making more probable a general functional role for this conformational freedom (34). However, both MMP-9 and MMP-12 retain their full catalytic activity against their substrates even when deprived of the HPX domain (9). Therefore, the question remains of whether conformational freedom is also a required characteristic for those MMPs that are only active as full-length proteins, i.e. collagenases. Interestingly, the three collagenases (MMP-1, MMP-8, and MMP-13) have the shortest linker (14 amino acids) among all MMPs. Demonstrating or negating the presence of conformational freedom in one of these collagenases would therefore constitute a significant step forward to formulate mechanistic hypotheses on their collagenolytic activity.Our recent studies on MMP-12 in solution (34) have shown that a combination of NMR relaxation studies and small angle x-ray scattering (SAXS) is enough to show the presence and the extent of the relative conformational freedom of the two domains of MMPs. Here we apply the same strategy to full-length MMP-1 and show that sizable conformational freedom is indeed experienced even by this prototypical collagenase, although somewhat less pronounced than that observed for MMP-12.  相似文献   

9.
10.
The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of protein synthesis. The best studied targets of mTORC1 in translation are the eukaryotic initiation factor-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). In this study, we identify the La-related protein 1 (LARP1) as a key novel target of mTORC1 with a fundamental role in terminal oligopyrimidine (TOP) mRNA translation. Recent genome-wide studies indicate that TOP and TOP-like mRNAs compose a large portion of the mTORC1 translatome, but the mechanism by which mTORC1 controls TOP mRNA translation is incompletely understood. Here, we report that LARP1 functions as a key repressor of TOP mRNA translation downstream of mTORC1. Our data show the following: (i) LARP1 associates with mTORC1 via RAPTOR; (ii) LARP1 interacts with TOP mRNAs in an mTORC1-dependent manner; (iii) LARP1 binds the 5′TOP motif to repress TOP mRNA translation; and (iv) LARP1 competes with the eukaryotic initiation factor (eIF) 4G for TOP mRNA binding. Importantly, from a drug resistance standpoint, our data also show that reducing LARP1 protein levels by RNA interference attenuates the inhibitory effect of rapamycin, Torin1, and amino acid deprivation on TOP mRNA translation. Collectively, our findings demonstrate that LARP1 functions as an important repressor of TOP mRNA translation downstream of mTORC1.  相似文献   

11.
Liver gluconeogenesis is essential to provide energy to glycolytic tissues during fasting periods. However, aberrant up-regulation of this metabolic pathway contributes to the progression of glucose intolerance in individuals with diabetes. Phosphoenolpyruvate carboxykinase (PEPCK) expression plays a critical role in the modulation of gluconeogenesis. Several pathways contribute to the regulation of PEPCK, including the nuclear receptor Rev-erbα and the histone deacetylase SIRT1. Deleted in breast cancer 1 (DBC1) is a nuclear protein that binds to and regulates both Rev-erbα and SIRT1 and, therefore, is a candidate to participate in the regulation of PEPCK. In this work, we provide evidence that DBC1 regulates glucose metabolism and the expression of PEPCK. We show that DBC1 levels decrease early in the fasting state. Also, DBC1 KO mice display higher gluconeogenesis in a normal and a high-fat diet. DBC1 absence leads to an increase in PEPCK mRNA and protein expression. Conversely, overexpression of DBC1 results in a decrease in PEPCK mRNA and protein levels. DBC1 regulates the levels of Rev-erbα, and manipulation of Rev-erbα activity or levels prevents the effect of DBC1 on PEPCK. In addition, Rev-erbα levels decrease in the first hours of fasting. Finally, knockdown of the deacetylase SIRT1 eliminates the effect of DBC1 knockdown on Rev-erbα levels and PEPCK expression, suggesting that the mechanism of PEPCK regulation is, at least in part, dependent on the activity of this enzyme. Our results point to DBC1 as a novel regulator of gluconeogenesis.  相似文献   

12.
mTORC1 contains multiple proteins and plays a central role in cell growth and metabolism. Raptor (regulatory-associated protein of mammalian target of rapamycin (mTOR)), a constitutively binding protein of mTORC1, is essential for mTORC1 activity and critical for the regulation of mTORC1 activity in response to insulin signaling and nutrient and energy sufficiency. Herein we demonstrate that mTOR phosphorylates raptor in vitro and in vivo. The phosphorylated residues were identified by using phosphopeptide mapping and mutagenesis. The phosphorylation of raptor is stimulated by insulin and inhibited by rapamycin. Importantly, the site-directed mutation of raptor at one phosphorylation site, Ser863, reduced mTORC1 activity both in vitro and in vivo. Moreover, the Ser863 mutant prevented small GTP-binding protein Rheb from enhancing the phosphorylation of S6 kinase (S6K) in cells. Therefore, our findings indicate that mTOR-mediated raptor phosphorylation plays an important role on activation of mTORC1.Mammalian target of rapamycin (mTOR)2 has been shown to function as a critical controller in cellular growth, survival, metabolism, and development (1). mTOR, a highly conserved Ser-Thr phosphatidylinositol 3-kinase-related protein kinase, structurally forms two distinct complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), each of which catalyzes the phosphorylation of different substrates (1). The best characterized substrates for mTORC1 are eIF4E-binding protein (4E-BP, also known as PHAS) and p70 S6 kinase (S6K) (1), whereas mTORC2 phosphorylates the hydrophobic and turn motifs of protein kinase B (Akt/protein kinase B) (2) and protein kinase C (3, 4). mTORC1 constitutively consists of mTOR, raptor, and mLst8/GβL (1), whereas the proline-rich Akt substrate of 40 kDa (PRAS40) is a regulatory component of mTORC1 that disassociates after growth factor stimulation (5, 6). Raptor is essential for mTORC1 activity by providing a substrate binding function (7) but also plays a regulatory role on mTORC1 with stimuli of growth factors and nutrients (8). In response to insulin, raptor binding to substrates is elevated through the release of the competitive inhibitor PRAS40 from mTORC1 (9, 10) because PRAS40 and the substrates of mTORC1 (4E-BP and S6K) appear to bind raptor through a consensus sequence, the TOR signaling (TOS) motif (1014). In response to amino acid sufficiency, raptor directly interacts with a heterodimer of Rag GTPases and promotes mTORC1 localization to the Rheb-containing vesicular compartment (15).mTORC1 integrates signaling pathways from growth factors, nutrients, energy, and stress, all of which generally converge on the tuberous sclerosis complex (TSC1-TSC2) through the phosphorylation of TSC2 (1). Growth factors inhibit the GTPase-activating protein activity of TSC2 toward the small GTPase Rheb via the PI3K/Akt pathway (16, 17), whereas energy depletion activates TSC2 GTPase-activating protein activity by stimulating AMP-activated protein kinase (AMPK) (18). Rheb binds directly to mTOR, albeit with very low affinity (19), and upon charging with GTP, Rheb functions as an mTORC1 activator (6). mTORC1 complexes isolated from growth factor-stimulated cells show increased kinase activity yet do not contain detectable levels of associated Rheb. Therefore, how Rheb-GTP binding to mTOR leads to an increase in mTORC1 activity toward substrates, and what the role of raptor is in this activation is currently unknown. More recently, the AMPK and p90 ribosomal S6 kinase (RSK) have been reported to directly phosphorylate raptor and regulate mTORC1 activity. The phosphorylation of raptor directly by AMPK reduced mTORC1 activity, suggesting an alternative regulation mechanism independent of TSC2 in response to energy supply (20). RSK-mediated raptor phosphorylation enhances mTORC1 activity and provides a mechanism whereby stress may activate mTORC1 independent of the PI3K/Akt pathway (21). Therefore, the phosphorylation status of raptor can be critical for the regulation of mTORC1 activity.In this study, we investigated phosphorylation sites in raptor catalyzed by mTOR. Using two-dimensional phosphopeptide mapping, we found that Ser863 and Ser859 in raptor were phosphorylated by mTOR both in vivo and in vitro. mTORC1 activity in vitro and in vivo is associated with the phosphorylation of Ser863 in raptor.  相似文献   

13.
14.
15.
IFN-γ activates cells to restrict intracellular pathogens by upregulating cellular effectors including the p65 family of guanylate-binding proteins (GBPs). Here we test the role of Gbp1 in the IFN-γ-dependent control of T. gondii in the mouse model. Virulent strains of T. gondii avoided recruitment of Gbp1 to the parasitophorous vacuole in a strain-dependent manner that was mediated by the parasite virulence factors ROP18, an active serine/threonine kinase, and the pseudokinase ROP5. Increased recruitment of Gbp1 to Δrop18 or Δrop5 parasites was associated with clearance in IFN-γ-activated macrophages in vitro, a process dependent on the autophagy protein Atg5. The increased susceptibility of Δrop18 mutants in IFN-γ-activated macrophages was reverted in Gbp1−/− cells, and decreased virulence of this mutant was compensated in Gbp1−/− mice, which were also more susceptible to challenge with type II strain parasites of intermediate virulence. These findings demonstrate that Gbp1 plays an important role in the IFN-γ-dependent, cell-autonomous control of toxoplasmosis and predict a broader role for this protein in host defense.  相似文献   

16.
Tomato (Lycopersicon esculentum Miller) fruit discs fed with [2,3-14C]1-aminocyclopropane-1-carboxylic acid (ACC) formed 1-malonyl-ACC (MACC) as the major conjugate of ACC in fruit throughout all ripening stages, from immature-green through the red-ripe stage. Another conjugate of ACC, γ-glutamyl-ACC (GACC), was formed only in mature-green fruit in an amount about 10% of that of MACC; conjugation of ACC into GACC was not detected in fruits at other ripening stages. No GACC formation was observed from etiolated mung bean (Vigna radiata [L.] Wilczek) hypocotyls, etiolated common vetch (Vicia sativum L.) epicotyls, or pea (Pisum sativum L.) root tips, etiolated epicotyls, and green stem tissue, where active conversion of ACC into MACC was observed. GACC was, however, formed in vitro in extracts from fruit of all ripening stages. GACC formation in an extract from red fruit at pH 7.15 was only about 3% of that at pH 8.0, the pH at which most assays were run. Our present in vivo data support the previous contention that MACC is the major conjugate of ACC in plant tissues, whereas GACC is a minor, if any, conjugate of ACC. Thus, our data do not support the proposal that GACC formation could be more important than MACC formation in tomato fruit.  相似文献   

17.
18.
Recently, this laboratory identified a proton-coupled folate transporter (PCFT), with optimal activity at low pH. PCFT is critical to intestinal folate absorption and transport into the central nervous system because there are loss-of-function mutations in this gene in the autosomal recessive disorder, hereditary folate malabsorption. The current study addresses the role PCFT might play in another transport pathway, folate receptor (FR)-mediated endocytosis. FRα cDNA was transfected into novel PCFT+ and PCFT HeLa sublines. FRα was shown to bind and trap folates in vesicles but with minimal export into the cytosol in PCFT cells. Cotransfection of FRα and PCFT resulted in enhanced folate transport into cytosol as compared with transfection of FRα alone. Probenecid did not inhibit folate binding to FR, but inhibited PCFT-mediated transport at endosomal pH, and blocked FRα-mediated transport into the cytosol. FRα and PCFT co-localized to the endosomal compartment. These observations (i) indicate that PCFT plays a role in FRα-mediated endocytosis by serving as a route of export of folates from acidified endosomes and (ii) provide a functional role for PCFT in tissues in which it is expressed, such as the choroid plexus, where the extracellular milieu is at neutral pH.Loss of function mutations of the proton-coupled folate transporter (PCFT),2 which functions optimally at low pH, are the molecular basis for the autosomal recessive disorder, hereditary folate malabsorption (HFM) (14). Infants present with this disorder several months after birth with marked folate deficiency anemia, hypogammaglobulinemia with immune deficiency and infections, neurological deficits, and often seizures (5). PCFT is highly expressed at the apical brush-border membrane of the duodenum and proximal jejunum (69) where the pH at the microclimate of the surface of this epithelium is low (pH 5.8–6.0), and folates are absorbed (1, 7, 10, 11). Hence, the failure to absorb folates in the absence of this transporter in HFM is expected. However, PCFT expression, and its associated folate transport activity at low pH, is observed in many tissues where the transport interface is presumed to be at pH 7.4 (12). Of particular interest is the mechanism by which PCFT mediates transport of folates into the central nervous system (CNS) where this transporter is expressed in brain and choroid plexus (1, 7, 13). Transport into the CNS is impaired in patients with HFM who have very low cerebrospinal fluid (CSF) folate levels and marked reversal of the blood:CSF folate gradient which is normally 2–3:1 (5).Folates are also transported into cells by a receptor-mediated process. Folate receptor-α (FRα) is anchored to cell membranes via a glycosylphosphatidylinositol domain. Uptake begins with folate binding to receptor at the cell surface followed by invagination of the membrane and the formation of endosomes that traffic along microtubules to a perinuclear compartment before returning to the plasma membrane (1416). During transit in the cytoplasm, endosomes acidify to a pH of ∼6.0–6.5 (17), folate is released from the receptor and exported from the intact endosome into the cytoplasm. This putative exporter was shown to require a trans-endosomal pH gradient (1820).The current report addresses the hypothesis that PCFT is an endosomal folate exporter and thereby plays a role in FRα-mediated endocytosis (1, 2, 21, 22), that the ubiquitous expression of PCFT in mammalian tissues may be related to this function, and that loss of this function may be a basis for the low CSF folate levels in HFM. The experimental approach utilized a series of HeLa sublines, developed in this laboratory, in which constitutive expression of FRα is negligible. HeLa R5 cells lack reduced folate carrier (RFC) function due to a genomic deletion of this gene (23). A derivative of R5 cells, HeLa R1-11 cells lack, in addition, PCFT expression, while an R1-11 revertant re-expresses PCFT (24). The impact of PCFT on FRα-mediated endocytosis, achieved by transfection of the receptor into these cell lines, was assessed under conditions in which there was negligible PCFT-mediated transport directly across the plasma membrane into cells.  相似文献   

19.
20.
Heterochromatin protein 1 (HP1) is a conserved component of the highly compact chromatin of higher eukaryotic centromeres and telomeres. Cytogenetic experiments in Drosophila have shown that HP1 localization into this chromatin is perturbed in mutants for the origin recognition complex (ORC) 2 subunit. ORC has a multisubunit DNA-binding activity that binds origins of DNA replication where it is required for origin firing. The DNA-binding activity of ORC is also used in the recruitment of the Sir1 protein to silence nucleation sites flanking silent copies of the mating-type genes in Saccharomyces cerevisiae. A fraction of HP1 in the maternally loaded cytoplasm of the early Drosophila embryo is associated with a multiprotein complex containing Drosophila melanogaster ORC subunits. This complex appears to be poised to function in heterochromatin assembly later in embryonic development. Here we report the identification of a novel component of this complex, the HP1/ORC-associated protein. This protein contains similarity to DNA sequence-specific HMG proteins and is shown to bind specific satellite sequences and the telomere-associated sequence in vitro. The protein is shown to have heterochromatic localization in both diploid interphase and mitotic chromosomes and polytene chromosomes. Moreover, the gene encoding HP1/ORC-associated protein was found to display reciprocal dose-dependent variegation modifier phenotypes, similar to those for mutants in HP1 and the ORC 2 subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号