首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We present genetic studies that help define the functional network underlying intrinsic aminoglycoside resistance in Pseudomonas aeruginosa. Our analysis shows that proteolysis, particularly that controlled by the membrane protease FtsH, is a major determinant of resistance. First, we examined the consequences of inactivating genes controlled by AmgRS, a two-component regulator required for intrinsic tobramycin resistance. Three of the gene products account for resistance: a modulator of FtsH protease (YccA), a membrane protease (HtpX), and a membrane protein of unknown function (PA5528). Second, we screened mutations inactivating 66 predicted proteases and related functions. Insertions inactivating two FtsH protease accessory factors (HflK and HflC) and a cytoplasmic protease (HslUV) increased tobramycin sensitivity. Finally, we generated an ftsH deletion mutation. The mutation dramatically increased aminoglycoside sensitivity. Many of the functions whose inactivation increased sensitivity appeared to act independently, since multiple mutations led to additive or synergistic effects. Up to 500-fold increases in tobramycin sensitivity were observed. Most of the mutations also were highly pleiotropic, increasing sensitivity to a membrane protein hybrid, several classes of antibiotics, alkaline pH, NaCl, and other compounds. We propose that the network of proteases provides robust protection from aminoglycosides and other substances through the elimination of membrane-disruptive mistranslation products.  相似文献   

2.
3.
4.
Briefly     
《CMAJ》2013,185(16):E754
  相似文献   

5.
Highlights     
《CMAJ》2013,185(16):1375
  相似文献   

6.
7.
8.
9.
10.
Carpe diem     
Sharon McCutcheon 《CMAJ》2022,194(1):E483
  相似文献   

11.
Hepatic fibrosis induced by egg deposition is the most serious pathology associated with chronic schistosomiasis, in which the hepatic stellate cell (HSC) plays a central role. While the effect of Schistosoma mansoni eggs on the fibrogenic phenotype of HSCs has been investigated, studies determining the effect of eggs of S . japonicum on HSCs are lacking. Disease caused by S . japonicum is much more severe than that resulting from S. mansoni infection so it is important to compare the pathologies caused by these two parasites, to determine whether this phenotype is due to the species interacting differently with the mammalian host. Accordingly, we investigated the effect of S japonicum eggs on the human HSC cell line, LX-2, with and without TGF-β (Transforming Growth Factor beta) co-treatment, so as to determine the impact on genes associated with fibrogenesis, inflammation and matrix re-organisation. Activation status of HSCs was assessed by αSMA (Alpha Smooth Muscle Actin) immunofluorescence, accumulation of Oil Red O-stained lipid droplets and the relative expression of selected genes associated with activation. The fibrogenic phenotype of HSCs was inhibited by the presence of eggs both with or without TGF-β treatment, as evidenced by a lack of αSMA staining and reduced gene expression of αSMA and Col1A1 (Collagen 1A1). Unlike S. mansoni-treated cells, however, expression of the quiescent HSC marker PPAR-γ (Peroxisome Proliferator-Activated Receptor gamma) was not increased, nor was there accumulation of lipid droplets. In contrast, S . japonicum eggs induced the mRNA expression of MMP-9 (Matrix Metalloproteinase 9), CCL2 (Chemokine (C-C motif) Ligand 2) and IL-6 (Interleukin 6) in HSCs indicating that rather than inducing complete HSC quiescence, the eggs induced a proinflammatory phenotype. These results suggest HSCs in close proximity to S . japonicum eggs in the liver may play a role in the proinflammatory regulation of hepatic granuloma formation.  相似文献   

12.
13.
14.
Dictyostelium discoideum amoebae have been used extensively to study the structure and dynamics of the endocytic pathway. Here, we show that while the general structure of the endocytic pathway is maintained in starved cells, its dynamics rapidly slow down. In addition, analysis of apm3 and lvsB mutants reveals that the functional organization of the endocytic pathway is profoundly modified upon starvation. Indeed, in these mutant cells, some of the defects observed in rich medium persist in starved cells, notably an abnormally slow transfer of endocytosed material between endocytic compartments. Other parameters, such as endocytosis of the fluid phase or the rate of fusion of postlysosomes to the cell surface, vary dramatically upon starvation. Studying the endocytic pathway in starved cells can provide a different perspective, allowing the primary (invariant) defects resulting from specific mutations to be distinguished from their secondary (conditional) consequences.Dictyostelium discoideum is a widely used model organism for studying the organization and function of the endocytic pathway. In Dictyostelium, the organization of the endocytic pathway is similar to that in higher eukaryotes. The pathway in Dictyostelium can be divided into four steps (see Fig. S1 in the supplemental material): uptake at the plasma membrane of particles and medium, transfer through early acidic endocytic compartments (lysosomes), passage into less acidic postlysosomes (PLs), and finally, exocytosis of undigested materials (17, 20). Thus, Dictyostelium recapitulates many of the functions of the endocytic pathway in mammalian cells, including some features observed in most cell types (lysosome biogenesis) and some observed only in specialized cells (phagocytosis, macropinocytosis, and lysosome secretion).Dictyostelium amoebae live in the soil, where they feed by ingesting and digesting other microorganisms. In addition, axenic laboratory strains can macropinocytose medium to ensure their growth. Accordingly, both in natural situations and in laboratory settings, the endocytic pathway plays a key role in the acquisition of nutrients by Dictyostelium cells. In agreement with this notion, several observations suggest that the physiology of the endocytic pathway is sensitive to nutrient availability. In particular, starvation induces secretion of lysosomal enzymes by an unknown mechanism (11). The morphology of the endocytic pathway is also sensitive to nutritional cues, as shown for example by the observation that formation of multilamellar endosomes is enhanced in cells fed with bacteria (18).Here, we analyzed the effect of starvation on the organization as well as the dynamics of the endocytic pathway. We found that, while the overall organization was not extensively modified in starved cells, the dynamics of endocytic compartments were altered. Moreover, analysis of two specific knockout mutants, the apm3 (6) and lvsB (8) strains, revealed that their phenotype was profoundly altered upon starvation, providing further insight about the role of Apm3 and LvsB in the endocytic pathway.  相似文献   

15.
Background  Characterizing the biomechanical failure responses of neonatal peripheral nerves is critical in understanding stretch-related peripheral nerve injury mechanisms in neonates. Objective  This in vitro study investigated the effects of prestretch magnitude and duration on the biomechanical failure behavior of neonatal piglet brachial plexus (BP) and tibial nerves. Methods  BP and tibial nerves from 32 neonatal piglets were harvested and prestretched to 0, 10, or 20% strain for 90 or 300 seconds. These prestretched samples were then subjected to tensile loading until failure. Failure stress and strain were calculated from the obtained load-displacement data. Results  Prestretch magnitude significantly affected failure stress but not the failure strain. BP nerves prestretched to 10 or 20% strain, exhibiting significantly lower failure stress than those prestretched to 0% strain for both prestretch durations (90 and 300 seconds). Likewise, tibial nerves prestretched to 10 or 20% strain for 300 seconds, exhibiting significantly lower failure stress than the 0% prestretch group. An effect of prestretch duration on failure stress was also observed in the BP nerves when subjected to 20% prestretch strain such that the failure stress was significantly lower for 300 seconds group than 90 seconds group. No significant differences in the failure strains were observed. When comparing BP and tibial nerve failure responses, significantly higher failure stress was reported in tibial nerve prestretched to 20% strain for 300 seconds than BP nerve. Conclusion  These data suggest that neonatal peripheral nerves exhibit lower injury thresholds with increasing prestretch magnitude and duration while exhibiting regional differences.  相似文献   

16.
17.
Stachyose synthase (STS) (EC 2.4.1.67) was purified to homogeneity from mature seeds of adzuki bean (Vigna angularis). Electrophoresis under denaturing conditions revealed a single polypeptide of 90 kD. Size-exclusion chromatography of the purified enzyme yielded two activity peaks with apparent molecular masses of 110 and 283 kD. By isoelectric focusing and chromatofocusing the protein was separated into several active forms with isoelectric point values between pH 4.7 and 5.0. Purified STS catalyzed the transfer of the galactosyl group from galactinol to raffinose and myo-inositol. Additionally, the enzyme catalyzed the galactinol-dependent synthesis of galactosylononitol from d-ononitol. The synthesis of a galactosylcyclitol by STS is a new oberservation. Mutual competitive inhibition was observed when the enzyme was incubated with both substrates (raffinose and ononitol) simultaneously. Galactosylononitol could also substitute for galactinol in the synthesis of stachyose from raffinose. Although galactosylononitol was the less-efficient donor, the Michaelis constant value for raffinose was lower in the presence of galactosylononitol (13.2 mm) compared with that obtained in the presence of galactinol (38.6 mm). Our results indicate that STS catalyzes the biosynthesis of galactosylononitol, but may also mediate a redistribution of galactosyl residues from galactosylononitol to stachyose.  相似文献   

18.
19.
Tandem repeat (TR) regions are common in yeast adhesins, but their structures are unknown, and their activities are poorly understood. TR regions in Candida albicans Als proteins are conserved glycosylated 36-residue sequences with cell-cell aggregation activity (J. M. Rauceo, R. De Armond, H. Otoo, P. C. Kahn, S. A. Klotz, N. K. Gaur, and P. N. Lipke, Eukaryot. Cell 5:1664–1673, 2006). Ab initio modeling with either Rosetta or LINUS generated consistent structures of three-stranded antiparallel β-sheet domains, whereas randomly shuffled sequences with the same composition generated various structures with consistently higher energies. O- and N-glycosylation patterns showed that each TR domain had exposed hydrophobic surfaces surrounded by glycosylation sites. These structures are consistent with domain dimensions and stability measurements by atomic force microscopy (D. Alsteen, V. Dupres, S. A. Klotz, N. K. Gaur, P. N. Lipke, and Y. F. Dufrene, ACS Nano 3:1677–1682, 2009) and with circular dichroism determination of secondary structure and thermal stability. Functional assays showed that the hydrophobic surfaces of TR domains supported binding to polystyrene surfaces and other TR domains, leading to nonsaturable homophilic binding. The domain structures are like “classic” subunit interaction surfaces and can explain previously observed patterns of promiscuous interactions between TR domains in any Als proteins or between TR domains and surfaces of other proteins. Together, the modeling techniques and the supporting data lead to an approach that relates structure and function in many kinds of repeat domains in fungal adhesins.Yeast adhesins are a diverse set of cell adhesion proteins that mediate adhesion to host cells, environmental substrates, other fungi, and coinfecting bacteria (6, 8, 20, 21, 23, 29). The adhesins share common features, including compact N-terminal domains similar to Ig or lectin domains, Thr-rich midpieces, often in tandem repeats, and long highly glycosylated Ser/Thr-rich C-terminal regions that extend the functional domains out from the cell surface. No structures for the Thr-rich midpieces are known, but they can mediate aggregation of fungal cells (33, 35, 47). The prevalence and conservation of such repeats argue that they are functionally important, despite limited data on their structure and function.In Candida albicans, the Als adhesins are homologous proteins, products of 8 loci that encode numerous alleles of cell surface adhesins (16). In each mature Als protein, there are, from the N terminus, three tandem Ig-like domains, a β-sheet-rich conserved 127-residue amyloid-forming T region, a variable number of 36-residue tandem repeats (TRs), and a highly glycosylated stalk region that extends the N-terminal domains away from the cell surface (Fig. 1) (16, 33, 41). The C termini of these and other wall-associated adhesins are covalently cross-linked into the cell wall through transglycosylation of a modified glycosylphosphatidylinositol (GPI) anchor (18, 25). This modular design, including tandem repeats, is typical of fungal adhesins (8).Open in a separate windowFig. 1.Schematic diagram of the sequence of Als5p. The regions are named above, and the number of amino acid residues in each region is shown below. The modeled sequences are in the TR region.The Als protein Ig-like region, T region, and TR region all have protein-protein interaction activities (26, 33, 35). The Ig-like regions can interact with diverse mammalian proteins, presumably in a way analogous to antibody-antigen binding, as has been shown in the homologous protein α-agglutinin from Saccharomyces cerevisiae (8, 24, 26, 35). The T regions interact through formation of amyloid-like structures both in vivo and in vitro (33, 34a, 36). An insight into the function of the tandem repeats followed from observations that Als proteins initiate and maintain cell-to-cell aggregations, either spontaneously (“autoaggregation”) or following adhesion to a bead-bound defined ligand (10, 11, 36). Aggregation is more extensive for Als proteins with more tandem repeats (26, 35). This result suggested that the tandem repeats are uniquely structured to facilitate or mediate the aggregative function. Circular dichroism spectroscopy of the TR region of Als5p shows a β-sheet-rich structure in the soluble protein (35).In support of their direct involvement in aggregation, the repeat region of the C. albicans adhesin Als5p mediates cell-cell aggregation in the absence of the Ig-like and T domains (35). Moreover, the repeats can also potentiate binding of Als5p to fibronectin (35). Thus, the TR domains mediate cellular aggregation and increased binding to fibronectin. In addition, TR domains and their amino acid sequences are highly conserved across several Candida species (3). These properties need to be explained by their three-dimensional structure.Because there are no homologous structures known, we modeled by two independent ab initio methods. Rosetta assembles structures by combining short peptide structures extracted from the protein structural database PDB (38), then combines structures in a Monte Carlo approach, and assesses energetics of assembled structures. Rosetta has recently been shown to generate accurate models for protein-sized domains (40). We also predicted structures with LINUS, which generates randomized structures and rapidly estimates energetics to choose low-energy models (45). The models were supported by structural analyses with atomic force microscopy and circular dichroism spectroscopy. Functional assays showed that the TR domains can mediate binding activities predicted from the calculated structures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号