首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to investigate the association of functional variants of the human CX3CR1 gene (Fractalkine receptor) with the risk of Amyotrophic Lateral Sclerosis (ALS), the survival and the progression rate of the disease symptoms in a Spanish ALS cohort. 187 ALS patients (142 sporadic [sALS] and 45 familial) and 378 controls were recruited. We investigated CX3CR1 V249I (rs3732379) and T280M (rs3732378) genotypes and their haplotypes as predictors of survival, the progression rate of the symptoms (as measured by ALSFRS-R and FVC decline) and the risk of suffering ALS disease. The results indicated that sALS patients with CX3CR1 249I/I or 249V/I genotypes presented a shorter survival time (42.27±4.90) than patients with 249V/V genotype (67.65±7.42; diff −25.49 months 95%CI [−42.79,−8.18]; p = 0.004; adj-p = 0.018). The survival time was shorter in sALS patients with spinal topography and CX3CR1 249I alleles (diff = −29.78 months; 95%CI [−49.42,−10.14]; p = 0.003). The same effects were also observed in the spinal sALS patients with 249I–280M haplotype (diff = −27.02 months; 95%CI [−49.57, −4.48]; p = 0.019). In the sALS group, the CX3CR1 249I variant was associated with a faster progression of the disease symptoms (OR = 2.58; 95IC% [1.32, 5.07]; p = 0.006; adj-p = 0.027). There was no evidence for association of these two CX3CR1 variants with ALS disease risk. The association evidenced herein is clinically relevant and indicates that CX3CR1 could be a disease-modifying gene in sALS. The progression rate of the disease''s symptoms and the survival time is affected in patients with one or two copies of the CX3CR1 249I allele. The CX3CR1 is the most potent ALS survival genetic factor reported to date. These results reinforce the role of the immune system in ALS pathogenesis.  相似文献   

2.
3.
4.
The expression of complement receptors by human follicular dendritic cells (FDC) was investigated by immunohistochemical techniques by using polyclonal and monoclonal antibodies to antigenic determinants of CR1, CR2, and CR3. Upon optical immunohistochemical examination of frozen sections from human reactive lymph nodes and tonsils by a three-step immunoperoxidase technique, a strong staining of cell bodies and cytoplasmic extensions of FDC was observed in germinal centers with anti-CR1 and anti-CR2 antibodies. Staining for these antigens was also found on cytoplasmic extensions of FDC in the mantle zone and on the plasma membrane of B cells in the entire follicles. Staining of FDC with anti-CR2 antibody was more intense than that of B lymphocytes. Monoclonal antibodies directed against epitopes of the alpha-chain of CR3 weakly stained FDC in follicles in a similar pattern to that which was observed on adjacent sections with mouse monoclonal antibody KIM4 that only recognizes FDC in human lymph nodes. Immunoelectron-microscopy was performed on frozen sections of a lymph node involved with a centroblastic centrocytic B malignant lymphoma and a reactive tonsil with the use of rabbit F(ab')2 anti-CR1 antibodies and mouse monoclonal anti-CR2 antibody. All the plasma membrane of the cell body and cytoplasmic extensions of FDC in germinal centers and in the mantle zones homogeneously stained for CR1 and CR2 antigens. Fibroblastic reticulum cells were negative. The plasma membrane of tumoral B lymphocytes strongly stained with anti-CR1 and weakly stained with anti-CR2 antibodies. The presence of CR1, CR2, and CR3 on FDC is a unique surface characteristic of these cells that should optimally allow the cells to bind antigen/antibody complexes bearing any type of C3 fragment.  相似文献   

5.
6.
The functional and antigenic characteristics of C3 receptors expressed on human eosinophils were investigated using rosette assays with sheep erythrocytes coated with C3 fragments and flow cytometric analysis of cells stained with anti-receptor antibodies. Purified peripheral blood eosinophils from 13 patients with hypereosinophilia expressed CR1 antigens. In 8 patients, a mean of 14 + 9.5% eosinophils formed C3b-dependent rosettes that were inhibited by F(ab')2 anti-CR1 antibodies. This number increased to 33% following stimulation with leukotriene B4 (LTB4) (10(-7) M). Similar numbers of C3b rosettes were formed by hypodense and normodense eosinophils. Eosinophils from 2 patients from this group expressed 20,000 125I-labeled monoclonal anti-CR1 antibody binding sites/cell. In another group of patients, 55 +/- 9% eosinophils spontaneously formed C3b-dependent rosettes that could not be enhanced by LTB4. In all patients, a mean of 16 +/- 9% eosinophils formed cation-dependent rosettes with C3bi-bearing intermediates that were inhibited by anti-CR3 antibody OKM1. All eosinophils stained with monoclonal antibodies against the alpha chain of CR3. There was no C3d-dependent rosette formation with eosinophils and no eosinophils stained with monoclonal anti-CR2 antibody. Thus, human eosinophils express CR1 and CR3. Since CR3 is required for the adhesion of granulocytes to surfaces and antibody-dependent cellular cytotoxicity of neutrophils, the interaction of C3 fragments with CR3 and CR1 on eosinophils may be of importance in eosinophil-mediated damage of opsonized targets.  相似文献   

7.
In the present study we examined human neutrophils for the expression of a receptor capable of binding C3dg and defined the relationship of this receptor to those that have been previously described, namely CR1, CR2, and CR3. C3dg was isolated from serum depleted of plasminogen, supplemented with 20 mM Mg++, and incubated at 37 degrees C for 6 to 8 days. The purified protein was homogeneous when analyzed by polyacrylamide gel electrophoresis and exhibited an apparent m.w. of 41,000. C3dg was polymerized by treatment with dimethyl suberimidate, and the dimer was isolated by gel filtration. Binding of both monomeric and dimeric 125I-labeled C3dg to neutrophils was saturable, and the latter ligand bound to an average of 12,400 sites/cell among nine normal individuals. At 4 degrees C, bound monomeric C3dg dissociated from neutrophils with an average t1/2 of 30 min, whereas dimeric C3dg dissociated with a t1/2 in excess of 120 min. Specific binding of multimeric C3dg was cation independent and was competitively inhibited by molar concentrations of iC3b and C3d that were equivalent to the inhibitory concentrations of unlabeled C3dg; C3b was less able to compete with C3dg for binding to these sites. The capacity of this neutrophil receptor to bind iC3b, C3dg, and C3d suggested its possible identity as CR2 or CR3. However, no specific binding to neutrophils of 125I-labeled HB-5 monoclonal anti-CR2 was detected. Furthermore, uptake of 125I-labeled C3dg was not inhibited by saturating concentrations of rabbit anti-CR1, anti-Mac-1, or OKM10. Thus, a receptor resides on neutrophils that binds the C3d region of iC3b and C3dg and is distinct from CR1, CR2, and CR3.  相似文献   

8.
9.
10.
The new field of synthetic biology aims at the creation of artificially designed organisms. A major breakthrough in the field was the generation of the artificial synthetic organism Mycoplasma mycoides JCVI‐syn3A. This bacterium possesses only 452 protein‐coding genes, the smallest number for any organism that is viable independent of a host cell. However, about one third of the proteins have no known function indicating major gaps in our understanding of simple living cells. To facilitate the investigation of the components of this minimal bacterium, we have generated the database SynWiki (http://synwiki.uni-goettingen.de/). SynWiki is based on a relational database and gives access to published information about the genes and proteins of M. mycoides JCVI‐syn3A. To gain a better understanding of the functions of the genes and proteins of the artificial bacteria, protein–protein interactions that may provide clues for the protein functions are included in an interactive manner. SynWiki is an important tool for the synthetic biology community that will support the comprehensive understanding of a minimal cell as well as the functional annotation of so far uncharacterized proteins.  相似文献   

11.
Regulation of isoprenoid end-product synthesis required for normal growth and development in plants is not well understood. To investigate the extent to which specific genes for the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) are involved in end-product regulation, we manipulated expression of the HMG1 and HMG2 genes in tomato (Lycopersicon esculentum) fruit using arachidonic acid (AA). In developing young fruit AA blocked fruit growth, inhibited HMG1, and activated HMG2 expression. These results are consistent with other reports indicating that HMG1 expression is closely correlated with growth processes requiring phytosterol production. In mature-green fruit AA strongly induced the expression of HMG2, PSY1 (the gene for phytoene synthase), and lycopene accumulation before the normal onset of carotenoid synthesis and ripening. The induction of lycopene synthesis was not blocked by inhibition of HMGR activity using mevinolin, suggesting that cytoplasmic HMGR is not required for carotenoid synthesis. Our results are consistent with the function of an alternative plastid isoprenoid pathway (the Rohmer pathway) that appears to direct the production of carotenoids during tomato fruit ripening.  相似文献   

12.
Understanding the origins of biodiversity has been an aspiration since the days of early naturalists. The immense complexity of ecological, evolutionary, and spatial processes, however, has made this goal elusive to this day. Computer models serve progress in many scientific fields, but in the fields of macroecology and macroevolution, eco-evolutionary models are comparatively less developed. We present a general, spatially explicit, eco-evolutionary engine with a modular implementation that enables the modeling of multiple macroecological and macroevolutionary processes and feedbacks across representative spatiotemporally dynamic landscapes. Modeled processes can include species’ abiotic tolerances, biotic interactions, dispersal, speciation, and evolution of ecological traits. Commonly observed biodiversity patterns, such as α, β, and γ diversity, species ranges, ecological traits, and phylogenies, emerge as simulations proceed. As an illustration, we examine alternative hypotheses expected to have shaped the latitudinal diversity gradient (LDG) during the Earth’s Cenozoic era. Our exploratory simulations simultaneously produce multiple realistic biodiversity patterns, such as the LDG, current species richness, and range size frequencies, as well as phylogenetic metrics. The model engine is open source and available as an R package, enabling future exploration of various landscapes and biological processes, while outputs can be linked with a variety of empirical biodiversity patterns. This work represents a key toward a numeric, interdisciplinary, and mechanistic understanding of the physical and biological processes that shape Earth’s biodiversity.

This study describes a novel mechanistic engine that predicts a realistic global latitudinal diversity gradient, species richness distribution and phylogenies. This approach is a step towards the interdisciplinary numeric understanding of the physical and biological processes that have shaped Earth’s biodiversity.  相似文献   

13.
Nonsyndromic cleft palate only (NSCP) is a common congenital malformation worldwide. In this study, we report a three‐generation pedigree with NSCP following the autosomal‐dominant pattern. Whole‐exome sequencing and Sanger sequencing revealed that only the frameshift variant c.1012dupG [p. E338Gfs*26] in PARD3 cosegregated with the disease. In zebrafish embryos, ethmoid plate patterning defects were observed with PARD3 ortholog disruption or expression of patient‐derived N‐terminal truncating PARD3 (c.1012dupG), which implicated PARD3 in ethmoid plate morphogenesis. PARD3 plays vital roles in determining cellular polarity. Compared with the apical distribution of wild‐type PARD3, PARD3‐p. E338Gfs*26 mainly localized to the basal membrane in 3D‐cultured MCF‐10A epithelial cells. The interaction between PARD3‐p. E338Gfs*26 and endogenous PARD3 was identified by LC–MS/MS and validated by co‐IP. Immunofluorescence analysis showed that PARD3‐p. E338Gfs*26 substantially altered the localization of endogenous PARD3 to the basement membrane in 3D‐cultured MCF‐10A cells. Furthermore, seven variants, including one nonsense variant and six missense variants, were identified in the coding region of PARD3 in sporadic cases with NSCP. Subsequent analysis showed that PARD3‐p. R133*, like the insertion variant of c.1012dupG, also changed the localization of endogenous full‐length PARD3 and that its expression induced abnormal ethmoid plate morphogenesis in zebrafish. Based on these data, we reveal PARD3 gene variation as a novel candidate cause of nonsyndromic cleft palate only.  相似文献   

14.
15.
We have previously demonstrated that the alphaMbeta2 integrin (known as CR3 or Mac-1) expressed on neutrophils (PMNs) and/or on CHO Mac-1 transfected cells,in the presence of serum complement binds B. burgdorferi and promotes an increased non -opsonic adhesion, in the presence of serum complement. In this study we demonstrate that: 1) living motile B. burgdorferiand recombinant lipidated OspA and OspC, up-regulate CR3 expression on PMNs; 2) in the absence of serum, B. burgdorferi induces increased adhesion of CHO cells expressing CR3 to fibronectin, an extracellular matrix protein. Both the I-domain and the lectin-like domain of CR3 are involved in the binding recognition and activation because mAb anti I-domain and N-acetyl-glucosamine inhibit cell adhesion to fibronectin. These data indicate that B. burgdorferi whole cells, but not Osps, activate CR3 integrin; since this receptor plays a key role in priming neutrophils to important inflammatory events, the interaction of B. burgdorferi with neutrophils via the CR3 may enhance their role both in defence and in disease.  相似文献   

16.
Cytochrome cbb3 is the most distant member of the heme-copper oxidase family still retaining the following major feature typical of these enzymes: reduction of molecular oxygen to water coupled to proton translocation across the membrane. The thermodynamic properties of the six redox centers, five hemes and a copper ion, in cytochrome cbb3 from Rhodobacter sphaeroides were studied using optical and EPR spectroscopy. The low spin heme b in the catalytic subunit was shown to have the highest midpoint redox potential (Em,7 +418 mV), whereas the three hemes c in the two other subunits titrated with apparent midpoint redox potentials of +351, +320, and +234 mV. The active site high spin heme b3 has a very low potential (Em,7 -59 mV) as opposed to the copper center (CuB), which has a high potential (Em,7 +330 mV). The EPR spectrum of the ferric heme b3 has rhombic symmetry. To explain the origins of the rhombicity, the Glu-383 residue located on the proximal side of heme b3 was mutated to aspartate and to glutamine. The latter mutation caused a 10 nm blue shift in the optical reduced minus oxidized heme b3 spectrum, and a dramatic change of the EPR signal toward more axial symmetry, whereas mutation to aspartate had far less severe consequences. These results strongly suggest that Glu-383 is involved in hydrogen bonding to the proximal His-405 ligand of heme b3, a unique interaction among heme-copper oxidases.The heme-copper oxidases form a family of enzymes that have structural homology of the catalytic subunit in common (1). This family of proteins, characterized by six conserved histidine ligands of the redox cofactors, ranges from classical, mitochondrial terminal oxidases to nitric-oxide reductases, and the members have been classified according to evolutionary relationships of their sequences (24). The bacterial cbb3-type cytochrome c oxidases form a distinct, divergent subfamily within the heme-copper oxidases (5). Terminal oxidases share the catalytic activity of four-electron reduction of molecular oxygen to water coupled to translocation of protons across the membrane (6, 7). Cytochrome cbb3, expressed in some bacteria as a sole terminal oxidase, is characterized by its ability to maintain catalytic activity under low oxygen tension (8), and it has also been shown to have the capacity to translocate protons (9).The Rhodobacter sphaeroides cytochrome cbb3 is encoded by the ccoNOQP operon composed of four genes (10). The catalytic subunit CcoN homes a binuclear active site composed of a high spin heme b3 and a nearby copper ion (CuB). There are altogether four low spin hemes in the enzyme. In addition to a protoheme (heme b) residing in the vicinity of the active site in subunit CcoN, there are three hemes c present in the soluble domains of the two other transmembrane subunits, a monoheme subunit CcoO and a diheme subunit CcoP (11). There is yet one more membrane-spanning subunit, CcoQ, without bound cofactors (12). Although the catalytic subunit shows homology to the other heme-copper oxidases (13), the other three subunits bear no resemblance to subunits of other types of terminal oxidases. However, subunit CcoO has been shown to have sequence homology with the nitric-oxide reductase subunit NorC (14).The crystal structures of a few heme-copper oxidases have been resolved (1519), but only structural homology models are currently available for cytochromes cbb3 (2023). Apart from the signatures common to all heme-copper oxidases, the sequence alignments have revealed only very few other conserved residues when terminal oxidases are compared. Even though some amino acids, absent from cytochrome cbb3, have been shown to be of critical importance to the function of the classical heme-copper oxidases, the major functions still remain the same in all of these enzymes.The thermodynamic properties of the cbb3-type oxidases have been investigated sparsely. Apart from work yielding partial information about the properties of the hemes (11, 24, 25), two more complete studies have been carried out (5, 26). All the hemes in cytochrome cbb3 were proposed to have high redox potentials, both in the Pseudomonas stutzeri and Bradyrhizobium japonicum enzymes (5, 26). This is also the case in all other studies, except for the enzyme from Rhodothermus marinus, where two low potential redox centers were reported (25). However, little is known about the copper center in the active site (CuB). Early Fourier transform infrared (FTIR)2 spectroscopic measurements identified the presence of a heme/copper binuclear center in R. sphaeroides cytochrome cbb3 (11), and more recent resonance Raman and FTIR studies have given additional information about the structure of the active site (2729).In the absence of deconvoluted spectral components and thereby clear assignments of the redox centers in the cbb3-type oxidases, and the lack of consensus about their thermodynamic properties, a complete study was required. In this work we have set out to investigate the thermodynamic properties of all the redox centers in cytochrome cbb3 from R. sphaeroides using a combination of optical and EPR redox titrations with the main focus on the details of the catalytic site. This effort will form a basis for further mechanistic studies.  相似文献   

17.
18.
19.
Mycobacterium tuberculosis possesses an unusual cell wall that is replete with virulence-enhancing lipids. One cell wall molecule unique to pathogenic M. tuberculosis is polyacyltrehalose (PAT), a pentaacylated, trehalose-based glycolipid. Little is known about the biosynthesis of PAT, although its biosynthetic gene cluster has been identified and found to resemble that of the better studied M. tuberculosis cell wall component sulfolipid-1. In this study, we sought to elucidate the function of papA3, a gene from the PAT locus encoding a putative acyltransferase. To determine whether PapA3 participates in PAT assembly, we expressed the protein heterologously and evaluated its acyltransferase activity in vitro. The purified enzyme catalyzed the sequential esterification of trehalose with two palmitoyl groups, generating a diacylated product similar to the 2,3-diacyltrehalose glycolipids of M. tuberculosis. Notably, PapA3 was selective for trehalose; no activity was observed with other structurally related disaccharides. Disruption of the papA3 gene from M. tuberculosis resulted in the loss of PAT from bacterial lipid extracts. Complementation of the mutant strain restored PAT production, demonstrating that PapA3 is essential for the biosynthesis of this glycolipid in vivo. Furthermore, we determined that the PAT biosynthetic machinery has no cross-talk with that for sulfolipid-1 despite their related structures.Mycobacterium tuberculosis, the bacterium that causes tuberculosis in humans, has a complex cell wall that contains a number of unique glycolipids intimately linked to mycobacterial pathogenesis (1, 2). The biosynthesis of many of these virulence factors, including the trehalose mycolates, phenolic glycolipids, and sulfolipid-1 (SL-1),3 is largely understood (35). In contrast, relatively little is known about the biosynthesis of other prominent M. tuberculosis glycolipids, such as di-, tri-, and polyacyltrehaloses. These acyltrehaloses are located in the outer surface of the cell wall and contain di- and tri-methyl branched fatty acids that are only found in pathogenic species of mycobacteria (6, 7). Previous studies suggest a role for these glycolipids in anchoring the bacterial capsule, which impedes phagocytosis by host cells (6).The major polyacyltrehalose (PAT) of M. tuberculosis, also referred to as pentaacyl or polyphthienoyl trehalose, consists of five acyl chains, four mycolipenic (phthienoic) acids and one fully saturated fatty acid, linked to trehalose (Fig. 1A) (8). The mycolipenic acid side chains of PAT are products of the polyketide synthase gene pks3/4 (7). Disruption of pks3/4 (also referred to as msl3 (7)) abolishes PAT biosynthesis and causes cell aggregation. At present, the remaining proteins required for PAT assembly have not been characterized.Open in a separate windowFIGURE 1.PAT and SL-1 share related structures and biosynthetic gene clusters. A, structure of PAT. B, structure of SL-1. C, genomic arrangement of the PAT and SL-1 biosynthetic gene clusters.Interestingly, the PAT biosynthetic gene cluster strongly resembles that of SL-1, which is a structurally similar trehalose-based glycolipid unique to pathogenic mycobacteria (Fig. 1B) (9). Both gene clusters contain polyketide synthase (pks), acyltransferase (pap), and lipid transport (mmpL) genes in a similar genomic arrangement (Fig. 1C). The SL-1 locus encodes two acyltransferase genes, papA1 and papA2, which are required for SL-1 biosynthesis (5, 10). These proteins belong to the mycobacterium-specific polyketide-associated protein (Pap) family of acyltransferases, which share a conserved HX3DX14Y motif that is required for activity (11). The PapA2 enzyme catalyzes the esterification of the 2′-position of trehalose 2-sulfate with a saturated fatty acid. PapA1 mediates the subsequent esterification of this intermediate with a hydroxyphthioceranoyl group produced by Pks2 (5). Interestingly, the PAT locus contains a gene, Rv1182, that is homologous to both papA1 and papA2 (55 and 53% amino acid identity, respectively). This gene is annotated as papA3 in the genome and was previously shown to encode a protein bearing the signature Pap motif (11).Here we demonstrate that papA3 encodes an acyltransferase essential for the biosynthesis of PAT. Deletion of the papA3 gene resulted in loss of the glycolipid from M. tuberculosis lipid extracts, as determined by high resolution mass spectrometry. Moreover, the purified enzyme was shown to selectively and sequentially acylate trehalose in vitro, generating a diacylated product similar to the 2,3-diacyltrehaloses of M. tuberculosis. Together, these data confirm that PapA3 plays a crucial role in PAT biosynthesis and highlight its potential involvement in the biosynthesis of related M. tuberculosis acyltrehaloses.  相似文献   

20.
In previous work with soybean (Glycine max), it was reported that the initial product of 3Z-nonenal (NON) oxidation is 4-hydroperoxy-2E-nonenal (4-HPNE). 4-HPNE can be converted to 4-hydroxy-2E-nonenal by a hydroperoxide-dependent peroxygenase. In the present work we have attempted to purify the 4-HPNE-producing oxygenase from soybean seed. Chromatography on various supports had shown that O2 uptake with NON substrate consistently coincided with lipoxygenase (LOX)-1 activity. Compared with oxidation of LOX's preferred substrate, linoleic acid, the activity with NON was about 400- to 1000-fold less. Rather than obtaining the expected 4-HPNE, 4-oxo-2E-nonenal was the principal product of NON oxidation, presumably arising from the enzyme-generated alkoxyl radical of 4-HPNE. In further work a precipitous drop in activity was noted upon dilution of LOX-1 concentration; however, activity could be enhanced by spiking the reaction with 13S-hydroperoxy-9Z,11E-octadecadienoic acid. Under these conditions the principal product of NON oxidation shifted to the expected 4-HPNE. 4-HPNE was demonstrated to be 83% of the 4S-hydroperoxy-stereoisomer. Therefore, LOX-1 is also a 3Z-alkenal oxygenase, and it exerts the same stereospecificity of oxidation as it does with polyunsaturated fatty acids. Two other LOX isozymes of soybean seed were also found to oxidize NON to 4-HPNE with an excess of 4S-hydroperoxy-stereoisomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号