首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leukocyte cell-derived chemotaxin 2 (LECT2) is a secreted pleiotropic protein that is mainly produced by the liver. We have previously shown that LECT2 plays an important role in the pathogenesis of inflammatory liver diseases. Lipopolysaccharide/d-galactosamine (LPS/d-GalN)-induced acute liver injury is a known animal model of fulminant hepatic failure. Here we found that this hepatic injury was alleviated in LECT2-deficient mice. The levels of TNF-α and IFN-γ, which mediate this hepatitis, had significantly decreased in these mice, with the decrease in IFN-γ production notably greater than that in TNF-α. We therefore analyzed IFN-γ-producing cells in liver mononuclear cells. Flow cytometric analysis showed significantly reduced IFN-γ production in hepatic NK and NKT cells in LECT2-deficient mice compared with in wild-type mice. We also demonstrated a decrease in IFN-γ production in LECT2-deficient mice after systemic administration of recombinant IL-12, which is known to induce IFN-γ in NK and NKT cells. These results indicate that a decrease of IFN-γ production in NK and NKT cells was involved in the alleviation of LPS/d-GalN-induced liver injury in LECT2-deficient mice.  相似文献   

2.
Vα14 natural killer T (Vα14 NKT) cells activated by α-galactosylceramide (α-GalCer) secrete a large amount of Th1 and Th2 cytokines. IFN-γ plays a crucial role in the inflammation response, and is also known as an activator of nitric oxide (NO) production. We previously reported that lipopolysaccharide (LPS)-induced NO production is augmented by α-GalCer in mouse peritoneal cells. Since the liver is susceptible to LPS stimulation via the portal vein, we examined the effect of α-GalCer on LPS-induced NO production in murine intra-hepatic lymphocytes (IHLs). Although IHLs augmented LPS-induced NO production by α-GalCer administration, such an augmentation was not observed in non-treated mice. Furthermore, α-GalCer did not augment LPS-induced NO production in IHLs from IFN-γ knockout mice. In flow cytometry analysis of IHLs from α-GalCer-treated mice, the ratio and number of F4/80- and TLR4-positive cells rose as compared with non-treated mice. The liver injury may be induced by LPS and NO under the condition where Vα14 NKT cells were activated.  相似文献   

3.
Yokochi T 《Innate immunity》2012,18(2):364-370
We have recently established a new experimental murine model for lipopolysaccharide (LPS)-mediated lethal shock with lung-specific injury. Severe lung injury is induced by administration of LPS into α-galactosylceramide (α-GalCer)-sensitized mice; the mice died with acute lung injury and respiratory distress within 24 h. α-GalCer activates natural killer T (NKT) cells in the lungs and liver, and induces the production of interferon (IFN)-γ. However, IFN-γ signaling is only triggered in the lungs and makes them susceptible to LPS. On the other hand, IFN-γ signaling is inhibited in liver and results in few hepatic lesions. Unlike liver NKT cells, lung NKT cells fail to produce interleukin (IL)-4, which down-regulates the IFN-γ signaling, in response to α-GalCer. The differential cytokine profile between lung and liver NKT cells may lead to organ-specific lung lesions. The experimental system using α-GalCer sensitization could be a useful experimental model for clinical endotoxic or septic shock as it presents respiratory failure, a typical manifestation in severe septic patients. In this review, key evidence and the introducuction of the detailed mechanism of LPS-mediated lung-specific injury in α-GalCer-sensitized mice is provided. In particular, the molecular background of organ-specific development of lung injury in the model is focused on.  相似文献   

4.
Immune complex-induced acute lung injury (IC-ALI) has been implicated in various pulmonary disease states. However, the role of NKT cells in IC-ALI remains unknown. Therefore, we explored NKT cell functions in IC-ALI using chicken egg albumin and anti-chicken egg albumin IgG. The bronchoalveolar lavage fluid of CD1d(-/-) and Jα18(-/-) mice contained few Ly6G(+)CD11b(+) granulocytes, whereas levels in B6 mice were greater and were increased further by α-galactosyl ceramide. IFN-γ and MIP-1α production in the lungs was greater in B6 than CD1d(-/-) mice. Adoptive transfer of wild type (WT) but not IFN-γ-, MIP-1α-, or FcγR-deficient NKT cells into CD1d(-/-) mice caused recruitment of inflammatory cells to the lungs. Moreover, adoptive transfer of IFN-γR-deficient NKT cells enhanced MIP-1α production and cell recruitment in the lungs of CD1d(-/-) or CD1d(-/-)IFN-γ(-/-) mice, but to a lesser extent than WT NKT cells. This suggests that IFN-γ-producing NKT cells enhance MIP-1α production in both an autocrine and a paracrine manner. IFN-γ-deficient NKT cells induced less IL-1β and TNF-α production by alveolar macrophages and dendritic cells in CD1d(-/-) mice than did WT NKT cells. Taken together, these data suggest that CD1d-restricted IFN-γ-producing NKT cells promote IC-ALI by producing MIP-1α and enhancing proinflammatory cytokine production by alveolar macrophages and dendritic cells.  相似文献   

5.
NC/Nga mice raised in nonsterile circumstances spontaneously suffer from atopic dermatitis-like skin lesions with IgE hyperproduction. We investigated effects of rIL-12 on the IgE production in NC/Nga mice. rIL-12 administration was successful to suppress the increase of IgE levels in BALB/c mice immunized with OVA and aluminum hydroxide, but failed to abrogate that in NC/Nga mice. Both in vivo and in vitro IFN-gamma production induced by rIL-12 was less in NC/Nga mice than in BALB/c mice. Addition of rIFN-gamma to rIL-4 and LPS completely abrogated IgE production by B cells of BALB/c mice, but was insufficient to suppress it by B cells of NC/Nga mice. In splenic cells pretreated with Con A, STAT4 was phosphorylated at the tyrosine residue by addition of rIL-12, which was more weakly inducible in NC/Nga mice than in BALB/c mice. Finally, we examined the preventive ability of rIL-12 on the clinical aspects of atopic dermatitis in NC/Nga mice. rIL-12 administration resulted in exacerbation of development of the skin lesions and IgE production in NC/Nga mice raised in nonsterile circumstances. These results suggest that defective production of IFN-gamma by T cells less sensitive to IL-12 and low responsiveness of B cells to IFN-gamma may contribute to IgE hyperproduction in NC/Nga mice, and that IL-12 may have no ability to improve the clinical aspects of NC/Nga mice.  相似文献   

6.
7.
Natural killer T (NKT) cells are a unique lymphocyte subpopulation which has an important role in the response to microbial pathogens. In this study, we used α-galactosylceramide (α-GalCer), a specific ligand of NKT cells, to enhance NKT response and examine its effect on host defense against genital tract Chlamydia muridarum infection. The results showed that α-GalCer treatment before infection led to reduced pathological changes and bacterial burden in the genital tract. Moreover, α-GalCer-treated mice showed greater local Th1 cytokine production [interferon γ (IFN-γ) and interleukin 12 (IL-12)] in local lymph node cells and genital tissues following challenge infection compared with untreated mice, as well as an enhanced level of IFN-γ production by NK and T cells. In addition, NKT cells in the mice with genital tract C. muridarum infection, unlike those from na?ve mice, showed a polarized IFN-γ production. These results suggest a promoting role of NKT cells on type 1 T cell immune response and host resistance to Chlamydia in genital tract infection.  相似文献   

8.
9.
The efficacy of silk peptide in treatment of atopic dermatitis was examined in a picryl chloride-induced atopic dermatitis model in NC/Nga mice. Silk peptide ameliorated the development of atopic dermatitis by lowering the serum IgE concentration. Treatment of cultured spleen cells with silk peptide reduced IgE production by enhancing the production of IFN-γ and reducing the level of IL-4. The functional peptides in the silk peptide were identified as mixture of GAGA sequences containing peptides by mass spectrometry and in vitro assay. Our findings indicate that silk peptide exerts an effect on atopic dermatitis by modulating the Th1/Th2 balance.  相似文献   

10.
11.
目的:探讨大麻素CBR2受体激动剂AM1241预处理对脂多糖(LPS)和γ-干扰素(IFN-γ)所致炎症反应对小胶质细胞活化和损伤的影响。方法:联用LPS和IFN-γ作为小胶质细胞损伤模型,将细胞分为Control组、AM1241组、LPS/IFN-γ组和AM1241+LPS/IFN-γ组;AM1241组和AM1241+LPS/IFN-γ组经AM1241预处理2h,LPS/IFN-γ组和AM1241+LPS/IFN-γ组用含LPS和IFN-γ的培养基培养24h。采用MTT法检测细胞代谢率,硝酸还原酶法检测细胞培养液中一氧化氮(NO)释放量,酶联免疫吸附剂测定细胞培养基中炎症因子释放量,倒置相差显微镜观察细胞形态。结果:与LPS/IFN-γ组相比,AM1241+LPS/IFN-γ组细胞代谢率明显升高(P〈0.05),NO、TNF-α、IL-1β和IL-10释放量明显减少(P〈0.05),活化和损伤程度明显减轻。结论:大麻素CBR2受体激动剂AM1241预处理可减轻LPS和IFN-γ对小胶质细胞的活化和损伤。  相似文献   

12.
In neurodegenerative disorders, activated glial cells overproduce nitric oxide (NO), which causes neurotoxicity. Inducible NO synthase (iNOS) is a potential therapeutic target in neurodegenerative diseases. Here, we examined the action of fucoidan, a high-molecular-weight sulfated polysaccharide, on tumor necrosis factor-α (TNF-α)- and interferon-γ (IFN-γ)-induced NO production in C6 glioma cells. Fucoidan suppressed TNF-α- and IFN-γ-induced NO production and iNOS expression. In addition, fucoidan inhibited TNF-α- and IFN-γ-induced AP-1, IRF-1, JAK/STAT and p38 mitogen-activated protein kinase (MAPK) activation and induced scavenger receptor B1 (SR-B1) expression. Blocking of SR-B1 did not reverse the inhibitory effect of fucoidan on TNF-α- and IFN-γ- stimulated NO production. However, inhibition of SR-B1 expression by siRNA increased iNOS expression and p38 phosphorylation in TNF-α- and IFN-γ-stimulated C6 cells.Overall, p38 MAPK, AP-1, JAK/STAT and IRF-1 play an important role in the inhibitory effect of fucoidan on TNF-α- and IFN-γ-stimulated NO production, and intracellular SR-B1 expression may be related to the inhibition of iNOS expression by fucoidan via regulation of p38 phosphorylation. The present results also suggest that fucoidan could be a potential therapeutic agent for treating inflammatory-related neuronal injury in neurological disorders.  相似文献   

13.
Abstract: To understand the possible mechanism of nitric oxide (NO)-mediated cytotoxicity, we investigated the effect of NO on the endogenous antioxidant enzymes (AOEs) catalase, glutathione peroxidase (GPX), and CuZn- and Mn-superoxide dismutases (SODs) in rat C6 glial cells under conditions in which these cells expressed oligodendrocyte-like properties as evidenced by the expression of 2′,3′-cyclic-nucleotide 3′-phosphohydrolase. The 24-h treatment with S-nitroso-N-acetylpenicillamine (SNAP), a NO donor, decreased the activities and the protein levels of catalase, GPX, and Mn-SOD in a dose-dependent manner. Alternatively, the activity and the protein level of CuZn-SOD were increased. 2-Phenyl-4,4, 5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a NO scavenger, blocked the effect of SNAP. Moreover, the treatment of C6 cells with sodium nitroprusside, another NO donor, or with a combination of lipopolysaccharide (LPS) and interferon-γ (IFN-γ), which induce excessive production of NO, also significantly modulated the AOE activities in a manner similar to that seen with SNAP treatment. The compounds/enzymes that inhibit the production of NO (e.g., N-nitro-l -arginine methyl ester hydrochloride, arginase, and PTIO) blocked the effects of LPS and IFN-γ on the activities of AOEs. Treatment with SNAP and a combination of LPS and IFN-γ also modulated the mRNA levels of AOEs, parallel to the changes in their protein levels and activities, except for Mn-SOD where the combination of LPS and IFN-γ markedly stimulated the mRNA expression. In spite of the stimulation of mRNA level, LPS and IFN-γ significantly inhibited the activity of Mn-SOD within the first 24 h of incubation; however, Mn-SOD activity gradually increased with the increase in time of incubation. These results suggest that alterations in the status of AOEs by NO may be the basis of NO-induced cytotoxicity in disease states associated with excessive NO production.  相似文献   

14.
Macrophages secrete endoplasmic reticulum aminopeptidase 1 (ERAP1) in response to lipopolysaccharide (LPS) and interferon (IFN)-γ to enhance their phagocytic and nitric oxide (NO) synthetic activities. In this study, we found that a subset of secreted ERAP1 bound to exosomes released from LPS/IFN-γ-treated murine RAW264.7 macrophages compared to untreated cells. ERAP1-bound exosomes enhanced phagocytic and NO synthetic activities of macrophages more efficiently than free ERAP1 and exosomes derived from untreated cells. Deletion of the exon 10 coding sequence in ERAP1 gene resulted in loss of binding to exosomes. By comparing the activities of exosomes derived from wild-type and ERAP1 gene-deficient RAW264.7 cells, we observed that ERAP1 contributed to the exosome-dependent phagocytosis and NO synthesis of the cells. Upon stimulation of RAW264.7 cells with LPS/IFN-γ, TNF-α, IFN-γ, and CCL3 were also associated with the released exosomes. Analyses of cytokine function revealed that while CCL3 in the exosomes was crucial to the phagocytic activity of RAW264.7 cells, TNF-α and IFN-γ primarily contributed to the enhancement of NO synthesis. These results suggest that treatment with LPS/IFN-γ alters the physicochemical properties of exosomes released from macrophages in order to facilitate association with ERAP1 and several cytokines/chemokines. This leads to exosome-mediated enhancement of macrophage functions. It is possible that packaging effector molecules into exosomes upon inflammatory stimuli, facilitates the exertion of effective pathophysiological functions on macrophages. Our data provide the first evidence that ERAP1 associated with exosomes plays important roles in inflammatory processes via activation of macrophages.  相似文献   

15.

Aims

Atopic dermatitis (AD) is a chronic and relapsing inflammatory dermatitis characterized by pruritic and eczematous skin lesions. Here, we investigated the therapeutic effect of the fruit flavonoid naringenin on DNFB induced atopic dermatitis mice model.

Main methods

AD-like skin lesion was induced by repetitive skin contact with DNFB in NC/Nga mice and the effects of the fruit flavonoid naringenin were evaluated on the basis of histopathological findings of skin, ear swelling and cytokine production of CD4+T cells.

Key findings

Intraperitoneal injection of naringenin for one week after DNFB challenge significantly lowered ear swelling and improved back skin lesions. In addition, naringenin significantly suppressed production of interferon-gamma (IFN-γ) by activated CD4+ T cells and serum IgE level. Furthermore, naringenin reduced DNFB-induced infiltration of eosinophils, mast cells, CD4+ T cells, and CD8+ T cells in skin lesions.

Significance

Naringenin may suppress the development of AD-like skin lesions in DNFB-treated NC/Nga mice by reducing IFN-γ production of activated CD4+ T cells, serum IgE levels and infiltration of immune cells to skin lesion.  相似文献   

16.
NKT cells contribute to the modulation of immune responses and are believed to be important in the pathogenesis of autoimmune and infectious diseases, as well as cancer. Variations in the composite NKT cytokine response may determine individual disease susceptibility or severity. Due to low frequencies in peripheral blood, knowledge of the breadth of ex vivo human NKT cell functions has been limited. To bridge this gap, we studied highly purified NKT cells from PBMC of healthy donors and assessed the production of 27 effector functions using sensitive Elispot and multiplex bead assays. We found the ex vivo human NKT cell response is predominantly comprised of the chemokines MIP1-α, and MIP1-β as well as the Th1 cytokines IFN-γ and TNF-α. Although lower in magnitude, there was also significant production of IL-2, IL-4, and perforin after mitogen stimulation. Surprisingly, little/no IL-5, IL-6, IL-10, or IL-13 was detected, and no subjects' NKT cells produced IL-17. Comparison of the NKT functional profiles between age-matched male and female subjects revealed similar IL-4 responses, but higher frequencies of cells producing IFN-γ and MIP1-α, from males. There were no gender differences in the circulating NKT subset distribution. These findings implicate chemokines as a major mechanism by which NKT cells control responses in humans. In addition, the panoply of Th2 and Th17 cytokine secretion by NKT cells from healthy donors may not be as pronounced as previously believed. NKT cells may therefore contribute to the gender bias found in many diseases.  相似文献   

17.
NC/Nga (NC) mice raised under conventional conditions (Conv. NC mice) spontaneously develop dermatitis similar to human atopic dermatitis, whereas NC mice raised under the specific pathogen-free conditions do not develop dermatitis. In the present study, we show that the representative Th1 cytokine, IFN-gamma levels in the sera of NC mice, injected with either staphylococcal enterotoxin B or endotoxin (LPS), to be severalfold lower than those of normal mice. The low IFN-gamma response to staphylococcal enterotoxin B was correlated to the lack of regular Vbeta8(+) T cells and Vbeta8(+) NK T cells, and the low IFN-gamma response to LPS was correlated to an impaired IL-18 production of macrophages. The CD3-stimulated IL-4 production from liver and spleen T cells from Conv. NC mice in vitro was greatly augmented. The serum IL-4 levels of untreated Conv. NC mice also were higher than those of normal mice and specific pathogen-free NC mice. Treatment of Conv. NC mice either with IFN-gamma, IL-12, or IL-18 twice a week from 4 wk of age substantially inhibited the elevation of the serum IgE levels, serum IL-4 levels, and dermatitis, and IL-12 or IL-18 treatment also reduced the in vitro IL-4 production from CD3-stimulated liver T cells. The systemic deficiency in the Th1 response to bacterial stimulation thus leads to a Th2-dominant state and may induce an abnormal cellular immune response in the skin accompanied with an overproduction of IgE and a susceptibility to dermatitis in NC mice.  相似文献   

18.
The effects of interferon (IFN-γ), lipopolysaccharide (LPS), and some polyphenols as individual stimuli, as well as in various combinations on NO production in non-infected and infected macrophage-like RAW 264.7 cells were investigated, with emphasis on the NO/parasite kill relationship. In non-infected and in Leishmania parasitized cells, gallic acid significantly inhibited the IFN-γ and LPS-induced NO detected in the supernatant. This effect was less prominent in IFN-γ- than in LPS-stimulated cells. Interestingly, and in contrast to non-infected cells, gallic acid inhibited NO production only when added within 3 h after IFN-γ + LPS. Addition of gallic acid following prolonged incubation with IFN-γ + LPS periods (24 h) no longer inhibited, sometimes even enhanced NO release. Notably, an excellent NO/parasite kill relationship was evident from all the experiments. This study was extended to a series of polyphenols (3-O-shikimic acid, its 3,5-digalloylated analogue, catechin, EGCG, and a procyanidin hexamer) with proven immunostimulatory activities. Although these compounds themselves were found to be weak NO-inducers, the viability of intracellular Leishmania parasites was considerably reduced. Furthermore, their dose-dependent effects on macrophage NO release was determined in the presence of IFN-γ and/or LPS. Again, non-infected and infected cells differed significantly in the NO response, while inhibition of IFN-γ and/or LPS-induced NO production by the tested polyphenols strongly depended on the given time of exposure and the sequence of immunological stimuli. A strong inverse correlation between NO levels and intracellular survival rates of Leishmania parasites supported the assumption that the observed inhibition of NO was not simply due to interference with the Griess assay used for detection.  相似文献   

19.
The gender difference in tumor necrosis factor-α (TNF-α) production in human neutrophils stimulated by lipopolysaccharide (LPS) and interferon-γ (IFN-γ) was explored by using peripheral blood neutrophils from young men and women. As compared with female neutrophils, male neutrophils released greater amounts of TNF-α, and exhibited stronger activation of mitogen-activated protein kinases and phosphatidylinositol 3-kinase in response to LPS stimulation. LPS-induced TNF-α production was markedly enhanced by pretreatment of cells with IFN-γ, and IFN-γ-mediated priming in male neutrophils was significantly greater than that in female neutrophils. Male neutrophils showed higher expression of TLR4, but not IFN-γ receptors, than female neutrophils, and its expression was increased by stimulation with IFN-γ or IFN-γ plus LPS. These findings indicate that male neutrophils show higher responsiveness to stimulation with LPS and IFN-γ than female neutrophils, and suggest that the gender difference in neutrophil responsiveness to LPS and IFN-γ is partly responsible for that in the outcome of sepsis, in which premenopausal women show a favorable prognosis as compared with men.  相似文献   

20.
This study sought to determine whether invariant NKT (iNKT) cells play an essential role in inflammation-induced preterm delivery. Preterm delivery and fetal death rates were determined in wild-type (WT) C57BL/6 mice and iNKT cell-deficient Jα18(-/-) mice injected i.p. with LPS. The percentages of decidual immune cells, including activated subsets, and costimulatory molecule expression were analyzed by flow cytometry. Th1 and Th2 cytokine production in the culture supernatants of decidual mononuclear cells was measured by ELISA. To some extent, Jα18(-/-) mice were resistant to LPS-induced preterm delivery. The proportions of decidual CD3(+) and CD49b(+) cells were slightly lower in Jα18(-/-) mice than in WT Jα18(+/+) mice, whereas almost no CD3(+)CD49b(+) cells could be found in Jα18-null mice. The percentages of activated decidual DCs, T cells, and NK cells were significantly lower in LPS-treated Jα18(-/-) mice than in WT mice. The CD40, CD80, and CD86 expression levels on decidual CD11c(+) cells from Jα18(-/-) mice were also significantly lower than in WT mice. Mean concentrations of Th1 cytokines IFN-γ and IL-12p70 in the culture supernatants of decidual mononuclear cells from LPS-treated Jα18(-/-) mice were apparently lower than those of LPS-induced WT mice. Additionally, the proportions of activated CD11c(+) cells, CD3(+) cells, and CD49b(+) cells in LPS-induced preterm delivery mice were strikingly higher in both WT and null mice when compared with the control PBS group and LPS-injected but normally delivered mice. Our results suggest that iNKT cells may play an essential role in inflammation-induced preterm birth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号