共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Yanjia J. Zhang Thomas R. Ioerger Curtis Huttenhower Jarukit E. Long Christopher M. Sassetti James C. Sacchettini Eric J. Rubin 《PLoS pathogens》2012,8(9)
Identifying genomic elements required for viability is central to our understanding of the basic physiology of bacterial pathogens. Recently, the combination of high-density mutagenesis and deep sequencing has allowed for the identification of required and conditionally required genes in many bacteria. Genes, however, make up only a part of the complex genomes of important bacterial pathogens. Here, we use an unbiased analysis to comprehensively identify genomic regions, including genes, domains, and intergenic elements, required for the optimal growth of Mycobacterium tuberculosis, a major global health pathogen. We found that several proteins jointly contain both domains required for optimal growth and domains that are dispensable. In addition, many non-coding regions, including regulatory elements and non-coding RNAs, are critical for mycobacterial growth. Our analysis shows that the genetic requirements for growth are more complex than can be appreciated using gene-centric analysis. 相似文献
6.
7.
Xiurong Wu Wan-Ting He Shuye Tian Dan Meng Yuanyue Li Wanze Chen Lisheng Li Lili Tian Chuan-Qi Zhong Felicia Han Jianming Chen Jiahuai Han 《PLoS pathogens》2014,10(4)
Viruses hijack host factors for their high speed protein synthesis, but information about these factors is largely unknown. In searching for genes that are involved in viral replication, we carried out a forward genetic screen for Drosophila mutants that are more resistant or sensitive to Drosophila C virus (DCV) infection-caused death, and found a virus-resistant line in which the expression of pelo gene was deficient. Our mechanistic studies excluded the viral resistance of pelo deficient flies resulting from the known Drosophila anti-viral pathways, and revealed that pelo deficiency limits the high level synthesis of the DCV capsid proteins but has no or very little effect on the expression of some other viral proteins, bulk cellular proteins, and transfected exogenous genes. The restriction of replication of other types of viruses in pelo deficient flies was also observed, suggesting pelo is required for high level production of capsids of all kinds of viruses. We show that both pelo deficiency and high level DCV protein synthesis increase aberrant 80S ribosomes, and propose that the preferential requirement of pelo for high level synthesis of viral capsids is at least partly due to the role of pelo in dissociation of stalled 80S ribosomes and clearance of aberrant viral RNA and proteins. Our data demonstrated that pelo is a host factor that is required for high efficiency translation of viral capsids and targeting pelo could be a strategy for general inhibition of viral infection. 相似文献
8.
The transmembrane proteins MreC and MreD are present in a wide variety of bacteria and are thought to be involved in cell shape determination. Together with the actin homologue MreB and other morphological elements, they play an essential role in the synthesis of the lateral cell wall in rod-shaped bacteria. In ovococcus, which lack MreB homologues, mreCD are also essential and have been implicated in peripheral cell wall synthesis. In this work we addressed the possible roles of MreC and MreD in the spherical pathogen Staphylococcus aureus. We show that MreC and MreD are not essential for cell viability and do not seem to affect cell morphology, cell volume or cell cycle control. MreC and MreD localize preferentially to the division septa, but do not appear to influence peptidoglycan composition, nor the susceptibility to different antibiotics and to oxidative and osmotic stress agents. Our results suggest that the function of MreCD in S. aureus is not critical for cell division and cell shape determination. 相似文献
9.
10.
11.
The Src homology phosphotyrosyl phosphatase 2 (SHP2) plays a positive role
in HER2-induced signaling and transformation, but its mechanism of action is
poorly understood. Given the significance of HER2 in breast cancer, defining a
mechanism for SHP2 in the HER2 signaling pathway is of paramount importance.
In the current report we show that SHP2 positively modulates the
Ras-extracellular signal-regulated kinase 1 and 2 and the
phospoinositide-3-kinase-Akt pathways downstream of HER2 by increasing the
half-life the activated form of Ras. This is accomplished by dephosphorylating
an autophosphorylation site on HER2 that serves as a docking platform for the
SH2 domains of the Ras GTPase-activating protein (RasGAP). The net effect is
an increase in the intensity and duration of GTP-Ras levels with the overall
impact of enhanced HER2 signaling and cell transformation. In conformity to
these findings, the HER2 mutant that lacks the SHP2 target site exhibits an
enhanced signaling and cell transformation potential. Therefore, SHP2 promotes
HER2-induced signaling and transformation at least in part by
dephosphorylating a negative regulatory autophosphorylation site. These
results suggest that SHP2 might serve as a therapeutic target against breast
cancer and other cancers characterized by HER2 overexpression.The Src homology phosphotyrosyl phosphatase 2
(SHP2)2 functions as a
positive effector of cell growth and survival
(1–4),
migration and invasion
(5–8),
and morphogenesis and transformation
(9–11).
In receptor-tyrosine kinase signaling
(12–14),
SHP2 positively transduces the Ras-extracellular signal-regulated kinase 1 and
2 (ERK1/2) and the phosphoinositide-3-kinase-Akt (or protein kinase B)
signaling pathways. SHP2 also promotes cell transformation induced by the
constitutively active form of fibroblast growth factor receptor 3 and v-Src
(9,
11). The discovery of
germline-activating SHP2 mutations in Noonan and LEOPARD syndrome patients
(15–18)
and the subsequent experimental demonstration of these phenotypes in knockin
and transgenic mice expressing these mutants
(19,
20) has led to the conclusion
that disregulation of SHP2 is responsible for these disease states.
Furthermore, somatic activating SHP2 mutations were discovered in juvenile
myelomonocytic leukemia, acute myelogenous leukemia, and chronic
myelomonocytic (18,
21) and are suggested to play
a causative role.SHP2 possesses two Src homology 2 (SH2) domains in the N-terminal region
that allow the protein to localize to substrate microdomains after tyrosyl
phosphorylation of interacting proteins. The phosphotyrosyl phosphatase (PTP)
domain in the C-terminal region is responsible for dephosphorylation of target
substrates (13,
22). Mutation of the critical
Cys residue in the active site of SHP2 abolishes its phosphatase activity,
leading to the production of a dominant-negative protein
(23). The activity of SHP2 is
regulated by an intramolecular conformational switch. SHP2 assumes a
“closed conformation” when inactive and an “open
conformation” when active. In the closed conformation the N-SH2 domain
interacts with the PTP domain, physically impeding the activity of the enzyme.
Upon engagement of the SH2 domains with phosphotyrosine, the PTP domain is
relieved of autoinhibition and dephosphorylates target substrates
(23–26).
Interaction between specific residues on the N-SH2 and the PTP domains
mediates the closed conformation. Mutation of these residues leads to a
constitutively active SHP2, and the occurrence of such mutations in humans
causes the development of Noonan syndrome and associated leukemia
(16–18).Recently, we have shown that inhibition of SHP2 in the HER2-positive breast
cancer cell lines abolishes mitogenic and cell survival signaling and reverses
transformation, leading to differentiation of malignant cells into a normal
breast epithelial phenotype
(27). Given the significance
of HER2 in breast cancer, the finding that SHP2 plays a positive role was very
interesting. We, thus, sought to investigate the molecular mechanism that
underlies the positive role of SHP2 in HER2-induced signaling and
transformation. To do so, it was first necessary to decipher the identity of
SHP2 substrates whose dephosphorylation promotes the oncogenic functions of
HER2. Using the recently developed substrate-trapping mutant of SHP2 as a
reagent (28), we have
identified HER2 itself as an SHP2 substrate. We have further shown that SHP2
dephosphorylates an autophosphorylation site on HER2 that serves as a docking
site for the SH2 domains of the Ras GTPase-activating protein (Ras-GAP), the
down-regulator of Ras. This effect of SHP2 increases the intensity and
duration of GTP-Ras levels with the overall impact of enhanced HER2 signaling
and cell transformation. 相似文献
12.
Alfredo Csibi Karen Cornille Marie-Pierre Leibovitch Anne Poupon Lionel A. Tintignac Anthony M. J. Sanchez Serge A. Leibovitch 《PloS one》2010,5(2)
The mTORC1 pathway is required for both the terminal muscle differentiation andhypertrophy by controlling the mammalian translational machinery viaphosphorylation of S6K1 and 4E-BP1. mTOR and S6K1 are connected by interactingwith the eIF3 initiation complex. The regulatory subunit eIF3f plays a majorrole in muscle hypertrophy and is a key target that accounts for MAFbx functionduring atrophy. Here we present evidence that in MAFbx-induced atrophy thedegradation of eIF3f suppresses S6K1 activation by mTOR, whereas an eIF3f mutantinsensitive to MAFbx polyubiquitination maintained persistent phosphorylation ofS6K1 and rpS6. During terminal muscle differentiation a conserved TOS motif ineIF3f connects mTOR/raptor complex, which phosphorylates S6K1 and regulatesdownstream effectors of mTOR and Cap-dependent translation initiation. ThuseIF3f plays a major role for proper activity of mTORC1 to regulate skeletalmuscle size. 相似文献
13.
Two Distinct Families of Protein Kinases Are Required for Plant Growth under High External Mg2+ Concentrations in Arabidopsis 总被引:1,自引:0,他引:1
Junro Mogami Yasunari Fujita Takuya Yoshida Yoshifumi Tsukiori Hirofumi Nakagami Yuko Nomura Toru Fujiwara Sho Nishida Shuichi Yanagisawa Tetsuya Ishida Fuminori Takahashi Kyoko Morimoto Satoshi Kidokoro Junya Mizoi Kazuo Shinozaki Kazuko Yamaguchi-Shinozaki 《Plant physiology》2015,167(3):1039-1057
14.
Mutations within Four Distinct Gag Proteins Are Required To Restore Replication of Human Immunodeficiency Virus Type 1 after Deletion Mutagenesis within the Dimerization Initiation Site
下载免费PDF全文

Chen Liang Liwei Rong Yudong Quan Michael Laughrea Lawrence Kleiman Mark A. Wainberg 《Journal of virology》1999,73(8):7014-7020
Human immunodeficiency virus type 1 (HIV-1) genomic RNA segments at nucleotide (nt) positions +240 to +274 are thought to form a stem-loop secondary structure, termed SL1, that serves as a dimerization initiation site for viral genomic RNA. We have generated two distinct deletion mutations within this region, termed BH10-LD3 and BH10-LD4, involving nt positions +238 to +253 and +261 to +274, respectively, and have shown that each of these resulted in significant diminutions in levels of viral infectiousness. However, long-term culture of each of these viruses in MT-2 cells resulted in a restoration of infectiousness, due to a series of compensatory point mutations within four distinct proteins that are normally cleaved from the Gag precursor. In the case of BH10-LD3, these four mutations were MA1, CA1, MP2, and MNC, and they involved changes of amino acid Val-35 to Ile within the matrix protein (MA), Ile-91 to Thr within the capsid (CA), Thr-12 to Ile within p2, and Thr-24 to Ile within the nucleocapsid (NC). The order in which these mutations were acquired by the mutated BH10-LD3 was MNC > CA1 > MP2 > MA1. The results of site-directed mutagenesis studies confirmed that each of these four substitutions contributed to the increased viability of the mutated BH10-LD3 viruses and that the MNC substitution, which was acquired first, played the most important role in this regard. Three point mutations, MP2, MNC, and MA2, were also shown to be sequentially acquired by viruses that had emerged in culture from the BH10-LD4 deletion. The first two of these were identical to those described above, while the last involved a change of Val-35 to Leu. All three of these substitutions were necessary to restore the infectiousness of mutated BH10-LD4 viruses to wild-type levels, although the MP2 mutation alone, but neither of the other two substitutions, was able to confer some viability on BH10-LD4 viruses. Studies of viral RNA packaging showed that the BH10-LD4 deletion only marginally impaired encapsidation while the BH10-LD3 deletion caused a severe deficit in this regard. 相似文献
15.
16.
Caroline Goujon Rebecca A. Greenbury Stelios Papaioannou Tomas Doyle Michael H. Malim 《Journal of virology》2015,89(8):4676-4680
We have employed molecular genetic approaches to understand the domain organization of the HIV-1 resistance factor myxovirus resistance 2 (MX2). First, we describe an essential triple-arginine motif in the amino-terminal domain. Second, we demonstrate that this 91-residue domain mediates antiviral activity when appended to heterologous proteins, and we provide genetic evidence that protein oligomerization is required for MX2 function. These insights will facilitate future work aiming to elucidate MX2''s mechanism of action. 相似文献
17.
Membership of the survival motor neuron (SMN) complex extends to nine factors, including the SMN protein, the product of the spinal muscular atrophy (SMA) disease gene, Gemins 2–8 and Unrip. The best-characterised function of this macromolecular machine is the assembly of the Sm-class of uridine-rich small nuclear ribonucleoprotein (snRNP) particles and each SMN complex member has a key role during this process. So far, however, only little is known about the function of the individual Gemin components in vivo. Here, we make use of the Drosophila model organism to uncover loss-of-function phenotypes of Gemin2, Gemin3 and Gemin5, which together with SMN form the minimalistic fly SMN complex. We show that ectopic overexpression of the dead helicase Gem3ΔN mutant or knockdown of Gemin3 result in similar motor phenotypes, when restricted to muscle, and in combination cause lethality, hence suggesting that Gem3ΔN overexpression mimics a loss-of-function. Based on the localisation pattern of Gem3ΔN, we predict that the nucleus is the primary site of the antimorphic or dominant-negative mechanism of Gem3ΔN-mediated interference. Interestingly, phenotypes induced by human SMN overexpression in Drosophila exhibit similarities to those induced by overexpression of Gem3ΔN. Through enhanced knockdown we also uncover a requirement of Gemin2, Gemin3 and Gemin5 for viability and motor behaviour, including locomotion as well as flight, in muscle. Notably, in the case of Gemin3 and Gemin5, such function also depends on adequate levels of the respective protein in neurons. Overall, these findings lead us to speculate that absence of any one member is sufficient to arrest the SMN-Gemins complex function in a nucleocentric pathway, which is critical for motor function in vivo. 相似文献
18.
Distinct Biochemical and Topological Properties of the 31- and
27-Kilodalton Plasma Membrane Intrinsic Protein Subgroups from Red
Beet 总被引:2,自引:1,他引:2
下载免费PDF全文

Lucille M. Barone Helen He Mu Connie J. Shih Kenan B. Kashlan Bruce P. Wasserman 《Plant physiology》1998,118(1):315-322
Plasma membrane vesicles from red beet (Beta vulgaris L.) storage tissue contain two prominent major intrinsic protein species of 31 and 27 kD (X. Qi, C.Y Tai, B.P. Wasserman [1995] Plant Physiol 108: 387–392). In this study affinity-purified antibodies were used to investigate their localization and biochemical properties. Both plasma membrane intrinsic protein (PMIP) subgroups partitioned identically in sucrose gradients; however, each exhibited distinct properties when probed for multimer formation, and by limited proteolysis. The tendency of each PMIP species to form disulfide-linked aggregates was studied by inclusion of various sulfhydryl agents during tissue homogenization and vesicle isolation. In the absence of dithiothreitol and sulfhydryl reagents, PMIP27 yielded a mixture of monomeric and aggregated species. In contrast, generation of a monomeric species of PMIP31 required the addition of dithiothreitol, iodoacetic acid, or N-ethylmaleimide. Mixed disulfide-linked heterodimers between the PMIP31 and PMIP27 subgroups were not detected. Based on vectorial proteolysis of right-side-out vesicles with trypsin and hydropathy analysis of the predicted amino acid sequence derived from the gene encoding PMIP27, a topological model for a PMIP27 was established. Two exposed tryptic cleavage sites were identified from proteolysis of PMIP27, and each was distinct from the single exposed site previously identified in surface loop C of a PMIP31. Although the PMIP31 and PMIP27 species both contain integral proteins that appear to occur within a single vesicle population, these results demonstrate that each PMIP subgroup responds differently to perturbations of the membrane. 相似文献
19.
Ivana I. Knezevic Sanda A. Predescu Radu F. Neamu Matvey S. Gorovoy Nebojsa M. Knezevic Cordus Easington Asrar B. Malik Dan N. Predescu 《The Journal of biological chemistry》2009,284(8):5381-5394
It is known that platelet-activating factor (PAF) induces severe
endothelial barrier leakiness, but the signaling mechanisms remain unclear.
Here, using a wide range of biochemical and morphological approaches applied
in both mouse models and cultured endothelial cells, we addressed the
mechanisms of PAF-induced disruption of interendothelial junctions (IEJs) and
of increased endothelial permeability. The formation of interendothelial gaps
filled with filopodia and lamellipodia is the cellular event responsible for
the disruption of endothelial barrier. We observed that PAF ligation of its
receptor induced the activation of the Rho GTPase Rac1. Following PAF
exposure, both Rac1 and its guanine nucleotide exchange factor Tiam1 were
found associated with a membrane fraction from which they
co-immunoprecipitated with PAF receptor. In the same time frame with
Tiam1-Rac1 translocation, the junctional proteins ZO-1 and VE-cadherin were
relocated from the IEJs, and formation of numerous interendothelial gaps was
recorded. Notably, the response was independent of myosin light chain
phosphorylation and thus distinct from other mediators, such as histamine and
thrombin. The changes in actin status are driven by the PAF-induced localized
actin polymerization as a consequence of Rac1 translocation and activation.
Tiam1 was required for the activation of Rac1, actin polymerization,
relocation of junctional associated proteins, and disruption of IEJs. Thus,
PAF-induced IEJ disruption and increased endothelial permeability requires the
activation of a Tiam1-Rac1 signaling module, suggesting a novel therapeutic
target against increased vascular permeability associated with inflammatory
diseases.The endothelial barrier is made up of endothelial cells
(ECs)4 connected to
each other by interendothelial junctions (IEJs) consisting of protein
complexes organized as tight junctions (TJs) and adherens junctions (AJs). In
addition, the focal adhesion complex located at the basal plasma membrane
enables firm contact of ECs with the underlying basement membrane and also
contributes to the barrier function
(1-3).
The glycocalyx, the endothelial monolayer, and the basement membrane all
together constitute the vascular barrier.The structural integrity of the ECs along with their proper functionality
are the two most important factors controlling the tightness of the
endothelial barrier. Changes affecting these factors cause loss of barrier
restrictiveness and leakiness. Therefore, defining and understanding the
cellular and molecular mechanisms controlling these processes is of paramount
importance. Increased width of IEJs in response to permeability-increasing
mediators (4) regulates the
magnitude of transendothelial exchange of fluid and solutes. Disruption of
IEJs and the resultant barrier leakiness contribute to the genesis of diverse
pathological conditions, such as inflammation
(5), metastasis
(6,
7), and uncontrolled
angiogenesis (8,
9).Accumulated evidence demonstrated that IEJs changes are responsible for
increased or decreased vascular permeability, and the generally accepted
mechanism responsible for them was the myosin light chain (MLC)-mediated
contraction of ECs (5,
10). However, published
evidence showed that an increase in vascular permeability could be obtained
without a direct involvement of any contractile mechanism
(11-16).The main component of the vascular barrier, the ECs, has more than 10% of
their total protein represented by actin
(17), which under
physiological salt concentrations subsists as monomers (G-actin) and assembled
into filaments (F-actin). A large number of actin-interacting proteins may
modulate the assembly, disassembly, and organization of G-actin and of actin
filaments within a given cell type. Similar to the complexity of
actin-interacting proteins found in other cell types, the ECs utilize their
actin binding proteins to stabilize the endothelial monolayer in order to
efficiently function as a selective barrier
(11). In undisturbed ECs, the
actin microfilaments are organized as different networks with distinctive
functional and morphological characteristics: the peripheral filaments also
known as peripheral dense band (PDB), the cytoplasmic fibers identified as
stress fibers (SF), and the actin from the membrane cytoskeleton
(18). The peripheral web,
localized immediately under the membrane, is associated with (i) the luminal
plasmalemma (on the apical side), (ii) the IEJ complexes on the lateral
surfaces, and (iii) the focal adhesion complexes on the abluminal side (the
basal part) of polarized ECs. The SF reside inside the endothelial cytoplasm
and are believed to be directly connected with the plasmalemma proper on the
luminal as well as on the abluminal side of the cell. As described, the
endothelial actin cytoskeleton (specifically the SF) seems to be a stable
structure helping the cells to remain flat under flow
(19). It is also established
that the actin fibers participate in correct localization of different
junctional complexes while keeping them in place
(20). However, it was
suggested that the dynamic equilibrium between F- and G-actin might modulate
the tightness of endothelial barrier in response to different challenges
(13).Mediators effective at nanomolar concentrations or less that disrupt the
endothelial barrier and increase vascular permeability include C2 toxin of
Clostridium botulinum, vascular permeability factor, better known as
vascular endothelial growth factor, and PAF
(21). C2 toxin increases
endothelial permeability by ribosylating monomeric G-actin at Arg-177
(22). This results in the
impairment of actin polymerization
(23), followed by rounding of
ECs (16) and the disruption of
junctional integrity. Vascular permeability factor was shown to open IEJs by
redistribution of junctional proteins
(24,
25) and by interfering with
the equilibrium of actin pools
(26). PAF
(1-O-alkyl-2-acetyl-sn-glycero-3-phosphocoline), a naturally
synthesized phospholipid is active at 10-10 m or less
(27). PAF is synthesized by
and acts on a variety of cell types, including platelets
(28), neutrophils
(29), monocytes
(30), and ECs
(31). PAF-mediated activation
of ECs induced cell migration
(32), angiogenesis
(7), and vascular
hyperpermeability (33)
secondary to disassembly of IEJs
(34). The effects of PAF on
the endothelium are initiated through a G protein-coupled receptor (PAF-R)
localized at the plasmalemma, in a large endosomal compartment inside the cell
(34), and also in the nuclear
membrane (35). In ECs, PAF-R
was shown to signal through Gαq and downstream activation of
phospholipase C isozymes (PLCβ3 and PLCγ1),
and via cSrc (32,
36). Studies have shown that
PAF challenge induced endothelial actin cytoskeletal rearrangement
(37) and marked vascular
leakiness (38); however, the
signaling pathways have not been elucidated.Therefore, in the present study, we carried out a systematic analysis of
PAF-induced morphological and biochemical changes of endothelial barrier
in vivo and in cultured ECs. We found that the opening of endothelial
barrier and the increased vascular leakiness induced by PAF are the result of
a shift in actin pools without involvement of EC contraction, followed by a
redistribution of tight junctional associated protein ZO-1 and adherens
junctional protein VE-cadherin. 相似文献
20.
We analyzed the kinetics of nonphotochemical quenching of chlorophyll fluorescence (qN) in spinach (Spinacia oleracea) leaves, chloroplasts, and purified light-harvesting complexes. The characteristic biphasic pattern of fluorescence quenching in dark-adapted leaves, which was removed by preillumination, was evidence of light activation of qN, a process correlated with the de-epoxidation state of the xanthophyll cycle carotenoids. Chloroplasts isolated from dark-adapted and light-activated leaves confirmed the nature of light activation: faster and greater quenching at a subsaturating transthylakoid pH gradient. The light-harvesting chlorophyll a/b-binding complexes of photosystem II were isolated from dark-adapted and light-activated leaves. When isolated from light-activated leaves, these complexes showed an increase in the rate of quenching in vitro compared with samples prepared from dark-adapted leaves. In all cases, the quenching kinetics were fitted to a single component hyperbolic function. For leaves, chloroplasts, and light-harvesting complexes, the presence of zeaxanthin was associated with an increased rate constant for the induction of quenching. We discuss the significance of these observations in terms of the mechanism and control of qN. 相似文献