首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Studies investigating the subcellular localization of periplasmic proteins have been hampered by problems with the export of green fluorescent protein (GFP). Here we show that a superfolding variant of GFP (sfGFP) is fluorescent following Sec-mediated transport and works best when the cotranslational branch of the pathway is employed.  相似文献   

2.
3.
4.
5.
6.
Protein Phosphorylation during Coconut Zygotic Embryo Development   总被引:3,自引:0,他引:3       下载免费PDF全文
Evidence was obtained on the occurrence of protein threonine, serine, and tyrosine (Tyr) kinases in developing coconut (Cocos nucifera L.) zygotic embryos, based on in vitro phosphorylation of proteins in the presence of [γ-32P]ATP, alkaline treatment, and thin-layer chromatography analysis, which showed the presence of [32P]phosphoserine, [32P]phosphothreonine, and [32P]phosphotyrosine in [32P]-labeled protein hydrolyzates. Tyr kinase activity was further confirmed in extracts of embryos at different stages of development using antiphosphotyrosine monoclonal antibodies and the synthetic peptide derived from the amino acid sequence surrounding the phosphorylation site in pp60src (RR-SRC), which is specific for Tyr kinases. Anti-phosphotyrosine western blotting revealed a changing profile of Tyr-phosphorylated proteins during embryo development. Tyr kinase activity, as assayed using RR-SRC, also changed during embryo development, showing two peaks of activity, one during early and another during late embryo development. In addition, the use of genistein, a Tyr kinase inhibitor, diminished the ability of extracts to phosphorylate RR-SRC. Results presented here show the occurrence of threonine, serine, and Tyr kinases in developing coconut zygotic embryos, and suggest that protein phosphorylation, and the possible inference of Tyr phosphorylation in particular, may play a role in the coordination of the development of embryos in this species.  相似文献   

7.
Two-dimensional polyacrylamide gel electrophoretic patterns of proteins for two isolates of Labronema from Indiana were nearly identical to the pattern for L. vulvapapillatum from Europe. The pattern for a nominal isolate of L. pacificum from Florida was very different from the patterns of nominal L. pacificum isolates from Hawaii and Fiji (which had patterns very similar to each other). Patterns for four other isolates (in Eudorylaimus and Aporcelaimellus) were different from the Labronema patterns and from each other, although some constellations of protein spots were shared among all the isolates. The study demonstrates the utility of 2-D PAGE for clarifying taxonomic problems that cannot be resolved using classical morphological data alone.  相似文献   

8.
Mismatch repair (MMR) proteins participate in cytotoxicity induced by certain DNA damage-inducing agents, including cisplatin (cis-diamminedichloroplatinum(II), CDDP), a cancer chemotherapeutic drug utilized clinically to treat a variety of malignancies. MMR proteins have been demonstrated to bind to CDDP-DNA adducts and initiate MMR protein-dependent cell death in cells treated with CDDP; however, the molecular events underlying this death remain unclear. As MMR proteins have been suggested to be important in clinical responses to CDDP, a clear understanding of MMR protein-dependent, CDDP-induced cell death is critical. In this report, we demonstrate MMR protein-dependent relocalization of cytochrome c to the cytoplasm and cleavage of caspase-9, caspase-3, and poly(ADP-ribose) polymerase upon treatment of cells with CDDP. Chemical inhibition of caspases specifically attenuates CDDP/MMR protein-dependent cytotoxicity, suggesting that a caspase-dependent signaling mechanism is required for the execution of this cell death. p53 protein levels were up-regulated independently of MMR protein status, suggesting that p53 is not a mediator of MMR-dependent, CDDP-induced death. This work is the first indication of a required signaling mechanism in CDDP-induced, MMR protein-dependent cytotoxicity, which can be uncoupled from other CDDP response pathways, and defines a critical contribution of MMR proteins to the control of cell death.The MMR2 system of proteins plays roles in diverse cellular processes, perhaps most notably in preserving genomic integrity by recognizing and facilitating the repair of post-DNA replication base pairing errors. Recognition of these errors and recruitment of repair machinery is performed by the MutSα complex (consisting of the MMR proteins MSH2 and MSH6) or MutSβ complex (consisting of MSH2 and MSH3). Defects in MMR proteins render cells hypermutable and promote microsatellite instability, a hallmark of MMR defects. MMR protein defects are found in a wide variety of sporadic cancers, as well as in hereditary non-polyposis colorectal cancer (1).In addition to their role in DNA repair, MMR proteins also play a role in cytotoxicity induced by specific types of DNA-damaging chemotherapeutic drugs, such as CDDP, which is utilized clinically to treat a number of different cancer types. MutSα recognizes multiple types of DNA damage, including 1,2-intrastrand CDDP adducts and O6-methylguanine lesions (2). Treatment of cells with compounds that induce these types of lesions, including CDDP and methylating agents such as N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), results in MMR protein-dependent cell cycle arrest and cell death (37). This suggests that MMR proteins, in addition to their role in DNA repair, are also capable of initiating cell death in response to certain types of DNA damage.Cells treated with DNA-damaging agents frequently activate an apoptotic cell death pathway mediated by the mitochondria. This intrinsic death signaling pathway predominantly involves the coordinated activity of two groups of proteins: pro-death members of the Bcl-2 family that control the integrity of mitochondrial membranes, and members of the caspase family of cysteinyl proteases that proteolytically cleave intracellular substrates, giving rise to apoptotic morphology and destruction of the cell (8, 9). Pro-death Bcl-2 family members, such as Bax and Bak, target the outer mitochondrial membrane and cause the cytosolic release of pro-death factors residing within the mitochondria of unstressed cells (8). Predominant among these factors is cytochrome c, whose cytoplasmic localization results in the formation of a caspase-activating platform known as the apoptosome (10). This complex includes the adaptor protein Apaf-1, and when formed the apoptosome promotes the cleavage and activation of caspase-9 (11, 12). Once activated, this apical caspase proceeds to cleave and activate caspase-3, the predominant effector protease of apoptosis.A significant amount of evidence has been gathered illustrating MMR protein-dependent pro-death signaling in response to methylating agents (1316, 3). In contrast, the MMR protein-dependent cytotoxic response to CDDP is largely unknown, with only the p53-related transactivator protein p73 and the c-Abl kinase clearly implicated as potential mediators of CDDP/MMR protein-dependent cell death in human cells (17, 18). Interestingly, ATM, Chk1, Chk2, and p53, which are activated in an MMR protein-dependent manner after treatment of cells with MNNG (3, 13), are not involved in the MMR-dependent response to CDDP (7, 17). In addition, the magnitude of MMR protein-dependent cell death induced by methylating agents and CDDP differs (4). These findings suggest that unique signaling pathways may be engaged by MMR proteins depending upon the type of recognized lesion. As such, there is a requirement for further study of the molecular events underlying MMR protein-dependent cell death and cell cycle arrest for each type of recognized DNA lesion. This is particularly relevant in the case of CDDP, as evidence from a limited number of retrospective clinical studies suggests that MMR proteins play an important role in patient response to CDDP. Several studies examining immunohistochemical staining against MSH2 or MLH1 have demonstrated that levels of these proteins are reduced in ovarian and esophageal tumor samples following CDDP-based chemotherapy (19, 20). Low levels of MMR protein post-chemotherapy seem to be predictive of lower overall survival in a certain subset of tumors (esophageal cancer), but not others (ovarian and non-small cell lung cancer) (1921). Two recent studies examining MMR protein levels and microsatellite instability in germ cell tumors from patients receiving platinum-based chemotherapy have suggested a prognostic value for pre-chemotherapy MMR protein status in these tumors (22, 23). This potential clinical relevance underscores the need for a greater understanding of MMR protein-dependent mechanisms of CDDP-induced cell death.In this study, we report that CDDP induces an MMR protein-dependent decrease in cell viability and MMR protein-dependent signaling in the form of cytochrome c release to the cytoplasm and cleavage of caspase-9, caspase-3, and PARP. Chemical inhibition of caspases specifically attenuates CDDP/MMR protein-dependent loss of cell viability, indicating a requirement for caspase activation in this process and uncoupling MMR protein-dependent cytotoxic signaling from other CDDP response pathways. Additionally, the CDDP-induced, MMR protein-dependent cytotoxic response is independent of p53 signaling. Our results demonstrate for the first time an MMR protein-dependent pro-death signaling pathway in cells treated with CDDP.  相似文献   

9.
Phosphorylation is a widespread post-translational modification that modulates the function of a large number of proteins. Here we show that a significant proportion of all the domains in the human proteome is significantly enriched or depleted in phosphorylation events. A substantial improvement in phosphosites prediction is achieved by leveraging this observation, which has not been tapped by existing methods. Phosphorylation sites are often not shared between multiple occurrences of the same domain in the proteome, even when the phosphoacceptor residue is conserved. This is partly because of different functional constraints acting on the same domain in different protein contexts. Moreover, by augmenting domain alignments with structural information, we were able to provide direct evidence that phosphosites in protein-protein interfaces need not be positionally conserved, likely because they can modulate interactions simply by sitting in the same general surface area.Phosphorylation, the most widespread protein post-translational modification, is an important regulator of protein function. The addition of phosphate groups on serine, threonine, and tyrosine residues can modulate the activity of the target protein by inducing complex conformational changes, by modifying protein electrostatics, and by regulating domain-peptide interactions, as in 14-3-3 or SH2 domains, that specifically recognize phosphorylated residues. The standard experimental technique for the high-throughput identification of phosphorylation sites is mass spectrometry (1).Phosphorylation is catalyzed by protein kinases, a family that in humans comprises ∼540 members (2, 3). It is well understood that these enzymes recognize specific sequence motifs in their substrates (4, 5). Accordingly the sequence around the phosphorylation site is undisputedly the most important feature for phosphosite prediction (6, 7). However the “context,” in a broad sense, where these motifs occur is also important as sequence alone is not enough to achieve the observed specificity of phosphorylation. Therefore, several studies have characterized multiple aspects of phosphosites such as their preference for loops and disordered regions (reviewed in (8)), or the tendency of phosphoserines and phosphothreonines to occur in clusters (9), and these features have been used to improve the performance of phosphosite predictors (6, 7, 1012). Moreover placing kinases and substrates in the context of protein interaction networks has been shown to improve the prediction of phosphorylation by specific kinases (13).Perhaps one of the most puzzling observations when looking at the phosphoproteome as a whole, is the fact that a large proportion of phosphorylation sites is poorly conserved. This has led to various hypotheses. First some sites may represent nonfunctional, possibly low-stoichiometry, phosphorylation events that are picked up because of the sensitivity of mass-spectrometry (14, 15). Indeed functionally characterized sites and those matching known kinase motifs are more conserved on average (1517). However, although in biology function often equates with conservation, there could be genuinely functional fast-evolving phosphosites, that are responsible for species-specific differences in signaling and regulation. Moreover in some cases, especially in the regulation of protein-protein interactions, the exact position of the phosphosites may be unimportant (18, 19).Here we explore the issues of “context” and “conservation” of phosphorylation sites from the perspective of protein domains. To this end, we assembled a comprehensive database of phosphosites from publicly available sources and studied their proteome distribution with respect to the location and identity of protein domains. We focus on the human phosphoproteome because it has been very well characterized in a multitude of low- and high-throughput experiments, thus providing the opportunity for a comprehensive, proteome-wide, study. In particular, the issues we want to address are the following:
  1. Are specific domain types preferentially phosphorylated? Or conversely are some domains specifically depleted of phosphorylation sites?
  2. Can the domain context be used to improve the prediction of phosphorylation sites?
  3. What is the conservation pattern of phosphosites when looking at multiple instances of the same domain in the proteome?
  相似文献   

10.
11.
Dichloroacetamide safeners protect maize (Zea mays L.) against injury from chloroacetanilide and thiocarbamate herbicides. Etiolated maize seedlings have a high-affinity cytosolic-binding site for the safener [3H](R,S)-3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazol-idine ([3H]Saf), and this safener-binding activity (SafBA) is competitively inhibited by the herbicides. The safener-binding protein (SafBP), purified to homogeneity, has a relative molecular weight of 39,000, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and an isoelectric point of 5.5. Antiserum raised against purified SafBP specifically recognizes a 39-kD protein in etiolated maize and sorghum (Sorghum bicolor L.), which have SafBA, but not in etiolated wheat (Triticum aestivum L.), oat (Avena sativa L.), barley (Hordeum vulgare L.), tobacco (Nicotiana tabacum L.), or Arabidopsis, which lack SafBA. SafBP is most abundant in the coleoptile and scarcest in the leaves, consistent with the distribution of SafBA. SBP1, a cDNA encoding SafBP, was cloned using polymerase chain reaction primers based on purified proteolytic peptides. Extracts of Escherichia coli cells expressing SBP1 have strong [3H]Saf binding, which, like binding to the native maize protein, is competitively inhibited by the safener dichlormid and the herbicides S-ethyl dipropylthiocarbamate, alachlor, and metolachlor. SBP1 is predicted to encode a phenolic O-methyltransferase, but SafBP does not O-methylate catechol or caffeic acid. The acquisition of its encoding gene opens experimental approaches for the evaluation of the role of SafBP in response to the relevant safeners and herbicides.  相似文献   

12.
Claudins are integral transmembrane components of the tight junctions forming trans-epithelial barriers in many organs, such as the nervous system, lung, and epidermis. In Drosophila three claudins have been identified that are required for forming the tight junctions analogous structure, the septate junctions (SJs). The lack of claudins results in a disruption of SJ integrity leading to a breakdown of the trans-epithelial barrier and to disturbed epithelial morphogenesis. However, little is known about claudin partners for transport mechanisms and membrane organization. Here we present a comprehensive analysis of the claudin proteome in Drosophila by combining biochemical and physiological approaches. Using specific antibodies against the claudin Megatrachea for immunoprecipitation and mass spectrometry, we identified 142 proteins associated with Megatrachea in embryos. The Megatrachea interacting proteins were analyzed in vivo by tissue-specific knockdown of the corresponding genes using RNA interference. We identified known and novel putative SJ components, such as the gene product of CG3921. Furthermore, our data suggest that the control of secretion processes specific to SJs and dependent on Sec61p may involve Megatrachea interaction with Sec61 subunits. Also, our findings suggest that clathrin-coated vesicles may regulate Megatrachea turnover at the plasma membrane similar to human claudins. As claudins are conserved both in structure and function, our findings offer novel candidate proteins involved in the claudin interactome of vertebrates and invertebrates.  相似文献   

13.
14.
The structure, stability, solubility, and function of proteins depend on their net charge and on the ionization state of the individual residues. Consequently, biochemists are interested in the pK values of the ionizable groups in proteins and how these pK values depend on their environment. We review what has been learned about pK values of ionizable groups in proteins from experimental studies and discuss the important contributions they make to protein stability and solubility.  相似文献   

15.
16.
17.
18.
19.
Universal genetic codes are degenerated with 61 codons specifying 20 amino acids, thus creating synonymous codons for a single amino acid. Synonymous codons have been shown to affect protein properties in a given organism. To address this issue and explore how Escherichia coli selects its “codon-preferred” DNA template(s) for synthesis of proteins with required properties, we have designed synonymous codon libraries based on an antibody (scFv) sequence and carried out bacterial expression and screening for variants with altered properties. As a result, 342 codon variants have been identified, differing significantly in protein solubility and functionality while retaining the identical original amino acid sequence. The soluble expression level varied from completely insoluble aggregates to a soluble yield of ∼2.5 mg/liter, whereas the antigen-binding activity changed from no binding at all to a binding affinity of > 10−8 m. Not only does our work demonstrate the involvement of genetic codes in regulating protein synthesis and folding but it also provides a novel screening strategy for producing improved proteins without the need to substitute amino acids.  相似文献   

20.
Protein complexes enact most biochemical functions in the cell. Dynamic interactions between protein complexes are frequent in many cellular processes. As they are often of a transient nature, they may be difficult to detect using current genome-wide screens. Here, we describe a method to computationally predict physical interactions between protein complexes, applied to both humans and yeast. We integrated manually curated protein complexes and physical protein interaction networks, and we designed a statistical method to identify pairs of protein complexes where the number of protein interactions between a complex pair is due to an actual physical interaction between the complexes. An evaluation against manually curated physical complex-complex interactions in yeast revealed that 50% of these interactions could be predicted in this manner. A community network analysis of the highest scoring pairs revealed a biologically sensible organization of physical complex-complex interactions in the cell. Such analyses of proteomes may serve as a guide to the discovery of novel functional cellular relationships.Protein complexes are central to nearly all biochemical processes in the cell (1). In physiologically relevant states, their protein members assemble with varying degrees of stability, over time and under different cellular conditions, to carry out specific cellular functions (1). Although it is a dynamic and tightly regulated process, there is much evidence to support the notion that protein complex assembly results in discrete signaling macromolecules (2). According to the modular organization of molecular networks of the cell (3), protein complexes cooperate in functional networks through dynamic physical interactions with other macromolecules, including other protein complexes (46). These physical interactions between pairs of protein complexes may form the backbone of cellular processes (7), such as the recruitment of complexes by other complexes to sites of genome reorganization or in signaling networks. In this study, we attempted to predict these physical interactions between all pairs of known protein complexes, using the manually curated protein complex databases in CORUM and CYC2008 for humans and yeast, respectively.The physical protein interactions that may occur between pairs of complexes have been reported to be more transient, compared with the combination of both permanent and transient interactions that occur within complexes (8). Indeed, the very stability of protein interactions within a protein complex lies between the two extremes of either transient or permanent states (9). Consequently, the experimental identification in a genome-wide manner of the physical interactions between pairs of complexes is very difficult. This challenge has recently been addressed (7, 10) by experiments where the weak interactions were preserved during affinity purifications, followed by inference of the less stable interactions of proteins with the core proteins within the complex. Guided by a computational method to predict the list of protein members in the complexes (10), this allowed a screen of putative inter-complex relationships from human cell lines (7). This adds to the many landmark developments in recent years to characterize protein complexes in a genome-wide manner (7, 1113). However, in these experiments it is not always easy to infer accurately what constitutes the protein members of a protein complex. Because of various experimental limitations (14) and the dynamic nature of complex assembly in the cell (15), the protein members of the complexes must be predicted from thousands of purification measurements (1012, 16). As a result, there are surprisingly large differences in the protein complexes inferred in these studies, depending on the algorithm used (17, 18). Hence, the inference of protein complexes from genome-wide screens (11, 12) is likely to contain significant noise from false-positives resulting from methodological uncertainty (9). This noise would in turn cause ambiguity when attempting to predict, genome-wide, interactions that may occur between protein complexes. One solution to this problem, as applied in this study, is the use of comprehensive databases of the so-called “gold standard” community definitions of protein complexes (1922). In these resources, critical reading of the scientific literature by trained experts leads to definitions of the lists of protein members that are experimentally verified to form complexes. Each of these manually curated protein complexes are assigned functional annotations and a unique identifier. It is our assumption that this approach will allow for a more accurate resolution of the physical interactions between protein complexes.Based on this reasoning, we utilized all protein complex pairs from 1216 human protein complexes in CORUM (21) and 471 in the yeast CYC2008 databases (22, 23), and we attempted to predict physical interactions between them.To this end, we integrated only binary physical protein interactions that were experimentally verified and supported by Medline references, from the iRefIndex database (24, 25), and we developed a statistical method that compared the number of observed physical protein interactions between pairs of protein complexes versus the number of protein interactions expected to be present in pairs of randomized protein complexes. The highest scoring predicted pairs formed a network that was analyzed to identify communities of physically interacting protein complexes. Such higher order perspectives of cellular proteomes may aid discovery of novel functional relationships and lead to an improved understanding of cellular behavior.One recent study utilized manually curated protein complexes-complex interactions in yeast (23) as part of a machine learning strategy to identify complex-complex interactions. However, they added to the training data complex pairs enriched with protein interactions under the assumption that these were likely to contain complex-complex interactions but without a clear statistical argument to assess the reliability of these. Our aim has been to provide a more rigorous statistical approach applied to yeast and human, in which the main confounding factors, protein degrees and protein similarities within the complexes, have been taken into account.We used only the manually curated yeast complex-complex interactions from Ref. 23 as the reference set to evaluate our method after verifying with the authors that the manual curation had not been guided by enrichment in the protein network. Of these interactions, we predicted half at a 10% false discovery rate. Thus, although improvements in data as well as methods are still required for a more complete prediction of complex-complex interactions, a fair portion of these interactions can be reliably predicted now by using our method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号