首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytosolic form of phosphoenolpyruvate carboxykinase (PCK1) plays a regulatory role in gluconeogenesis and glyceroneogenesis. The role of the mitochondrial isoform (PCK2) remains unclear. We report the partial purification and kinetic and functional characterization of human PCK2. Kinetic properties of the enzyme are very similar to those of the cytosolic enzyme. PCK2 has an absolute requirement for Mn2+ ions for activity; Mg2+ ions reduce the Km for Mn2+ by about 60 fold. Its specificity constant is 100 fold larger for oxaloacetate than for phosphoenolpyruvate suggesting that oxaloacetate phosphorylation is the favored reaction in vivo. The enzyme possesses weak pyruvate kinase-like activity (kcat=2.7 s?1). When overexpressed in HEK293T cells it enhances strongly glucose and lipid production showing that it can play, as the cytosolic isoenzyme, an active role in glyceroneogenesis and gluconeogenesis.  相似文献   

2.
Pyridoxine kinase purified from sheep liver was found to consist of a single polypeptide chain with a molecular weight of 60,000 as determined by gel filtration, sedimentation equilibrium ultracentrifugation, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric pH of the enzyme was 5.1, and the pH optimum was between 5.5 and 6.0. The enzyme required divalent cations for activity. At cation concentrations of 80 μm, the enzyme activity with each cation was in the order of Zn2+ > Mn2+ > Mg2+. At cation concentrations of 400 μm, the enzyme activity with each cation was in the order of Mn2+ > Zn2+ > Mg2+. Excess free divalent cation inhibited the enzyme. Pyridoxine kinase also required monovalent cations. The enzyme activation was greatest with K+, then Rb+ and NH4+, whereas the enzyme had very little activity with Na+, Li+, or Cs+. Na+ did not interfere with the activation by K+. The activation of the kinase by K+, NH4+, and Rb+ followed Michaelis-Menten kinetics, and the apparent Km values for the cations were 8.9, 3.7, and 5.3 mm, respectively. Increasing the potassium concentration lowered the apparent Km value of the enzyme for pyridoxine and had little or no effect on the Km for ZnATP2? or the V of the kinase-catalyzed reaction.  相似文献   

3.
Gupta VK  Singh R 《Plant physiology》1988,87(3):741-744
NADP+-isocitrate dehydrogenase (threo-DS-isocitrate: NADP+ oxidoreductase [decarboxylating]; EC 1.1.1.42) (IDH) from pod walls of chickpea (Cicer arietinum L.) was purified 192-fold using ammonium sulfate fractionation, ion exchange chromatography on DEAE-Sephadex A-50, and gel filtration through Sephadex G-200. The purified enzyme, having a molecular weight of about 126,000, exhibited a broad pH optima from 8.0 to 8.6. It was quite stable at 4°C and had an absolute requirement for a divalent cation, either Mg2+ or Mn2+, for its activity. Typical hyperbolic kinetics was obtained with increasing concentrations of NADP+, dl-isocitrate, Mn2+, and Mg2+. Their Km values were 15, 110, 15, and 192 micromolar, respectively. The enzyme activity was inhibited by sulfhydryl reagents. Various amino acids, amides, organic acids, nucleotides, each at a concentration of 5 millimolar, had no effect on the activity of the enzyme. The activity was not influenced by adenylate energy charge but decreased linearly with increasing ratio of NADPH to NADP+. Initial velocity studies indicated kinetic mechanism to be sequential. NADPH inhibited the forward reaction competitively with respect to NADP+ at fixed saturating concentration of isocitrate, whereas 2-oxoglutarate inhibited the enzyme noncompetitively at saturating concentrations of both NADP+ and isocitrate, indicating the reaction mechanism to be random sequential. Results suggest that the activity of NADP+-IDH in situ is likely to be controlled by intracellular NADPH to NADP+ ratio as well as by the concentration of various substrates and products.  相似文献   

4.
NADP-isocitrate dehydrogenase from nodules of pigeonpea (Cajanus cajan L. cv UPAS-120) was partially purified to about 57 folds and its properties were studied. The enzyme showed an absolute requirement for a divalent cation which was fulfilled either by Mn+2 or Mg+2 and to a smaller extent by Co+2. The enzyme exhibited a sigmoidal response to increasing concentrations of Mn2+ (S0.5=0.3mM). The apparent Km values for isocitrate, NADP and Mg2+ were 21, 23 and 280 μM, respectively. It had an optimum pH of 8.0–8.2. The enzyme activity was not affected by various organic acids, amino acids and amides. NADH inhibited the activity non-competitively with respect to NADP. An apparent inhibition by ATP and ADP was due to chelation of divalent cation. NADPH acted competitively against NADP and non-competitively against isocitrate. Glutamate caused uncompetitive inhibition with respect to NADP and competitive against isocitrate. Kinetic studies suggested the reaction mechanism to be probably random sequential. Possible regulation of the enzyme activity in the nodules via cellular redox state and the levels of reaction products is discussed.  相似文献   

5.
We report the first kinetic characterization of human liver cytosolic GTP-dependent phosphoenolpyruvate carboxykinase (GTP-PEPCK), which plays a major role in the development of type 2 diabetes in human. In this work two recombinant forms of the enzyme were studied. One form had a His10-tag and the other was His-tag-free, and with one exception, both exhibited similar kinetic properties. When Mn2+ was used as the sole divalent cation, the His10-tagged enzyme, but not the His-tag-free enzyme, was increasingly inhibited at Mn2+ concentrations greater than 0.7 mM. This inhibition did not pose any problem in kinetic analysis, for within the relevant Mn2+ concentration range the His-tagged human PEPCK behaved almost identically to the tag-free enzyme. This property will bring simplicity and speed to purifying and studying multiple structural variants of this important enzyme. Apparent Km values of tag-free enzyme for phosphoenolpyruvate, GDP and bicarbonate were 450, 79 and 20,600 μM, respectively, while those for oxaloacetate and GTP were 4 and 23 μM, respectively, emphasizing the enzyme's gluconeogenic character. Bicarbonate (> 100 mM) inhibited OAA-forming activity, which was a new observation with a GTP-PEPCK. The apparent Km for Mn2+ in the PEP-forming direction was 30-fold lower than that for the OAA-forming direction. Mn2+ and bicarbonate or CO2 might regulate the enzyme in vivo.  相似文献   

6.
The 4-aminophenyloxanilic acid and β-mercaptopyruvic acid linked to the reactive diclorotriazine ring, were studied as active site-direct affinity labels towards oxaloacetate decarboxylase (EC 4.1.1.3, OXAD). Oxaloacetate decarboxylase when incubated with 4-aminophenyloxanilic-diclorotriazine (APOD) or β-mercaptopyruvic-diclorotriazine (MPD) at pH 7.0 and 25°C shows a time-dependent and concentration-dependent loss of enzyme activity. The inhibition was irreversible and activity cannot be recovered either by extensive dialysis or gel-filtration chromatography. The enzyme inactivation following the Kitz & Wilson kinetics for time-dependent irreversible inhibition. The observed rate of enzyme inactivation (k obs) exhibits a non-linear dependence on APOD or MPD concentration with maximum rate of inactivation (k 3) of 0.013 min?1 and 0.0046 min?1 and K D equal to 20.3 and 156 μM respectively. The inactivation of oxaloacetate decarboxylase by APOD and MPD is competitively inhibited by OXAD substrate and inhibitors, such as oxaloacetate, ADP and oxalic acid whereas Mn+2 enhances the rate of inactivation. The rate of inactivation of OXAD by APOD shows a pH dependence with an inflection point at 6.8, indicating a possible histidine derivatization by the label. These results show that APOD and MPD demonstrate the characteristics of an active-site probe towards the oxaloacetate binding site of oxaloacetate decarboxylase.  相似文献   

7.
Malic enzyme of the phototrophic bacterium Chromatium vinosum strain D that lacks malate dehydrogenase was partially purified yielding a specific activity of 55 units/mg protein. The constitutive enzyme with a molecular weight of 110,000 and a pH optimum of 8.0 was absolutely dependent on the presence of a monovalent cation (NH 4 + , K+, Cs+, or Rb+) as well as a divalent cation (Mn2+, or Mg2+). The enzyme was inhibited by oxaloacetate, glyoxylate, and NADPH. The K 0.5 value for L-malate and the inhibition constants for oxaloacetate and glyoxylate are dependent on the concentration of the monovalent cation, whereas the K m value for NADP (18 M) and the K 1 value for NADPH (42 M) are independent. Throughout all kinetic measurements hyperbolic saturation curves and linear double reciprocal plots were obtained.Abbreviations OAA oxaloacetate - OD optical density  相似文献   

8.
The requirement for metal ions by glutamine synthetase of Escherichia coli in catalyzing the γ-glutamyl transfer reaction has been investigated. In order of decreasing V at pH 7.0, Cd2+, Mn2+, Mg2+, Ca2+, Co2+, or Zn2+ will support the activity of the unadenylylated enzyme in the presence of ADP. With AMP substituted for ADP to satisfy the nucleotide requirement, only Mn2+ or Cd2+ will support the activity of the unadenylylated enzyme. Kinetic and equilibrium binding measurements show a 1:1 interaction between the nonconsumable substrate ADP and each enzyme subunit of the dodecamer. (To obtain this result, each enzyme subunit must be active in catalyzing γ-glutamyl transfer.) The stability constant of the unadenylylated subunit for ADP-Mn is 3.5 × 105m?1, or ~2.86 × 107m?1 under assay conditions, with arsenate, Mn2+, and glutamine being responsible for this large affinity increase. Saturation of two Mn2+ ion-binding sites per enzyme subunit is absolutely required for activity expression. While apparently not affecting the affinity of the first Mn2+ bound (K′ = 1.89 × 106 M?1), glutamine increases the stability constant for the second Mn2+ bound from 2 × 104 to 5.9 × 105m?1. Reciprocally, increasing Mn2+ concentrations decreases the apparent Km′ value for glutamine. Glutamine (by producing a net uptake of protons in binding to the enzyme) is responsible for changing the proton release from 3 to about 1 for 2 Mn2+ bound per enzyme subunit, with ~0.5 H+ displaced in both fast and slow processes. The uv spectral change induced by the binding of the first Mn2+ to each enzyme subunit remains unchanged by the presence of glutamine. However, glutamine reduces the half-time of the spectral change or slow proton release from ~30 to ~20 sec at 37 °C. Binding and kinetic results indicate a mechanism involving a random addition of Mn2+ to two subunit sites. Saturation of the high-affinity site with Mn2+ induces a conformational change to an active configuration, while activity expression depends also on the saturation of a second Mn2+ binding site (at or near the catalytic site). Once the first Mn2+ binding site of the subunit is saturated, an active enzyme complex can be formed either by the sequential binding of Mn2+ and ADP at the second site or by the binding of ADP-Mn complex directly to this site if the concentration of ADP-Mn is greater than 10?8m in the assay. Some additional observations on the binding of Mg2+, Ba2+, Ca2+, and Zn2+ to the enzyme are presented.  相似文献   

9.
The kinetic characteristics of NAD malic enzyme purified to homogeneity from cauliflower florets have been examined. Free NAD+ is the active form of this coenzyme. Double-reciprocal plots of data obtained by varying NAD+ and malate2? at a saturating concentration of Mg2+ or by varying Mg2+ and NAD+ at a saturating level of malate2? are of intersecting type. This indicates that NAD malic enzyme obeys a sequential mechanism. Analysis of these sets of data suggests that each of these substrate pairs binds randomly to the enzyme. However, each substrate binds tighter when others are already present on the enzyme. NAD malic enzyme cannot decarboxylate malate2? in the absence of either Mg2+ or NAD+. Arrhenius plots of the NAD-linked reaction are concave downward, indicating the existence of two rate-determining steps with activation energies of 26.5 and 14.2 kcal/mol, respectively. In addition to Mg2+, the enzyme can also use Mn2+ and Co2+. Using Co2+ in place of Mg2+ does not change Vmax or Km,malate2? but the Km for metal and NAD+ are greatly decreased. At pH 7.0 and above, Mn2+ isotherms and malate2? curves with Mn2+ are nonlinear and appear to be composed of two separate saturation curves. NAD malic enzyme is completely and irreversibly inactivated by N-ethylmaleimide. The enzyme is also irreversibly inactivated approximately 50% by KCNO.  相似文献   

10.
Oxidase reactions of tomato anionic peroxidase   总被引:1,自引:0,他引:1       下载免费PDF全文
Brooks JL 《Plant physiology》1986,80(1):130-133
Tomato (Lycopersicon esculentum Mill) anionic peroxidase was found to catalyze oxidase reactions with NADH, glutathione, dithiothreitol, oxaloacetate, and hydroquinone as substrates with a mean activity 30% that of horseradish peroxidase; this is in contrast to the negligible activity of the tomato enzyme as compared to the horseradish enzyme in catalyzing an indoleacetic acid-oxidase reaction with only Mn2+ and a phenol as cofactors. Substitution of Ce3+ for Mn2+ produced an 18-fold larger response with the tomato enzyme than with the horseradish enzyme, suggesting a significant difference in the autocatalytic indoleacetic acid-oxidase reactions with these two enzymes. In attempting to compare enzyme activities with 2,4-dichlorophenol as a cofactor, it was found that reaction rates increased exponentially with both increasing cofactor concentration and increasing enzyme concentration. While the former response may be analogous to allosteric control of enzyme activity, the latter response is contrary to the principle that reaction rate is proportional to enzyme concentration, and additionally makes any comparison of enzyme activity difficult.  相似文献   

11.
Low concentrations of Mn2+ supported the basal adenylate cyclase activity in crude and purified sarcolemmal membranes from cardiac muscle more effectively than did relatively high concentrations of Mg2+; at saturating concentrations the cyclase activities obtained with Mg2+ or Mn2+ were similar. In contrast, Mg2+ supported the basal cyclase activities of crude membrane fractions and purified sarcolemmal membranes from skeletal muscle far more effectively than did Mn2+; at saturating concentrations of either metal ion the Mg2+-supported cyclase activities were 5- to 10-fold greater than Mn2+-supported activities. Further, compared to Mg2+, Mn2+ supported the cyclase activities very poorly in all the primary subcellular fractions of skeletal muscle, whereas this cation was at least as effective as Mg2+ in all fractions of cardiac muscle. The apparent affinities of the cyclase for Mn2+ in heart as well as skeletal muscle appeared to be greater compared to those for Mg2+. The skeletal muscle cyclase displayed greater apparent affinity for MnATP2? (app. Km 0.10 mm) compared to MgATP2? (app. Km 0.32 mm) whereas the heart enzyme displayed greater apparent affinity for MgATP2? (app. Km 0.07 mm) compared to MnATP2? (app. Km 0.19 mm). Following preactivation with guanyl-5′-yl imidodiphosphate and isoproterenol, Mn2+ (0.15 to 2 mm) supported the cyclase activity of skeletal muscle even more effectively than did optimally effective concentrations of Mg2+. With the heart enzyme the relatively greater potency of Mn2+ persisted following preactivation. Significant enhancement in the Mn2+-sensitivity of skeletal muscle cyclase was also observed when assayed in the presence of GTP and isoproterenol or in the presence of NaF. Preactivation of both heart and skeletal muscle cyclases caused selective enhancement in the enzyme's apparent affinity for free Me2+ (Mg2+ or Mn2+) without influencing the apparent Km for MeATP2? (MgATP2? or MnATP2?). Evidences were obtained to show that the poor effectiveness of Mn2+ in supporting the basal activity of skeletal muscle cyclase is not related to (a) potentiation by Mn2+ of adenosine-mediated inhibition of the cyclase, (b) Mn2+-induced lability of the cyclase, (c) indirect effects of Mn2+ on ATP-regenerating system, or (d) the presence of different cation-specific molecular forms of the cyclase. It is also shown that the onset of enhanced Mn2+ sensitivity of the skeletal muscle enzyme following preactivation is not accompanied by a general loss of cation specificity of the cyclase. These results suggest that cations support the catalytic activity of adenylate cyclase by interacting with an enzymeregulatory free metal binding site and that the differential cation sensitivity of nonactivated (basal) cyclases from heart and skeletal muscle is likely due to differences in the properties of such an allosteric metal site. Furthermore, the metal site appears to undergo a conformational change following interaction of the cyclase system with the guanyl nucleotide and isoproterenol since the cation sensitivity of the cyclase and the relative potency of cations depend on the conformational status of the enzyme.  相似文献   

12.
  • 1.1. The enzyme fructose-1,6-bisphosphatase was purified from the mantle of the sea mussel Mytilus galloprovincialis Lmk. The purified enzyme showed a single band in SDS-polyacrylamide gel electrophoresis. The mol. wt and subunit mol. wt of the enzyme were 105,000 and 27,000, respectively.
  • 2.2. Divalent cations are essential for the enzyme activity. In the absence of chelating agents, FBPase 1 exhibits hyperbolic kinetics with respect to Mn2+, Zn2+ and Mg2+. The Km for Mg2+ is lower than the physiological concentration of cation in the tissue, whereas its Km for Mn2+ and Zn2+ is greater than the respective in vivo concentrations.
  • 3.3. The joint action of Mg2+ and Zn2+ increases the affinity of the enzyme for the substrate Fru-1,6-P2, though Vmax is reduced.
  • 4.4. Na+ strongly inhibits the enzyme even at very low concentrations. K+ has no effect whatsoever.
  相似文献   

13.
Phosphoenolpyruvate carboxylase (EC 4.1.1.31) was purified to homogeneity with about 29% recovery from immature pods of chickpea using ammonium sulfate fractionation, DEAE-cellulose chromatography, and gel filtration through Sephadex G-200. The purified enzyme with molecular weight of about 200,000 daltons was a tetramer of four identical subunits and exhibited maximum activity at pH 8.1. Mg2+ ions were specifically required for the enzyme activity. The enzyme showed typical hyperbolic kinetics with phosphoenolpyruvate with a Km of 0.74 millimolar, whereas sigmoidal response was observed with increasing concentrations of HCO3 with S0.5 value as 7.6 millimolar. The enzyme was activated by inorganic phosphate and phosphate esters like glucose-6-phosphate, α-glycerophosphate, 3-phosphoglyceric acid, and fructose-1,6-bisphosphate, and inhibited by nucleotide triphosphates, organic acids, and divalent cations Ca2+ and Mn2+. Oxaloacetate and malate inhibited the enzyme noncompetitively. Glucose-6-phosphate reversed the inhibitory effects of oxaloacetate and malate.  相似文献   

14.
A tertiary amine monoxygenase from a Pseudomonas sp. was partially purified (35-fold) and characterized. In the presence of nitrilotriacetate (NTA), O2, NADH, and Mn2+, the enzyme yielded two sets of products: iminodiacetate, glyoxylate, NAD+ and H2O; or H2O2 and NAD+. Which set of products predominated was a function of enzyme concentration, ionic strength of solution, pH, and cation supplied. NTA functioned both as a modifiable substrate and as a stimulator of NADH oxidase activity. A requirement for preincubation with Mn2+ and NTA to eliminate enzyme hysteresis and the similar Km values for NTA and Mn2+ suggested that the substrate and metal were bound as a unit by the enzyme.  相似文献   

15.
Phosphoenolpyruvate (PEP) carboxykinases catalyse the reversible formation of oxaloacetate (OAA) and ATP (or GTP) from PEP, ADP (or GDP) and CO2. They are activated by Mn2+, a metal ion that coordinates to the protein through the ?-amino group of a lysine residue, the N?-2-imidazole of a histidine residue, and the carboxylate from an aspartic acid residue. Neutrality in the ?-amino group of Lys213 of Saccharomyces cerevisiae PEP carboxykinase is expected to be favoured by the vicinity of ionised Lys212. Glu272 and Glu284, located close to Lys212, should, in turn, electrostatically stabilise its positive charge and hence assist in keeping the ?-amino group of Lys213 in a neutral state. The mutations Glu272Gln, Glu284Gln, and Lys212Met increased the activation constant for Mn2+ in the main reaction of the enzyme up to seven-fold. The control mutation Lys213Gln increased this constant by ten-fold, as opposed to control mutation Lys212Arg, which did not affect the Mn2+ affinity of the enzyme. These observations indicate a role for Glu272, Glu284, and Lys212 in assisting Lys213 to properly bind Mn2+. In an unexpected result, the mutations Glu284Gln, Lys212Met and Lys213Gln changed the nucleotide-independent OAA decarboxylase activity of S. cerevisiae PEP carboxykinase into an ADP-requiring activity, implying an effect on the OAA binding characteristics of PEP carboxykinase.  相似文献   

16.
The subcellular location of NADP+-isocitrate dehydrogenase was investigated by preparing protoplasts from leaves of pea seedlings. Washed protoplasts were gently lysed and the whole lysate separated on sucrose gradients by a rate-zonal centrifugation. Organelles were located by marker enzymes and chlorophyll analysis. Most of the NADP+-isocitrate dehydrogenase was in the soluble fraction. About 10% of the NADP+-isocitrate dehydrogenase was present in the chloroplasts as a partially latent enzyme. Less than 1% of the activity was found associated with the peroxisome fraction. NADP+-isocitrate dehydrogenase was partially characterized from highly purified chloroplasts isolated from shoot homogenates. The enzyme exhibited apparent Km values of 11 micromolar (NADP+), 35 micromolar (isocitrate), 78 micromolar (Mn2+), 0.3 millimolar (Mg2+) and showed optimum activity at pH 8 to 8.5 with Mn2+ and 8.8 to 9.2 with Mg2+. The NADP+-isocitrate dehydrogenase activity previously claimed in the peroxisomes by other workers is probably due to isolation procedures and/or nonspecific association. The NADP+-isocitrate dehydrogenase activity in the chloroplasts might help supply α-ketoglutarate for glutamate synthase action.  相似文献   

17.
Malate dehydrogenase (l-malate:NAD+ oxidoreductase, EC 1.1.1.37) has been purified about 480-fold from crude extract of the facultative phototrophic bacterium, Rhodopseudomonas capsulata by only two purification steps, involving Red-Sepharose affinity chromatography. The enzyme has a molecular mass of about 80 kDa and consists of two subunits with identical molecular mass (35 kDa). The enzyme is susceptible to heat inactivation and loses its activity completely upon incubation at 40°C for 10 min. Addition of NAD+, NADH and oxaloacetate, but not l-malate, to the enzyme solution stabilized the enzyme. The enzyme catalyzes exclusively the oxidation of l-malate, and the reduction of oxaloacetate and ketomalonate in the presence of NAD+ and NADH, respectively, as the coenzyme. The pH optima are around 9.5 for the l-malate oxidation, and 7.75–8.5 and 4.3–7.0 for the reduction of oxaloacetate and ketomalonate, respectively. The Km values were determined to be 2.1 mM for l-malate, 48 μM for NAD+, 85 μM for oxaloacetate, 25 μM for NADH and 2.2 mM for ketomalonate. Initial velocity and product inhibition patterns of the enzyme reactions indicate a random binding of the substrates, NAD+ and l-malate, to the enzyme and a sequential release of the products: NADH is the last product released from the enzyme in the l-malate oxidation.  相似文献   

18.
We studied the transition metal ion requirements for activity and sulfhydryl group reactivity in phosphoenolpyruvate carboxykinase (PEP-carboxykinase; ATP:oxaloacetate carboxylase (transphosphorylating), EC 4.1.1.49), a key enzyme in the energy metabolism of the protozoan parasite Trypanosoma (Schizotrypanum) cruzi. As for other PEP-carboxykinases this enzyme has a strict requirement of transition metal ions for activity, even in the presence of excess Mg2+ ions for the carboxylation reaction; the order of effectiveness of these ions as enzyme activators was: Co2+ > Mn2+ > Cdu2+ > Ni2+ ⪢ Fe2+ > VO2+, while Zn2+ and Ca2+ had no activating effects. When we investigated the effect of varying the type or concentration of the transition metal ions on the kinetic parameters of the enzyme the results suggested that the stimulatory effects of the transition metal center were mostly associated with the activation of the relatively inert CO2 substrate. The inhibitory effects of 3-mercaptopicolinic acid (3MP) on the enzyme were found to depend on the transition metal ion activator: for the Mn2+ activated enzyme the inhibition was purely non-competitive (Kii = Kis) towards all substrates, while for the Co2+-activated enzyme the inhibitor was much less effective, produced a mixed-type inhibition and affected differentially the interaction of the enzyme with its substrates. The modification of a single, highly reactive, cysteine per enzyme molecule by 5,5′-dithiobis(2-nitro-benzoate) (DTNB) lead to an almost complete inhibition of Mn2+-activated T. cruzi PEP-carboxykinase; however, in contrast with the results of previous studies in vertebrate and yeast enzymes, the substrate ADP slowed the chemical modification and enzyme inactivation but did not prevent it. PEP and HCO3 had no significant effect on the rate or extent of the enzyme inactivation. The kinetics of the enzyme inactivation by DTNB was also dependent on the transition metal activator, being much slower for the Co2+-activated enzyme than for its Mn2+-activated counterpart. When the bulkier but more hydrophobic reagent N-(7-dimethylamino-4-methylcoumarinyl)maleimide (DACM) was used the enzyme was slowly and incompletely inactivated in the presence of Mn2+ and ADP afforded almost complete protection from inactivation; in the presence of Co2+ the enzyme was completely resistant to inactivation. Taken together, our results indicate that the parasite enzyme has a specific requirement of transition metal ions for activity and that they modulate the reactivity of a single, essential thiol group, different from the hyperreactive cysteines present in vertebrate or yeast enzymes.  相似文献   

19.
In Leishmania, arginase is responsible for the production of ornithine, a precursor of polyamines required for proliferation of the parasite. In this work, the activation kinetics of immobilized arginase enzyme from L. (L.) amazonensis were studied by varying the concentration of Mn2+ applied to the nickel column at 23 °C. The intensity of the binding of the enzyme to the Ni2+ resin was directly proportional to the concentration of Mn2+. Conformational changes of the enzyme may occur when the enzyme interacts with immobilized Ni2+, allowing the following to occur: (1) entrance of Mn2+ and formation of the metal bridge; (2) stabilization and activation of the enzyme at 23 °C; and (3) an increase in the affinity of the enzyme to Ni2+ after the Mn2+ activation step. The conformational alterations can be summarized as follows: the interaction with the Ni2+ simulates thermal heating in the artificial activation by opening a channel for Mn2+ to enter.  相似文献   

20.
NADP+:isocitrate dehydrogenase has been purified to homogeneity from lactating bovine mammary gland. Purification was achieved through the use of affinity and DEAE-cellulose chromatography. The isolated enzyme gives one band when stained for protein or enzyme activity on discontinuous alkaline gel electrophoresis. The enzyme has a molecular weight of 55,000 as estimated by sodium dodecyl sulfate-gel electrophoresis and a Stokes radius of 4.1 nm as measured by gel chromatography. The enzyme will not use NAD+ in place of NADP+ and has an absolute requirement for divalent cations. The apparent Km values for dl-isocitrate, Mn2+, and NADP+ were found to be 8, 6, and 11 μm, respectively. The Mn2+-ds-isocitrate complex is the most likely substrate for the mammary enzyme with a Km of 3 μm. The properties of mammary NADP+:isocitrate dehydrogenase are compared with those of the homologous enzymes from pig heart and bovine liver, and its characteristics are discussed with respect to the function of the enzyme in lactating mammary gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号