首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The activities of choline oxidase and betaine-homocysteine methyltransferase increased markedly in pre-ruminant lamb liver after birth and subsequently decreased when the lambs reached the ruminant state, while the developmental changes in hepatic 5-methyl-H4folate-homocysteine methyltransferase were negatively correlated with those of betaine-homocysteine methyltransferase. Hepatic phospholipid methyltransferase was elevated almost four-fold by the 10th postnatal day, but declined thereafter. Hepatic glycine methyltransferase in one-day-old lambs increased 55-fold, compared with that of fetuses, and thereafter decreased dramatically with age. Guanidoacetate methyltransferase, glycine methyltransferase and betaine-homocysteine methyltransferase in sheep pancreas increased markedly with age and were many times higher than the hepatic enzymes in adult sheep. Choline oxidase, betaine-homocysteine methyltransferase, cystathionine beta-synthase and glycine methyltransferase in adult sheep liver were much lower than those in rat. These results illustrate the conservative features of methyl group metabolism in postruminant sheep.  相似文献   

2.
The effect of lactation on a number of enzymes involved in transmethylation reactions and the secretion of major methyl compounds into milk have been examined in sheep. The activities of hepatic phospholipid methyltransferase and 5-methyltetrahydrofolate-homocysteine methyltransferase were significantly higher in lactating ewes, compared with those in non-lactating ewes, while the activity of both hepatic and pancreatic glycine methyltransferase was significantly lower in the lactating state. No differences were observed in the activities of hepatic guanidoacetate methyltransferase, betaine-homocysteine methyltransferase and cystathionine beta-synthase on lactation. These results suggest that the extra demand for methyl groups for the secretion of methyl compounds in the milk is facilitated by enhancing the rate of de novo methyl group synthesis and lowering the rate of physiologically nonessential methylation.  相似文献   

3.
Exposure of sheep to 36% nitrous oxide for 8 days (2-hr per day) led to 90%, 82% and 74% inhibition of 5-methyltetrahydrofolate-homocysteine methyltransferase in the liver, heart and brain, respectively, while there was no significant decrease in the activity of methylmalonyl-CoA mutase. There was also no change of betaine-homocysteine methyltransferase activity. The level of plasma methionine in nitrous-oxide-exposed sheep fell to 30% of its initial value. S-Adenosylmethionine level was reduced to 50% of the control value in the liver, and was also significantly decreased in the heart, but not in the brain. Excretion of formiminoglutamic acid and homocystine was also observed in the urine of sheep exposed to nitrous oxide. These results demonstrate that inhibition of 5-methyltetrahydrofolate-homocysteine methyltransferase causes a pronounced perturbation of methionine metabolism in sheep, suggesting that dietary methionine plus methionine synthesized from the methyl groups of betaine are not sufficient to meet the methyl needs for biological methylation reactions in this species and, in turn, emphasizing the role of 5-methyltetrahydrofolate-homocysteine methyltransferase in methionine synthesis in the sheep.  相似文献   

4.
The concentration of carnitine in liver increased 28-fold and urinary carnitine excretion 5-fold in alloxan-diabetic sheep. In contrast there were no similar increases in alloxan-diabetic rats. The creatine content of liver decreased 3-fold and creatine excretion decreased 2-fold in diabetic sheep. In contrast the creatine content of liver increased nearly 4-fold in diabetic rats with no change in creatine excretion. The marked increased in production of carnitine by the liver of the diabetic sheep appears possible because of decreased production and excretion of creatine.  相似文献   

5.
The important features of the enzymes involved in methionine synthesis in sheep were found to be the low activity of betaine-homocysteine methyltransferase and the high activity of 5-methyltetrahydrofolate-homocysteine methyltransferase. The rate of the methionine synthesis in sheep liver was significantly lower than that in rats due to the low activity of hepatic betaine-homocysteine methyltransferase. The hepatic methionine recycling was stimulated by the addition of betaine in both species. These results indicate that in sheep 5-methyltetrahydrofolate-homocysteine methyltransferase plays a significant role in hepatic methionine synthesis along with betaine-homocysteine methyltransferase. In contrast, in the rat hepatic system methionine synthesis is virtually dependent on betaine-homocysteine methyltransferase.  相似文献   

6.
Purification and isoelectric heterogeneity of chicken tyrosinase   总被引:1,自引:0,他引:1  
Alterations in rat liver transfer RNA (tRNA) methyltransferase activities have been observed after liver damage by various chemicals or by partial hepatectomy. The qualitative and quantitative nature of these activity changes and the time course for their induction have been studied. Since homologous tRNAs are essentially fully modified in vivo, E. coli tRNAs were used as in vitro substrates for the rat liver enzymes in these studies. Each of the liver-damaging agents tested rapidly caused increases in activities of the enzyme(s) catalyzing methyl group transfer to tRNAs that have an unmodified guanine at position 26 from the 5' end of the molecule. This group of tRNAs includes E. coli tRNANfmet, tRNAAla1, tRNALeu1, or Leu2, and tRNASer3 (Group 1). In each case N2-methylguanine and N2,N2-dimethylguanine represented 90% or more of the products of these in vitro methylations. The product and substrate specificity observed are characteristic of N2-guanine methyltransferase II (S-adenosyl-L-methionine : tRNA (guanine-2)-methyltransferase, EC 2.1.1.32). In crude and partially purified preparations derived from livers of both control and treated animals this enzyme activity was not diminished significantly by exposure to 50 degrees C for min. The same liver-damaging agents induced little or no change in the activities of enzymes that catalyze methyl group transfer to various other E. coli tRNAs that do not have guanine at position 26 (Group 2). The results of mixing experiments appear to rule out the likelihood that the observed enzyme activity changes are due to stimulatory or inhibitory materials present in the enzyme preparations from control or treated animals. Thus, our experiments indicate that liver damage by each of several different methods, including surgery or administration of chemicals that are strong carcinogens, hepatotoxins, or cancer-promoting substances, all produce changes in liver tRNA methyltransferase activity that represent a selective increase in activity of N2-guanine tRNA methyltransferase II. It is proposed that the specificity of this change is not fortuitous, but is the manifestation of an as yet unidentified regulatory process.  相似文献   

7.
To determine the cellular localization of components of the methyltransferase system, we separated cell extracts of Methanosarcina strain G?1 into cytoplasmic and inverted-vesicle fractions. Measurements demonstrated that 83% of the methylene-tetrahydromethanopterin reductase activity resided in the cytoplasm whereas 88% of the methyl-tetrahydromethanopterin:coenzyme M methyltransferase (methyltransferase) was associated with the vesicles. The activity of the methyltransferase was stimulated 4.6-fold by ATP and 10-fold by ATP plus a reducing agent [e.g., Ti(III)]. In addition, methyltransferase activity depended on the presence of Na+ (apparent Km = 0.7 mM) and Na+ was pumped into the lumen of the vesicles in the course of methyl transfer from methyl-tetrahydromethanopterin not only to coenzyme M but also to hydroxycobalamin. Both methyl transfer reactions were inhibited by 1-iodopropane and reconstituted by illumination. A model for the methyl transfer reactions is presented.  相似文献   

8.
A soluble enzyme which catalyzes the transfer of the methyl group from S-adenosyl-L-methionine to the nitrogen atom of pyridine-3-carboxylic acid (nicotinic acid) could be detected in protein preparations from heterotrophic cell suspension cultures of soybean (Glycine max L.). Enzyme activity was enriched nearly 100-fold by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography to study kinetic properties. S-adenosyl-L-methionine:nicotinic acid-N-methyltransferase (EC 2.1.1.7) showed a pH optimum at pH 8.0 and a temperature optimum between 35 and 40 degrees C. The apparent KM values were determined to be 78 microM for nicotinic acid and 55 microM for the cosubstrate. S-Adenosyl-L-homocysteine was a competitive inhibitor of the methyltransferase with a KI value of 95 microM. The native enzyme had a molecular mass of about 90 kDa. The catalytic activity was inhibited by reagents blocking SH groups, whereas other divalent cations did not significantly influence of the enzyme reaction. The purified methyltransferase revealed a remarkable specificity for nicotinic acid. No other pyridine derivative was a suitable methyl group acceptor. To study a potential methyltransferase activity with nicotinamide as substrate, an additional purification step was necessary to remove nicotinamide amidohydrolase activity from the enzyme preparation. This was achieved by affinity chromatography on S-adenosyl-L-homocysteine-Sepharose thus leading to a 580-fold purified enzyme which showed no methyltransferase activity toward nicotinamide as substrate.  相似文献   

9.
An enzyme activity transferring methyl groups from S-adenosylmethionine to endogenous tRNA was detected in the cytosol of aggregative Dictyostelium discoideum amoebae. This enzyme was purified more than 1000-fold and was characterized as a tRNA (adenine-N1-)-methyltransferase. Kinetic analysis yielded a K0.5 for S-adenosylmethionine of 0.27 microM and competitive inhibition by S-adenosylhomocysteine showed an I0.5 of 0.26 microM. The tRNA methyltransferase activity was stimulated by monovalent cations and the pH optimum was 7.3. tRNAs isolated from D. discoideum as well as from other eucaryotic sources could be methylated only to a minor extent. In contrast, Escherichia coli tRNA accepted up to 0.6 mol methyl group/mol tRNA, suggesting that the target nucleotide is unmethylated in procaryotic tRNA, but is commonly methylated in tRNAs from eucaryotic organisms. The activity of the methyltransferase increased 4-6-fold during cell differentiation from the vegetative to the aggregative stage.  相似文献   

10.
Treatment of rats with a methionine diet leads not only to a marked increase of S-adenosylmethionine synthetase in liver, but also to the increase of glycine, guanidoacetate and betaine-homocysteine methyltransferases. The activity of tRNA methyltransferase decreased with the increased amounts of methionine in the diets. However, the activities of phospholipids and S-adenosylmethionine-homocysteine methyltransferases did not show any significant change. When hepatocarcinogenesis induced by 2-fluorenylacetamide progresses, the activities of glycine and guanidoacetate methyltransferases in rat liver decreased, and could not be detected in tumorous area 8 months after treatment. The levels of S-adenosylmethionine in the liver also decreased to levels of one-fifth of control animals at 8 months. The uptake and metabolism of [methyl-3H]-methionine and -S-adenosylmethionine have been investigated by in vivo and isolated hepatocytes. The uptake of methionine and transfer of methyl group to phospholipid in the cells by methionine were remarkably higher than those by S-adenosylmethionine. These results indicate that phospholipids in hepatocytes accept methyl group from S-adenosylmethionine immediately, when it is synthesized from methionine, before mixing its pool in the cells.  相似文献   

11.
A diabetic state induces the activity and abundance of glycine N-methyltransferase (GNMT), a key protein in the regulation of folate, methyl group, and homocysteine metabolism. Because the folate-dependent one-carbon pool is a source of methyl groups and 5-methyltetrahydrofolate allosterically inhibits GNMT, the aim of this study was to determine whether folate status has an impact on the interaction between diabetes and methyl group metabolism. Rats were fed a diet containing deficient (0 ppm), adequate (2 ppm), or supplemental (8 ppm) folate for 30 days, after which diabetes was initiated in one-half of the rats by streptozotocin treatment. The activities of GNMT, phosphatidylethanolamine N-methyltransferase (PEMT), and betaine-homocysteine S-methyltransferase (BHMT) were increased about twofold in diabetic rat liver; folate deficiency resulted in the greatest elevation in GNMT activity. The abundance of GNMT protein and mRNA, as well as BHMT mRNA, was also elevated in diabetic rats. The marked hyperhomocysteinemia in folate-deficient rats was attenuated by streptozotocin, likely due in part to increased BHMT expression. These results indicate that a diabetic state profoundly modulates methyl group, choline, and homocysteine metabolism, and folate status may play a role in the extent of these alterations. Moreover, the upregulation of BHMT and PEMT may indicate an increased choline requirement in the diabetic rat.  相似文献   

12.
DNA-5-methyltransferase has been purified (about 1400-fold) from rapidly proliferating mouse P815 mastocytoma cells by chromatographies on DEAE cellulose, hydroxyapatite and a heparine-agarose affinity step. The isolated enzyme has an isoelectric point of 7.3 and in neutral 10-30% glycerol gradient it bands in an area corresponding to molecular weight of 135,000 dalton. During the enzymatic reaction, the enzyme first interacts with DNA and then accomplishes a series of methyl group transfers without being detached. The formation of the initial DNA-enzyme complexes is probably random and independent of the cofactor, S-adenosyl-L-methionine, as well as the sequences recognized as methylation sites. The "maintenance" and "de novo" types of activity have been monitored using hemimethylated and completely unmethylated DNA as methyl group accepting polymers. Both these activities copurify in three different chromatographic procedures. This, together with the fact that the enzyme purified near to homogeneity possesses both types of activities suggests that "de novo" and "maintenance" DNA methyltransferase activities are exercised by the same enzyme molecule.  相似文献   

13.
Alterations in rat liver transfer RNA (tRNA) methyltransferase activities have been observed after liver damage by various chemicals or by partial hepatectomy. The qualitative and quantitative nature of these activity changes and the time course for their induction have been studied. Since homologous tRNAs are essentially fully modified in vivo, E. coli tRNAs were used as in vitro substrates for the rat liver enzymes in these studies. Each of the liver-damaging agents tested rapidly caused increases in activities of the enzyme(s) catalyzing methyl group transfer to tRNAs that have an unmodified guanine at position 26 from the 5′ end of the molecule. This group of tRNAs includes E. coli tRNANfmet, tRNAAla1, tRNALeu1, or Leu2, and tRNASer3 (Group 1). In each case N2-methylguanine and N2,N2-dimethylguanine represented 90% or more of the products of these in vitro methylations. The product and substrate specificity observed are characteristic of N2-guanine methyltransferase II (S-adenosyl-L-methionine:tRNA (guanine-2)-methyltransferase, EC 2.1.1.32). In crude and partially purified preparations derived from livers of both control and treated animals this enzyme activity was not diminished significantly by exposure to 50°C for 10 min. The same liver-damaging agents induced little or no change in the activities of enzymes that catalyze methyl group transfer to various other E. coli tRNAs that do not have guanine at position 26 (Group 2). The results of mixing experiments appear to rule out the likelihood that the observed enzyme activity changes are due to stimulatory or inhibitory materials present in the enzyme preperations from control or treated animals. Thus, our experiments indicate that liver damage by each of several different methods, including surgery or administration of chemicals that are strong carcinogens, hepatotoxins, or cancer-promoting substances, all produce changes in liver tRNA methyltransferase activity that represent a selective increase in activity of N2-guanine tRNA methyltransferase II. It is proposed that the specificity of this change is not fortuitous, but is the manifestation of an as yet unidentified regulatory process.  相似文献   

14.
After male rats of the Sprague Dawley strain, 5 weeks old, were fed a 20% casein diet with or without 0.5% nicotinamide for 13 days, 180 mg/kg body weight of alloxan was injected in- traperitoneally into the rats. The rats were kept for 18 days with the same diet. The level of blood glucose was increased 6-fold in the group on a 20% casein diet by the injection of alloxan, while there was only a 2-foid increase in the group on a nicotinamide-containing diet and the decreased body weight was also lower in the group on the nicotinamide diet than the group on the casein diet. The body weight was indirectly related to the concentration of blood glucose. A marked increase was observed in the activities of tryptophan oxygenase, aminocarboxymuconate-semialdehyde decarboxylase, and nicotinamide methyltransferase upon the injection of alloxan with both diets; on the other hand, the activities of kynureninase and NAD+ synthetase were decreased by the injection of alloxan. The activity of kynurenine aminotransferase increased in the group on the 20% casein diet by the injection of alloxan, while in the group on the nicotinamide-containing diet its activity was not increased by the injection. These changes in the above enzyme activities mean that the conversion ratio from tryptophan to niacin is lower in the alloxan diabetic rat than normal rat. It was found that the activities of tryptophan oxygenase, aminocarboxymuconate-semialdehyde decarboxylase, and nicotinamide methyltransferase were directly related to the concentration of blood glucose, and that the activities of kynureninase and NAD+ synthetase were inversely related. There was no difference in the activities of 3-hydroxyanthranilic acid oxygenase and nicotinamide mononucleotide adenylyltransferase upon the injection of alloxan with both diets.  相似文献   

15.
The purpose of this study was to investigate the possible antioxidant effect of an aqueous extract of Ajuga iva (Ai) in streptozotocin (STZ)-induced diabetic rats. Twelve diabetic rats were divided into two groups fed a casein diet supplemented or not with Ai (0.5%), for 4 weeks. In vitro, the Ai extract possessed a very high antioxidant effect (1 mg/ml was similar to those of trolox 300 mmol/l). The results indicated that plasma thiobarbituric acid reactive substances (TBARS) values were reduced by 41% in Ai-treated compared with untreated diabetic rats. TBARS concentrations were lower 1.5-fold in liver, 1.8-fold in heart, 1.9-fold in muscle and 2.1-fold in brain in Ai-treated than untreated group. In erythrocytes, Ai treatment increased significantly the activities of glutathione peroxidase (GSH-Px) (+25%) and glutathione reductase (GSSH-Red) (+22%). Superoxide dismutase activity was increased in muscle (+22%), while GSH-Px activity was significantly higher in liver (+28%), heart (+40%) and kidney (+45%) in Ai-treated compared with untreated group. Liver and muscle GSSH-Red activity was, respectively, 1.6- and 1.5-fold higher in Ai-treated than untreated diabetic group. Catalase activity was significantly increased in heart (+36%) and brain (+32%) in Ai-treated than untreated group. Ai treatment decreased plasma nitric oxide (?33%), carbonyls (?44%) and carotenoids (?68%) concentrations. In conclusion, this study indicates that Ajuga iva aqueous extract improves the antioxidant status by reducing lipid peroxidation and enhancing the antioxidant enzymes activities in plasma, erythrocytes and tissues of diabetic rats.  相似文献   

16.
Streptozotocin-induced diabetes of 7 weeks duration increased male Sprague-Dawley rat kidney ornithine decarboxylase activity by 4.8-fold but did not affect the liver enzyme. Hydrazine treatment of 4 hr duration stimulated equally kidney ornithine decarboxylase activities of nondiabetic and diabetic rats. Hydrazine treatment increased liver ornithine decarboxylase activity in the nondiabetic rat but did not increase it in the diabetic rat. Since hydrazine stimulates ornithine decarboxylase activity prior to polyamine and protein syntheses, we speculate that the lack of hydrazine stimulation of ornithine decarboxylase in the diabetic liver may be related in part to the unrestrained gluconeogenesis and depressed Kreb's cycle activity: the latter being required for protein synthesis.  相似文献   

17.
The sequences m7G(5')pppGm-and m7G(5')pppAm-are located at the 5' termini of vaccinia mRNAs. Two novel enzymatic activities have been purified from vaccinia virus cores which modify the 5' terminus of unmethylated mRNA. One activity transfers GMP from GTP to mRNA and is designated a GTP: mRNA guanylyltransferase. The second activity transfers a methyl group from S-adenosylmethionine to position 7 of the added guanosine and is designated a S-adenosylmethionine: mRNA (guanine-7-)methyltransferase. Advantage was taken of the selective binding of these activities to homopolyribonucleotides relative to DNA to achieve a 200-fold increase in specific activity. The guanylyl- and methyltransferase remained inseparable during chromatography on DNA-agarose, poly(U)-Sepharose, poly(A)-Sepharose, and Sephadex G-200 and during sedimentation through sucrose density gradients suggesting they were associated. A Stokes radius of 5.0 nm, an S20,w of 6.0 and a molecular weight of 127,000 were obtained by gel filtration on Sephadex G-200 and sedimentation in sucrose density gradients. Under denaturing conditions of sodium dodecyl sulfate-polyacrylamide gel electrophoresis two major polypeptides were detected in purified enzyme preparations. Their molecular weights of 95,000 and 31,400 suggested they were polypeptide components of the 127,000 molecular weight enzyme system.  相似文献   

18.
The activities of UDPglucuronosyltransferase, microsomal epoxide hydrolase and cytosolic glutathione S-transferase were measured in the liver of spontaneously (db/db and ob/ob) or streptozotocin-induced diabetic mice. An important (2-3-fold) increase of most phase II activities was observed in streptozotocin-treated animals, whereas slighter changes were detected in spontaneously diabetic animals. The latter also exhibited physico-chemical modifications of the liver microsomal membranes, as shown by the temperature-induced variations of epoxide hydrolase activity.  相似文献   

19.
During starvation and in streptozotocin-induced diabetes, the total activities of rat lung acetyl CoA carboxylase and fatty acid synthetase are reduced to one-third of the normal values. Refeeding of the starved animals or administration of insulin to diabetic animals restores the levels to the original values. The insulin effect is dose and time dependent. These data contrast with those in the liver, where a 30- to 50-fold depression of these enzymes is observed in the diabetic state and administration of insulin is actually followed by doubling of the activity over normal controls. Fat-free high-fructose diet (containing 60% fructose by weight) enhances the activities of liver enzymes 3- to 6-fold over the values of controls on laboratory diet but has no effect on the lung enzymes. Long-term feeding of fructose diet also increases the activities of liver enzymes from diabetic animals to twice the value of normal controls on laboratory diet. Insulin administration to fructose-fed diabetic animals restores the enzyme activities to those obtained with fructose-fed normal controls. However, the stimulation of lung enzymes of diabetic animals can be effected either by fructose or by insulin. Antigen-antibody titrations and measurements of the rate of protein synthesis show that the increased activity of the lung and liver fatty acid synthetase is due to enhanced content rather than increased specific activity. These data suggest that insulin or fructose effects on fatty acid-synthesizing enzymes are mediated through intermediate(s) whose concentration is affected in the experimental diabetes. Furthermore, all tissues may not have stringent insulin requirements since the lung enzymes can be stimulated by fructose alone.  相似文献   

20.
Type I protein arginine methyltransferases catalyze the formation of asymmetric omega-N(G),N(G)-dimethylarginine residues by transferring methyl groups from S-adenosyl-L-methionine to guanidino groups of arginine residues in a variety of eucaryotic proteins. The predominant type I enzyme activity is found in mammalian cells as a high molecular weight complex (300-400 kDa). In a previous study, this protein arginine methyltransferase activity was identified as an additional activity of 10-formyltetrahydrofolate dehydrogenase (FDH) protein. However, immunodepletion of FDH activity in RAT1 cells and in murine tissue extracts with antibody to FDH does not diminish type I methyltransferase activity toward the methyl-accepting substrates glutathione S-transferase fibrillarin glycine arginine domain fusion protein or heterogeneous nuclear ribonucleoprotein A1. Similarly, immunodepletion with anti-FDH antibody does not remove the endogenous methylating activity for hypomethylated proteins present in extracts from adenosine dialdehyde-treated RAT1 cells. In contrast, anti-PRMT1 antibody can remove PRMT1 activity from RAT1 extracts, murine tissue extracts, and purified rat liver FDH preparations. Tissue extracts from FDH(+/+), FDH(+/-), and FDH(-/-) mice have similar protein arginine methyltransferase activities but high, intermediate, and undetectable FDH activities, respectively. Recombinant glutathione S-transferase-PRMT1, but not purified FDH, can be cross-linked to the methyl-donor substrate S-adenosyl-L-methionine. We conclude that PRMT1 contributes the major type I protein arginine methyltransferase enzyme activity present in mammalian cells and tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号