首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ionic channel proteins are possible sites of microwave interaction at the cell membrane level. Patch-clamp data, using single channel and total current recording, indicated that low level microwave fields may modify some functional parameters of the nicotinic acetylcholine receptor in primary chick myotubes, suggesting a possible effect of microwaves on myogenic cells. Here, we investigated the biological relevance of such results, in relation to the possible involvement of intracellular signaling processes. We exposed L6-C5 myogenic cells to low power electromagnetic fields and observed the consequences on hormonal activation of phospholipases C and D. We found that increased inositol phospholipid turnover, induced by acetylcholine and arginine vasopressin activation of phospholipase C, was not modified in microwave irradiated myoblasts or myotubes. Moreover, vasopressin-dependent phospholipase D activation, assessed by measuring the [3H]-free choline release, was not modified by microwave irradiation. Our conclusions suggest that low level microwave fields do not modify signal transduction pathways activated by acetylcholine and vasopressin in L6-C5 myogenic cells.  相似文献   

2.
Exposure to 2450-MHz (cw) microwave radiation causes inhibition of cell division in intact cells and varied in vivo biological effects in both avian and mammalian species. Because these reported effects may result from alterations in the dynamics of microtubule formation, we studied the effects of simultaneous microwave exposure (2450 MHz, cw) during each of the three critical stages of the intracellar polymerization cycle. In addition, using circular dichroism spectroscopy, we studied the effect of microwave irradiation on the secondary structure of purified tubulin polypeptides. These studies were accomplished using specially constructed exposure systems that permit the continuous recording of turbidometric or circular dichroism measurements during simultaneous exposure to microwaves. The baseline turbidity of microtubular protein did not change under the influence of microwave radiation (20 or 200 mW/g SAR) and irradiation had no effect on the light-scattering properties of the depolymerized protein. EGTA-induced polymerization and cold-induced depolymerization patterns were also similar for both control and microwave-irradiated samples. The circular dichroism spectrum of purified tubulin also did not appear to be influenced by microwave irradiation, indicating a lack of effect on the protein secondary structure. The data suggest that the cellular effects of microwaves are not due to changes in microtubular proteins or their rate of polymerization.  相似文献   

3.
The immunobiological effect of electromagnetic microwaves applied to parietotemporal area was studied. It was shown that the exposure of parietotemporal area to microwaves produced an immunodepressive effect manifested in the decreased number of natural (background) antibody-forming cells. The exposure of parietotemporal area to microwaves was accompanied by glucocorticoid function stimulation in the adrenal cortex and thyroid function depression.  相似文献   

4.
Review is devoted to the analysis of biological effects of microwaves. The results of last years' researches indicated the potential risks of long-term low-level microwaves exposure for human health. The analysis of metabolic changes in living cells under the exposure of microwaves from mobile communication systems indicates that this factor is stressful for cells. Among the reproducible effects of low-level microwave radiation are overexpression of heat shock proteins, an increase of reactive oxygen species level, an increase of intracellular Ca2+, damage of DNA, inhibition of DNA reparation, and induction of apoptosis. Extracellular-signal-regulated kinases ERK and stress-related kinases p38MAPK are involved in metabolic changes. Analysis of current data suggests that the concept of exceptionally thermal mechanism of biological effects of microwaves is not correct. In turn, this raises the question of the need to revaluation of modern electromagnetic standards based on thermal effects of non-ionizing radiation on biological systems.  相似文献   

5.
目的:研究褪黑素通过大电导Ca2+激活K+(BKCa)通道介导大脑中动脉张力变化的作用机制。方法:8周龄雄性Wistar大鼠,麻醉后取大脑中动脉,酶消化法急性分离脑中动脉平滑肌细胞,采用膜片钳技术全细胞记录模式检测细胞外液加入褪黑素前后BKCa通道和电压门控钾(KV)通道的电流密度,褪黑素受体抑制剂2-苯基-N-乙酰色胺(luzindole)孵育后,全细胞记录模式记录加入褪黑素后BKCa通道电流幅值和贴附式单通道记录模式记录加入褪黑素后BKCa通道Po值,内面向外记录模式检测加入褪黑素后BKCa通道电导(G),开放概率(Po),平均开放时间(To)和关闭时间(Tc)。结果:①褪黑素(100 μmol/L)显著增加全细胞BKCa通道电流密度,但对KV通道电流密度无显著影响;②luzindole (1 μmol/L)显著抑制褪黑素引起的BKCa通道电流密度增加;③贴附式单通道记录模式下,褪黑素(100 μmol/L)增加BKCa单通道Po值,luzindole (1 μmol/L)显著抑制褪黑素引起的Po增加;④内面向外单通道记录模式下,褪黑素(1 μmol/L,100 μmol/L)缩短BKCa单通道的To和Tc值,且Tc较To显著缩短;结论:褪黑素通过受体依赖和非受体依赖途径激活BKCa通道,介导大脑中动脉血管舒张。  相似文献   

6.
S Ray  J Behari 《Radiation research》1990,123(2):199-202
The effects of exposure to sublethal levels of microwaves were studied. Young albino rats of both sexes were exposed for 60 days to 7.5-GHz microwaves (1.0-KHz square wave modulation, average power 0.6 mW/cm2) for 3 h daily. During and after microwave exposure several physiological parameters were measured in both control and exposed animals. It was found that the animals exposed to microwaves tended to eat and drink less and thus showed a smaller gain in body weight. Some of the hematological parameters and organ weights were also significantly different. It is proposed that a nonspecific stress response due to microwave exposure and mediated through the central nervous system is responsible for the observed physiological changes.  相似文献   

7.
A fast component of displacement current which accompanies the sodium channel gating current has been recorded from the membrane of the giant axon of the squid Loligo forbesii. This component is characterized by relaxation time constants typically shorter than 25 µs. The charge displaced accounts for about 10% (or 2 nC/cm2) of the total displacement charge attributed to voltage-dependent sodium channels. Using a low noise, wide-band voltage clamp system and specially designed voltage step protocols we could demonstrate that this component: (i) is not a recording artifact; (ii) is kinetically independent from the sodium channel activation and inactivation processes; (iii) can account for a significant fraction of the initial amplitude of recorded displacement current and (iv) has a steady state charge transfer which saturates for membrane potentials above + 20 mV and below – 100 mV This component can be modelled as a single step transition using the Eyring-Boltzmann formalism with a quantal charge of 1 e and an asymmetrical energy barrier. Furthermore, if it were associated with the squid sodium channel, our data would suggest one fast transition per channel. A possible role as a sodium channel activation trigger, which would still be consistent with kinetic independence, is discussed. Despite uncertainties about its origin, the property of kinetic independence allows subtraction of this component from the total displacement current to reveal a rising phase in the early time course of the remaining current. This will have to be taken into account when modelling the voltage-dependent sodium channel.  相似文献   

8.
The effects of microwaves on the single-channel kinetics of gramicidin-A channels in lipid bilayer membranes were examined. Attempts were made to separate thermal and athermal effects by accurate measurements of temperature at the site of the membrane and by relating the measured parameters to their previously characterized temperature dependence. It was found that microwave radiation does not affect single-channel conductance or channel life time to a degree that is significantly different from that expected of a purely thermal effect. On the other hand, the rate of channel formation is decreased during exposure, which is opposite to that expected of a purely thermal effect. The mechanism of this effect is discussed in terms of the dimerization process of channel formation.  相似文献   

9.
Two series of experiments were performed to study the effects of acute exposure (45 min) to 2,450-MHz circularly polarized, pulsed microwaves [1 mW/cm2, 2-μs pulses, 500 pps, specific absorption rate (SAR) 0.6 W/kg] on the actions of pentobarbital in the rat. In the first experiment, rats were irradiated with microwaves and then immediately injected with pentobarbital. Microwave exposure did not significantly affect the extent of the pentobarbital-induced fall in colonic temperature. However, the rate of recovery from the hypothermia was significantly slower in the microwave-irradiated rats and they also took a significantly longer time to regain their righting reflex. In a second experiment, rats were first anesthetized with pentobarbital and then exposed to microwaves with their heads either pointing toward the source of microwaves (anterior exposure) or pointing away (posterior exposure). Microwave radiation significantly retarded the pentobarbital-induced fall in colonic temperature regardless of the orientation of exposure. However, the recovery from hypothermia was significantly faster in posterior-exposed animals compared to those of the anterior-exposed and sham-irradiated animals. Furthermore, the posterior-exposed rats took a significantly shorter time to regain their righting reflex than both the anterior-exposed and sham-irradiated animals.  相似文献   

10.
Previous studies on microwave exposure on plants have revealed variations in sensitivity of plants to different microwave frequencies, exposure durations, and power intensities. However, the effects of different polarizations of microwaves on plants have not been studied. Therefore, we investigated the effect of horizontally and vertically polarized 2 GHz continuous microwaves on Myriophyllum aquaticum plants at 1.8 W m-2 power density. The electric potential variation along the vascular tissues were investigated for 1.5 h and growth parameters, pigmentation, and H2O2 formation were studied during 48 h microwave exposure. Exposure to horizontally polarized microwaves, decreased standard deviation of electric potential variation and increased H2O2 content significantly. Vertically polarized microwaves increased the standard deviation of electric potential variation and photosynthetic pigments significantly. However, none of the polarizations altered growth parameters (shoot length, stem diameter, and internodal length). Thermographic images taken for 1 h continuous microwave exposure did not indicate alteration in the temperature of the plants for both vertical and horizontal polarities.  相似文献   

11.
Increasing applications of electromagnetic fields are of great concern with regard to public health. Several in vitro studies have been conducted to detect effects of microwave exposure on the genetic material leading to negative or questionable results. The micronucleus (MN) assay which is proved to be a useful tool for the detection of radiation exposure-induced cytogenetic damage was used in the present study to investigate the genotoxic effect of microwaves in human peripheral blood lymphocytes in vitro exposed in G(0) to electromagnetic fields with different frequencies (2.45 and 7.7GHz) and power density (10, 20 and 30mW/cm(2)) for three times (15, 30 and 60min). The results showed for both radiation frequencies an induction of micronuclei as compared to the control cultures at a power density of 30mW/cm(2) and after an exposure of 30 and 60min. Our study would indicate that microwaves are able to cause cytogenetic damage in human lymphocytes mainly for both high power density and long exposure time.  相似文献   

12.
Acute 12-minute exposure of laboratory rats to microwaves with specific dose rate (SAR) of 30 W/kg that exceeded a basal metabolism caused a transient response of hyppophysis-thyroid system of compensatory-adaptive character. Prolonged exposure to microwaves of less intensity (SAR = 6 W/kg, which approximately corresponds to basic metabolic rate for these animals) caused insufficiency of the function of thyroid control in a form of primary hypothyroidis.  相似文献   

13.
A simple protocol has been developed for recycling plastic tissue culture vessels. The killing properties of microwaves were used to decontaminate plastic tissue culture vessels for reuse. Nine bacterial cultures, four gram-negative and five gram-positive genera, including two Bacillus species, were used to artificially contaminate tissue culture vessels. The microwaves produced by a "home-type" microwave oven (2.45 gHz) were able to decontaminate the vessels with a 3-min exposure. The same exposure time was also used to completely inactivate the following three test viruses: polio type 1, parainfluenza type 1 (Sendai), and bacteriophage T4. The recycling procedure did not reduce the attachment and proliferation of the following cell types: primary chicken and turkey embryo, HEp-2, Vero, BGMK, and MK-2.  相似文献   

14.
The voltage-dependent potassium channel, Kv1.3, is modulated by the epidermal growth factor receptor (EGFr) and the insulin receptor tyrosine kinases. When the EGFr and Kv1.3 are coexpressed in HEK 293 cells, acute treatment of the cells with EGF during a patch recording can suppress the Kv1.3 current within tens of minutes. This effect appears to be due to tyrosine phosphorylation of the channel, as it is blocked by treatment with the tyrosine kinase inhibitor erbstatin, or by mutation of the tyrosine at channel amino acid position 479 to phenylalanine. Previous work has shown that there is a large increase in the tyrosine phosphorylation of Kv1.3 when it is coexpressed with the EGFr. Pretreatment of EGFr and Kv1.3 cotransfected cells with EGF before patch recording also results in a decrease in peak Kv1.3 current. Furthermore, pretreatment of cotransfected cells with an antibody to the EGFr ligand binding domain (α-EGFr), which blocks receptor dimerization and tyrosine kinase activation, blocks the EGFr-mediated suppression of Kv1.3 current. Insulin treatment during patch recording also causes an inhibition of Kv1.3 current after tens of minutes, while pretreatment for 18 h produces almost total suppression of current. In addition to depressing peak Kv1.3 current, EGF treatment produces a speeding of C-type inactivation, while pretreatment with the α-EGFr slows C-type inactivation. In contrast, insulin does not influence C-type inactivation kinetics. Mutational analysis indicates that the EGF-induced modulation of the inactivation rate occurs by a mechanism different from that of the EGF-induced decrease in peak current. Thus, receptor tyrosine kinases differentially modulate the current magnitude and kinetics of a voltage-dependent potassium channel.  相似文献   

15.
In vitro experiments were performed to determine whether 2450 MHz microwave radiation induces alkali-labile DNA damage and/or DNA-protein or DNA-DNA crosslinks in C3H 10T(1/2) cells. After a 2-h exposure to either 2450 MHz continuous-wave (CW) microwaves at an SAR of 1.9 W/kg or 1 mM cisplatinum (CDDP, a positive control for DNA crosslinks), C3H 10T(1/2) cells were irradiated with 4 Gy of gamma rays ((137)Cs). Immediately after gamma irradiation, the single-cell gel electrophoresis assay was performed to detect DNA damage. For each exposure condition, one set of samples was treated with proteinase K (1 mg/ml) to remove any possible DNA-protein crosslinks. To measure DNA-protein crosslinks independent of DNA-DNA crosslinks, we quantified the proteins that were recovered with DNA after microwave exposure, using CDDP and gamma irradiation, positive controls for DNA-protein crosslinks. Ionizing radiation (4 Gy) induced significant DNA damage. However, no DNA damage could be detected after exposure to 2450 MHz CW microwaves alone. The crosslinking agent CDDP significantly reduced both the comet length and the normalized comet moment in C3H 10T(1/2) cells irradiated with 4 Gy gamma rays. In contrast, 2450 MHz microwaves did not impede the DNA migration induced by gamma rays. When control cells were treated with proteinase K, both parameters increased in the absence of any DNA damage. However, no additional effect of proteinase K was seen in samples exposed to 2450 MHz microwaves or in samples treated with the combination of microwaves and radiation. On the other hand, proteinase K treatment was ineffective in restoring any migration of the DNA in cells pretreated with CDDP and irradiated with gamma rays. When DNA-protein crosslinks were specifically measured, we found no evidence for the induction of DNA-protein crosslinks or changes in amount of the protein associated with DNA by 2450 MHz CW microwave exposure. Thus 2-h exposures to 1.9 W/ kg of 2450 MHz CW microwaves did not induce measurable alkali-labile DNA damage or DNA-DNA or DNA-protein crosslinks.  相似文献   

16.
The widespread application of microwaves is of great concern in view of possible consequences for human health. Many in vitro studies have been carried out to detect possible effects on DNA and chromatin structure following exposure to microwave radiation. The aim of this study is to assess the capability of microwaves, at different power densities and exposure times, to induce genotoxic effects as evaluated by the in vitro micronucleus (MN) assay on peripheral blood lymphocytes from nine different healthy donors, and to investigate also the possible inter-individual response variability. Whole blood samples were exposed for 60, 120 and 180 min to continuous microwave radiation with a frequency of 1800 MHz and power densities of 5, 10 and 20 mW/cm(2). Reproducibility was tested by repeating the experiment 3 months later. Multivariate analysis showed that lymphocyte proliferation indices were significantly different among donors (p<0.004) and between experiments (p<0.01), whereas the applied power density and the exposure time did not have any effect on them. Both spontaneous and induced MN frequencies varied in a highly significant way among donors (p<0.009) and between experiments (p<0.002), and a statistically significant increase of MN, although rather low, was observed dependent on exposure time (p=0.0004) and applied power density (p=0.0166). A considerable decrease in spontaneous and induced MN frequencies was measured in the second experiment. The results show that microwaves are able to induce MN in short-time exposures to medium power density fields. Our data analysis highlights a wide inter-individual variability in the response, which was confirmed to be a characteristic reproducible trait by means of the second experiment.  相似文献   

17.
A study was made of morphological composition of blood leukocytes, phagocytic activity, glycogen and alkaline phosphatase content of neutrophils of animals exposed to microwaves of low intensity (1-500 mu W/cm2) generated continuously (2375 MHz) and by impulses (9400 MHz). The direction of the change in these indices and rate of the postirradiation recovery was shown to depend upon intensity and duration (30-120 days) of exposure. The response of albino rats and guinea pigs to the effect of microwaves was different. The effect of microwaves of the intensities under study on the mammalian organism was assessed.  相似文献   

18.
The highly selective sodium channel blocker, tetrodotoxin (TTX) has been instrumental in characterization of voltage-gated sodium channels. TTX occludes the ion-permeation pathway at the outer vestibule of the channel. In addition to a critical guanidinium group, TTX possesses six hydroxyl groups, which appear to be important for toxin block. The nature of their interactions with the outer vestibule remains debatable, however. The C-11 hydroxyl (C-11 OH) has been proposed to interact with the channel through a hydrogen bond to a carboxyl group, possibly from domain IV. On the other hand, previous experiments suggest that TTX interacts most strongly with pore loops of domains I and II. Energetic localization of the C-11 OH was undertaken by thermodynamic mutant cycle analysis assessing the dependence of the effects of mutations of the adult rat skeletal muscle Na(+) channel (rNa(v)1.4) and the presence of C-11 OH on toxin IC(50). Xenopus oocytes were injected with the mutant or native Na(+) channel mRNA, and currents were measured by two-electrode voltage clamp. Toxin blocking efficacy was determined by recording the reduction in current upon toxin exposure. Mutant cycle analysis revealed that the maximum interaction of the C-11 OH was with domain IV residue D1532 (DeltaDeltaG: 1.0 kcal/mol). Furthermore, C-11 OH had significantly less interaction with several domain I, II, and III residues. The pattern of interactions suggested that C-11 was closest to domain IV, probably involved in a hydrogen bond with the domain IV carboxyl group. Incorporating this data, a new molecular model of TTX binding is proposed.  相似文献   

19.
Helix aspersa neurons were irradiated with continuous-wave (CW) and noise-amplitude-modulated microwaves (carrier frequency 2450 MHz, 20% AM, 2 Hz-20 kHz) in a specially designed waveguide exposure system. Continuous-wave microwave irradiations were conducted at 8 degrees, 21 degrees, and 28 degrees C, while noise-modulated irradiation was performed at 21 degrees C. The results showed that exposure of snail neurons to CW microwaves for 60 min at 12.9 W/kg inhibited spontaneous activity and reduced input resistance at 8 degrees and 21 degrees C but not at 28 degrees C. The relative decrease in resistance at 21 degrees C was half that at 8 degrees C. Exposure of neurons to noise-modulated microwaves at 6.8 and 14.4 W/kg predominately caused excitatory responses characterized by augmented membrane resistance and the appearance of greater activity. The effect differed qualitatively from the inhibition observed with continuous, unmodulated microwave irradiation.  相似文献   

20.
A single 30-min exposure of mice to 2450 MHz microwaves (12 to 15 mW/g body weight) in an environmentally controlled waveguide facility induced a significant increase in the proportion of complement-receptor positive lymphoid cells in the spleen. This effect was further enhanced by repeated (three times) exposures, which in addition produced a significant increase in the proportion of Ig+ cells. The proportion of theta-positive cells and the total number of spleen cells remained unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号