首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The effects of exogenous ethanol (EtOH) and/or glycine on chick (Gallus gallus) embryo viability, brain apoptosis (caspase-3 activities), and the endogenous levels of brain homocysteine (HoCys), S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), and SAM/SAH were studied. Embryonic EtOH exposure caused decreased embryo viability as measured by EtOH-induced reductions in % living embryos at theoretical stage 37, EtOH-induced reductions in embryo masses, and EtOH-induced reductions in brain caspase-3 (Casp-3) activities. Exogenous glycine failed to attenuate EtOH-induced decreased embryo viability and EtOH-induced increased brain Casp-3 activities. Embryonic EtOH exposure caused elevated levels of endogenous HoCys, decreased levels of SAM, increased levels of SAH, and decreased SAM/SAH ratios in embryonic chick brains. While exogenous glycine failed to attenuate EtOH-induced increased HoCys levels, exogenous glycine attenuated EtOH-induced decreased levels of SAM, increased levels of SAH, and decreased SAM/SAH levels in embryonic chick brains.  相似文献   

2.
In order to study the effects of EtOH and/or nicotine on brain membrane fatty acid composition, various concentrations of EtOH and/or nicotine were injected into the air sac of chicken eggs at 0 days of incubation. Controls were injected with saline. Experimental groups were injected with either 200 micromol EtOH/kg egg, 100 micromol nicotine/kg egg, 200 micromol nicotine/kg egg, 200 micromol EtOH/kg and 100 micromol nicotine/kg egg, or 200 micromol EtOH/kg and 200 micromol nicotine/kg egg. In all experimental groups, EtOH- and nicotine-induced decreases in brain long-chain polyunsaturated membrane fatty acids were observed in stage 44 embryos, stage 45 embryos, and neonatal chicks. These EtOH- and nicotine-induced decreases in brain membrane polyunsaturated fatty acids correlated with elevated levels of brain lipid hydroperoxides and reduced brain acetylcholinesterase (AChE; EC. 3.1.1.7) activities.  相似文献   

3.
BACKGROUND: This project investigated whether or not EtOH-induced reductions in the levels of long-chain polyunsaturated membrane fatty acids could be attenuated by exogenous exposure to either alpha-tocopherol, gamma-tocopherol, or diallyl sulfide (DAS). METHODS: At 0 days of development, fertile chicken eggs were injected with a single dose of either saline supplemented with various concentrations of EtOH, alpha- or gamma-tocopherol and EtOH, or DAS and EtOH. At 18 days of development, brains were isolated and subjected to membrane analyses. RESULTS: When exposed to EtOH, concentrations ranging from 0-60.50 microm/Kg egg, dose-dependent decreases in the levels of brain 18:0, 18:1 (n-9), 18:2 (n-6), 18:3 (n-3), and 20:4 (n-6) were observed. These ethanol-induced changes in membrane fatty acid composition correlated with ethanol-induced reductions in brain mass, brain protein levels, acetylcholine esterase (AChE) activities and correlated with increased lipid hydroperoxide levels. Exposure to either 2.5 microm alpha-tocopherol/Kg egg and 6.050 mm EtOH/Kg egg, or 2.5 microm alpha-tocopherol/ Kg egg and 6.050 mm EtOH/Kg egg attenuated EtOH-induced changes in membrane fatty acid composition, brain mass, brain protein levels, AChE activities, and lipid hydroperoxide levels. Embryonic exposure to the cytochrome p450-2E1 inhibitor, diallyl sulfide (DAS), also attenuated EtOH-induced decreases in long-chain, unsaturated membrane fatty acids. However, embryonic exposure to DAS promoted abnormally low brain mass. CONCLUSION: EtOH-induced reductions in the levels of brain long-chain polyunsaturated fatty acid are caused by lipid peroxidation.  相似文献   

4.
Although the cause of Parkinson's disease (PD) is unknown, data suggest roles for environmental factors that may sensitize dopaminergic neurons to age-related dysfunction and death. Based upon epidemiological data suggesting roles for dietary factors in PD and other age-related neurodegenerative disorders, we tested the hypothesis that dietary folate can modify vulnerability of dopaminergic neurons to dysfunction and death in a mouse model of PD. We report that dietary folate deficiency sensitizes mice to MPTP-induced PD-like pathology and motor dysfunction. Mice on a folate-deficient diet exhibit elevated levels of plasma homocysteine. When infused directly into either the substantia nigra or striatum, homocysteine exacerbates MPTP-induced dopamine depletion, neuronal degeneration and motor dysfunction. Homocysteine exacerbates oxidative stress, mitochondrial dysfunction and apoptosis in human dopaminergic cells exposed to the pesticide rotenone or the pro-oxidant Fe(2+). The adverse effects of homocysteine on dopaminergic cells is ameliorated by administration of the antioxidant uric acid and by an inhibitor of poly (ADP-ribose) polymerase. The ability of folate deficiency and elevated homocysteine levels to sensitize dopaminergic neurons to environmental toxins suggests a mechanism whereby dietary folate may influence risk for PD.  相似文献   

5.
Homocysteine is causally associated with birth defects such as spina bifida, and with premature vascular disease. We have investigated the effects of homocysteine on a cell-cell interaction in a fundamental eukaryotic system, the free-living ciliate Tetrahymena. Exogenously added homocysteine inhibits cell pairing in a dose-dependent manner. These effects are exacerbated by adenosine, which by itself has little demonstrable influence on pairing. S-adenosylhomocysteine (SAH) is a product of the reaction between adenosine and homocysteine, and is an inhibitor of methyl transferases. We therefore predicted that protein methylation would be significantly inhibited by homocysteine. A direct test of that hypothesis involved a demonstration that incorporation of an isotopically labeled methyl group from methionine into proteins was significantly reduced by homocysteine. The undermethylated proteins are of low molecular weight, and might correspond to known methylatable signaling proteins. We show that vanadate, an inhibitor of protein phosphatase, also inhibits cell pairing, and that the effects of vanadate and homocysteine are additive. This is the first demonstration that methylation and possibly phosphorylation play a regulatory role in cell-cell interactions in ciliates.  相似文献   

6.
Although the pathogenesis of ischemia reperfusion (IR) injury is based on complex mechanisms, free radicals play a central role. We evaluated membrane fluidity and lipid peroxidation during pancreas transplantation (PT) performed in 12 pigs (six donors and six recipients). Fluidity was measured by fluorescence spectroscopy, and malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations were used as an index of lipid oxidation. Pancreatic tissues were collected as follows: (A) donor, immediately before vascular clamping; (B) graft, following perfusion lavage with University of Wisconsin preservation fluid; (C) graft, after 16?h of cold ischemia; and (D) recipient, 30?min vascular postreperfusion. Fluidity and MDA and 4-HDA concentrations were similar in cases A, B, and C. However, there was significant membrane rigidity and increased lipid peroxidation after reperfusion (D). These findings suggest that reperfusion exaggerates oxidative damage and may account for the rigidity in the membranes of allografts during PT.  相似文献   

7.
In order to study the effects of exogenous EtOH and/or Fe(+2) on membrane lipid peroxidation, exogenous EtOH, FeCl(2), FeCl(2) & EtOH, NaCl and NaCl & EtOH were injected into fertile chicken eggs. Controls were either shams or injected with saline. These injections were made at 0 days or 0-2 days of development and tissue removed at stage 37 (11 days of development). Embryonic exposure to exogenous EtOH and/or Fe(+2) promoted decreased brain mass, decreased levels of brain membrane polyunsaturated fatty acids, elevated levels of brain lipid hydroperoxides, and elevated levels of Fe(+2) within embryonic brain and liver. These alterations were more severe in triple-injected embryos (E0-2/E11) as compared to single-injected embryos (E0/E11). While exogenous treatments of either EtOH and/or FeCl(2) promoted increased levels of endogenous brain Fe(+2), the effects were not additive. These observations are consistent with the hypothesis that embryonic exposure to exogenous EtOH and/or Fe(+2) promotes brain membrane lipid peroxidation.  相似文献   

8.
9.
The effects of all-zinc metallothionein (Zn-metallothionein) and predominantly cadmium metallothionein (Cd/Zn-metallothionein) on free radical lipid peroxidation have been investigated, using erythrocyte ghosts as the test system. When treated with xanthine and xanthine oxidase, Zn-metallothionein and Cd/Zn-metallothionein underwent thiolate group oxidation and metal ion release that was catalase-inhibitable, but superoxide dismutase-non-inhibitable. Similar treatment in the presence of ghosts and added Fe(III) resulted in metallothioneen oxidation that was significantly inhibited by superoxide dismutase. Ghosts incubated with xanthine/xanthine oxidase/Fe(III) underwent H2O2- and O2-dependent lipid peroxidation, as measured by thiobarbituric acid reactivity. Neither type of metallothionein had any effect on xanthine oxidase activity, but both strongly inhibited lipid peroxidation when added to the membranes concurrently with xanthine/xanthine oxidase/iron. This inhibition was far greater and more sustained than that caused by dithiothreitol at a concentration equivalent to that of metallothionein thiolate. Significant protection was also afforded when ghosts plus Cd/Zn-metallothionein or Zn/metallothionein were preincubated with H2O2 and Fe(III), and then subjected to vigorous peroxidation by the addition of xanthine and xanthine oxidase. These results could be mimicked by using Cd(II) or Zn(II) alone. Previous studies suggested that Zn(II) inhibits xanthine/xanthine oxidase/iron-driven lipid peroxidation in ghosts by interfering with iron binding and redox cycling. Therefore, the primary determinant of metallothionein proteciion appears to be metal release and subsequent uptake by the membranes. These results have important implications concerning the antioxidant role of metallothionein, a protein known to be induced by various prooxidant conditions.  相似文献   

10.
We studied the effect of chronic ethanol ingestion on folate transport across the colonic apical membranes (CAM) in rats. Male Wistar rats were fed 1 g/kg body weight/day ethanol (20%) solution orally for 3 months and folate transport was studied in the isolated colon apical membrane vesicles. The folate transport was found to be carrier mediated, saturable, with pH optima at 5.0. Chronic ethanol ingestion reduced the folate transport across the CAM by decreasing the affinity of transporters (high Km) for the substrate and by decreasing the number of transporter molecules (low Vmax) on the colon luminal surface. The decreased transport activity at the CAM was associated with down‐regulation of the proton‐coupled folate transporter (PCFT) and the reduced folate carrier (RFC) which resulted in decreased PCFT and RFC protein levels in the colon of rats fed alcohol chronically. Moreover, the PCFT and the RFC were found to be distributed in detergent insoluble fraction of the CAM in rats. Floatation experiments on Optiprep density gradients demonstrated the association of the PCFT and the RFC protein with lipid rafts (LR). Chronic alcoholism decreased the PCFT and the RFC protein levels in the CAM LR in accordance with the decreased synthesis. Hence, we propose that downregulation in the expression of the PCFT and the RFC in colon results in reduced levels of these transporters in colon apical membrane LR as a mechanism of folate malabsorption during chronic alcoholism. J. Cell. Physiol. 226: 579–587, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
为了解竹子对大气CO2浓度升高的生理响应,为气候变化背景下的竹林适应性管理提供理论依据,运用开顶式气室(OTCs)设置了3个CO2处理浓度(环境大气、500和700μmol·mol-1),探讨了大气CO2浓度升高对毛竹(Phyllostachys edulis)叶片光合色素、膜脂过氧化和抗氧化系统的影响。结果表明:与环境大气比较,500μmol·mol-1浓度处理30d时对毛竹叶片光合色素、膜脂过氧化和抗氧化系统影响并不明显,仅叶片CAT活性显著降低;随着处理时间的延长,对毛竹叶片膜脂过氧化和抗氧化系统的影响逐渐显现,至处理90d时,除叶片可溶性糖含量无明显变化,其他测定指标均有显著变化;700μmol·mol-1浓度处理在不同时间上对毛竹叶片膜脂过氧化和抗氧化系统的影响均较500μmol·mol-1CO2浓度处理明显,处理30d时毛竹叶片可溶性糖含量和抗氧化酶活性有明显变化,处理90d时,各项测定指标均有显著变化;研究表明大气CO2浓度升高一定程度上能增强毛竹的抗氧化能力,但光合产物的过量积累也会造成碳水化合物源-库失衡和Rubisco的再生受到反馈作用抑制。  相似文献   

12.
Cryopreserved sperm quality depends on the characteristics of fresh sperm. Thus, it is necessary to establish a group of variables to predict the cryopreservation potential of the fresh samples with the aim of optimizing resources. Motility, viability, lipid peroxidation and lipid profile of European sea bass (Dicentrarchus labrax) sperm were determined before and after cryopreservation to establish which variables more accurately predict the sperm cryopreservation potential in this species. Cryopreservation compromised sperm quality, expressed as a reduction of motility (46.5 ± 2.0% to 35.3 ± 2.5%; P<0.01) and viability (91.3 ± 0.7% to 69.9 ± 1.6%; P<0.01), and produced an increase in lipid peroxidation (2.4 ± 0.4 to 4.0 ± 0.4 μmoles MDA/mill spz; P<0.01). Also, significant changes were observed in the lipid composition before and after freezing, resulting in a reduction in the cholesterol/phospholipids ratio (1.4 ± 0.1 to 1.1 ± 0.0; P<0.01), phosphatidylcholine (47.7 ± 0.8% to 44.2 ± 0.8%; P<0.01) and oleic acid (8.7 ± 0.2% to 8.3 ± 0.2%; P<0.05) in cryopreserved sperm, as well as an increase in lysophosphatidylcholine (4.4 ± 0.3% to 4.8 ± 0.3%; P<0.01) and C24:1n9 fatty acid (0.5 ± 0.1% to 0.6 ± 0.1%; P<0.05). Motility, velocity, cholesterol/phospholipids ratio, monounsaturated fatty acids and the n3/n6 ratio were positively correlated (P<0.05) before and after freezing, whereas, viability and lipid peroxidation were not correlated. Motility and the cholesterol/phospholipids (CHO/PL) ratio were negatively correlated (P<0.05) with each other and the CHO/PL ratio was positively correlated (P<0.05) with lipid peroxidation. Therefore, the results demonstrated that motility and plasma membrane lipid composition (CHO/PL) were the most desirable variables determined in fresh samples to predict cryo-resistance in European sea bass sperm, taking into account the effect of both on cryopreserved sperm quality.  相似文献   

13.
为了探讨外源水杨酸(SA)提高植物抗旱性的相关机制,研究了干旱胁迫下(基质含水量为饱和持水量的60%和50%),根际施用外源SA对黄瓜幼苗生长、膜脂过氧化、脯氨酸积累、水分利用效率、净光合速率(Pn)和叶绿素荧光参数的影响.结果表明:SA处理能够缓解干旱胁迫对黄瓜幼苗生长、Pn和水分利用效率的抑制,减小膜脂过氧化程度,促进脯氨酸的积累;添加外源SA显著减小了干旱胁迫下黄瓜幼苗的PSⅡ最大光化学效率、PSⅡ实际光化学效率、PSⅡ潜在活性、PSⅡ有效光化学效率和光化学猝灭系数的下降幅度,抑制了非光化学猝灭系数的升高.添加外源SA可以缓解干旱胁迫造成的膜脂过氧化对膜系统的氧化损伤,并通过增强PSⅡ反应中心活性提高了Pn,有助于水分的利用,同时增大渗透调节能力,减少水分的散失,提高水分利用效率,从而增强植株对干旱的适应能力.  相似文献   

14.
Catecholamine and indoleamine levels were determined in cultured neurons from chick embryos and in the homologous embryonic cerebral hemispheres in order to study their neurotransmission systems. The seeding of a large number of cells resulted in a pure neuronal culture made of clusters interconnected by processes. Norepinephrine, which was absent from the starting material of the culture, appeared on the 2nd day and then decreased. A small amount of epinephrine was present on the 2nd day and decreased thereafter. Dopamine was not detected. In the cerebral hemispheres of chick embryos, dopamine appreared on the 10th day in ovo and increased steadily up to the 18th day. Epinephrine was also present in the cerebral hemispheres. Its level increased up to the 14th day and then decreased. Indoleamines were measured in the same material. The level of serotonin was markedly higher than that of catecholamines and it increased during cultivation. Tryptophan was already present in the starting material and its amount increased during cultivation. The level of 5-hydroxyindoleacetic acid changed like that of serotonin. In the embryonic cerebral hemispheres, the concentration of serotonin was highest on the 12th day after incubation and then decreased. Tryptophan level decreased steadily all during the embryogenesis. These results were discussed on the ground of differences in the synthesized neurotransmitters.  相似文献   

15.
The effects of exogenous glycine on homocysteine (HoCys)-induced reductions in chick (Gallus gallus) embryo viability, HoCys-induced increases in brain and hepatic membrane lipid peroxidation, HoCys-induced apoptosis (caspase-3 activities) in brain and hepatic tissues, and HoCys-induced reductions in brain and hepatic S-adenosylemethionine (SAM)/S-adenosylhomocysteine (SAH) levels were studied. Exogenous HoCys caused reductions in percent living embryos and reductions in embryo masses. Exogenous glycine attenuated these HoCys-induced reductions in embryo viability. Brain and liver tissues of HoCys-treated embryos exhibited increased caspase-3 activities, increased lipid hydroperoxide (LPO) levels, and reduced levels of long-chain polyunsaturated membrane fatty acids. While exogenous glycine attenuated HoCys-induced changes in brain caspase-3 activities, brain LPO levels, and brain membrane PUFA levels, exogenous glycine was less effective in attenuating HoCys-induced changes in hepatic caspase-3 activities and hepatic membrane PUFA levels. HoCys-induced reductions in SAM/SAH ratios were observed in brains and livers. Exogenous glycine attenuated HoCys-induced reductions in brain SAM/SAH. However, glycine was unable to attenuate HoCys-induced reductions in hepatic SAM/SAH levels.  相似文献   

16.
We found considerable differences in the pattern of membrane proteins as well as in the relative amounts of individual components in isolated chick red blood cell membranes during the course of embryonic development. Of special interest in the increase in the relative amounts of two major polypeptides, band 3 and 3.1 (MW 100,000 daltons) with increasing age of the cells. With respect to functional studies, we found that the magnitude of sulfate influx decreases with increasing age of the embryo. Furthermore, the activity of ouabain-sensitive ATPase increases with increasing age (2.5-day embryo to adult). In addition, both the basal and the fluoride-stimulated adenylate cyclase activities decrease as the embryo age increases, whereas the enzyme sensitivity to epinephrine increases with increasing age of the embryo.  相似文献   

17.
Clones carrying sequences expressed at altered abundance levels in dunce mutants were isolated by differentially screening a genomic library with cDNA probes representing the RNA population from dunce+ flies and the RNA population from dunce mutant flies. These mutants have an elevated cAMP content, so some isolates potentially contain cAMP responsive genes. Two classes of clones were isolated. One class contains genes expressed at a higher steady state abundance level in dunce mutants compared to dunce+ flies and the other contains genes expressed at a lower steady state level in the mutants. The recovery of clones from the differential screen demonstrates that in addition to altering normal behavior, fertility, and cAMP metabolism, dunce mutation confers an alteration in the level of expression of certain genes. The class of clones carrying sequences which are overexpressed in the mutants have been characterized. These clones carry a common repetitive sequence which codes for a 5.5 kb poly(A)+ RNA - the RNA species found to be overexpressed in the mutants. Restriction analysis and hybridization experiments show these repetitive sequences to be members of the copia family of transposable elements. Administration of pharmacological agents to normal flies to increase cAMP levels leads to an increased steady state level of copia RNA. Thus, copia RNA metabolism appears to be influenced by cAMP levels.  相似文献   

18.
Fertile chicken eggs were injected with various concentrations of either d-glucose or l-glucose during the first three days of embryonic development. The exogenous glucose concentrations ranged from 0 to 18.58 micromol/kg egg. At 18 days of development (theoretical stage 44), brains, livers, and blood from chorio-allantoic vessels were isolated from living embryos. Exogenous d-glucose and l-glucose caused increased plasma d-glucose levels, increased plasma alanine aminotransferase (ALT) activities, and decreased embryo viability. Embryo viability was monitored by a reduction in the percentage of living embryos at theoretical stage 44, reduced embryo masses, reduced brain masses, and reduced liver masses. When compared to controls, embryonic exposure to either exogenous d-glucose or l-glucose caused increased caspase-3 activities and increased lipid hydroperoxide (LPO) levels in both brain and liver tissues. Because lipid hydroperoxides are lipid peroxidation intermediates that result in the attack of any unsaturated neutral lipid or unsaturated phospholipid, the effect of exogenous glucose on hepatic membrane fatty acid composition was studied. Exogenous glucose (either d-glucose or l-glucose) promoted reduced levels of several unsaturated, long-chain fatty acids and increased levels of saturated, short-chain fatty acids within hepatic membranes. Exogenous-glucose induced decreases in the ratios of unsaturated/saturated fatty acids and long-chain/short-chain fatty acids within hepatic membranes which strongly correlated with glucose-induced increases in plasma ALT activities and moderately correlated to hepatic LPO levels. These observations are consistent with the hypothesis that embryonic hyperglycemia promotes hepatic membrane lipid peroxidation and hepatic cell death.  相似文献   

19.
The activity of acyl-CoA: cholesterol acyltransferase in the liver-microsomal fraction was considerably reduced in chicks fed on diet containing unsaturated fat, whereas the activity of HMG-CoA reductase and NADPH cytochrome c reductase was not affected. The fatty acid composition of the microsomes was modified appreciably by this dietary condition and there was no change in the phospholipid or cholesterol levels. The addition of cholesterol to the fat supplemented diet resulted in a considerable increase in the microsomal cholesterol content. A decrease in HMG-CoA reductase and an increase ACAT activity was observed compared with the corresponding values from both the groups fed on a standard diet and a fat supplemented diet with no cholesterol. These results suggest that acyl-CoA: cholesterol acyltransferase is modulated by alteration in the fatty acid composition of the microsomal membrane, while the cholesterol content of the microsomes shows a close relationship with the HMG-CoA reductase activity.  相似文献   

20.
以较为耐热的黄瓜品种‘津春4号’为试材,在人工气候箱中,采用石英砂培养加营养液浇灌的栽培方式,研究了叶面喷施外源亚精胺(Spd)对高温胁迫下黄瓜幼苗叶片膜脂过氧化程度、质子泵活性及其基因表达的影响.结果表明:高温胁迫下,外源Spd促进黄瓜幼苗株高、茎粗、干、鲜质量和叶面积显著增加,有效抑制叶片相对电导率、丙二醛(MDA)含量和脂氧合酶(LOX)活性的升高,有助于提高叶片细胞质膜和液泡膜H+ -ATPase活性,但在基因表达水平上无显著差异.外源Spd可显著降低黄瓜幼苗叶片膜脂过氧化程度,提高质子泵活性,从而稳定膜的结构和功能,缓解高温胁迫对黄瓜幼苗造成的伤害,提高幼苗对高温胁迫的耐性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号