首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence is presented to show that Escherichia coli JC7618, JC7621, and JC7623, previously regarded as having a recB recC sbcB genotype, carry an additional mutation in a new gene designated sbcC at minute 9 on the standard genetic map. In the absence of the sbcC mutation these strains are sensitive to mitomycin C and have a reduced efficiency of recombination. Cultures of recBC sbcB (sbcC+) strains grow slowly, contain many inviable cells, and rapidly accumulate fast-growing variants due to mutation of sbcC. sbcC has been identified on recombinant plasmids and tentatively located by Tn1000 mutagenesis to a 0.9-kilobase DNA section between proC and phoR.  相似文献   

2.
Conjugational recombination in Escherichia coli depends normally on RecBCD enzyme, a multifunctional nuclease and DNA helicase produced by the recB, recC, and recD genes. However, recombination can proceed efficiently without RecBCD in recB or recC strains carrying additional mutations in both the sbcB and sbcC genes. Recombination in these strains, sometimes referred to as the RecF pathway, requires gene products that are not essential in the RecBCD-dependent process predominating in the wild type. It has also been reported to produce a different spectrum of recombinant genotypes in crosses with Hfr donors. However, the sbcC+ gene was unknowingly transferred to the recipient strain in some of these crosses, and this may have affected the outcome. This possibility was examined by conducting parallel crosses with Hfr donors that were either wild type or mutant for sbcC. Transfer of sbcC+ from an Hfr donor is shown to alter the frequency of recombinant genotypes recovered. There is a severe reduction in progeny that inherit donor markers linked to the sbcC+ allele and an increase in the incidence of multiple exchanges. Colonies of mixed genotype for one or more of the unselected proximal markers are also much more prevalent. Since the yield of recombinants is lower than normal, these changes are attributed to the reduced viability of recombinants that inherit sbcC+ from the Hfr donor. When the Hfr donor used is also mutant for sbcC, the yield of recombinants is greater and the frequencies of the different genotypes recovered are similar to those obtained in crosses with a rec+ sbc+ recipient, in which transfer of sbcC+ has no apparent effect. Earlier studies are re-examined in light of these findings. It is concluded that, while recombination in recBC sbcBC strains involves different enzymes, the underlying molecular mechanism is essentially the same as that in the wild type.  相似文献   

3.
S. K. Kulkarni  F. W. Stahl 《Genetics》1989,123(2):249-253
gam mutants of phage lambda carrying long palindromes fail to form plaques on wild-type Escherichia coli but do grow on strains that are mutant in the sbcC gene. gam + lambda carrying the same palindrome grow on both hosts and on a host deleted for the recB, C and D genes. These results suggest that the Gam protein of lambda, known to interact also with E. coli's recBCD protein, can interact with the product of the sbcC gene.  相似文献   

4.
The function of an open reading frame (orf-45) located upstream of the sbcC gene of Escherichia coli was investigated. Mutations that inactivate sbcC improve the ability to propagate lambda red gam phage that carry a palindromic sequence in their DNA. They also act with sbcB mutations as cosuppressors of the defects in recombination, DNA repair, and cell viability associated with recBC mutations. A 1,282-bp cassette encoding resistance to kanamycin was used to disrupt orf-45. The mutation, which has a polar effect on the expression of sbcC, allowed stable propagation of palindromic lambda phage even when the sbcC gene product was provided in trans. Additional nonpolar mutations in orf-45 were isolated on the basis of their ability to improve the growth of recBC sbcB strains. These mutations also confer resistance to mitomycin C, allow efficient recombination in Hfr crosses, and facilitate stable propagation of palindromic phage. It is concluded that the products of orf-45 and sbcC are functionally related. The orf-45 gene is therefore renamed sbcD.  相似文献   

5.
Two novel types of alleviation of DNA restriction by the EcoKI restriction endonuclease are described. The first type depends on the presence of the gam gene product (Gam protein) of bacteriophage lambda. The efficiency of plating of unmodified phage lambda is greatly increased when the restricting Escherichia coli K-12 host carries a gam+ plasmid. The effect is particularly striking in wild-type strains and, to a lesser extent, in the presence of sbcC and recA mutations. In all cases, Gam-dependent alleviation of restriction requires active recBCD genes of the host and recombination (red) genes of the infecting phage. The enhanced capacity of Gam-expressing cells to repair DNA strand breaks might account for this phenomenon. The second type is caused by the presence of a plasmid in a restricting host lacking RecBCD enzyme. Commonly used plasmids such as the cloning vector pACYC184 can produce such an effect in strains carrying recB single mutations or in recBC sbcBC strains. Plasmid-mediated restriction alleviation in recBC sbcBC strains is independent of the host RecF, RecJ, and RecA proteins and phage recombination functions. The presence of plasmids can also relieve restriction in recD strains. This effect depends, however, on the RecA function in the host. The molecular mechanism of the plasmid-mediated restriction alleviation remains unclear.  相似文献   

6.
The replication region of the plasmid pHT1030 of Bacillus thuringiensis was previously mapped to a 2.9 kb DNA fragment. The DNA sequence was analysed and it was shown that the minimal replicon resides within a 1 kb fragment of DNA carrying no potential protein coding sequence. Moreover, no production of single-stranded DNA intermediates was detected in the plasmid-containing cells. pHT1030 therefore belongs to a class of replicons not previously described in Gram-positive bacteria. Examination of the segregational stability of deletion derivatives of pHT1030 in bacilli defined two stability regions. One is located within the minimal replicon of pHT1030, whereas the second (spbA) is not required for replication. spbA encodes a 15 kDa protein and ensures the segregational stability of the plasmid. This effect of spbA is particularly highlighted in sporulation. The absence of the spbA locus gives rise to plasmid-free spores at high frequency, whereas the spbA+ plasmids are stably maintained. The stability of the plasmids during sporulation seems to be correlated with an unequal division of the cell by the sporulation septum.  相似文献   

7.
L. Ryder  G. J. Sharples    R. G. Lloyd 《Genetics》1996,143(3):1101-1114
Analysis of the aroLM-sbcCD interval of the Escherichia coli K-12 chromosome revealed a new gene (rdgC) encoding a function required for growth in recombination-deficient recBC sbcBC strains. Deletion of rdgC does not reduce viability, conjugational recombination, or DNA repair in rec(+), recA, recB, recF, or recJ mutants. However, it makes the growth of recBC sbcBC strains reliant on the RecA, RecF, and RuvC proteins and, to a large extent, on RuvAB. The recBC sbcBC ΔrdgC ruvAB construct forms colonies, but cell viability is reduced to <5%. A recBC sbcBC ΔrdgC derivative carrying the temperature-sensitive recA200 allele grows at 32° but not 42°. Multicopy rdgC(+) plasmids reduce the growth rate of recBC sbcBC strains, while multicopy sbcC(+) plasmids that reactivate SbcCD nuclease cannot be maintained without RdgC protein. The data presented are interpreted to suggest that exonuclease-depleted recBC sbcBC strains have difficulty removing the displaced arm of a collapsed replication fork and that this problem is compounded in the absence of RdgC. Recombination then becomes necessary to repair the fork and allow chromosome duplication to be completed. The possibility that RdgC is an exonuclease is discussed.  相似文献   

8.
Repair by recombination of DNA containing a palindromic sequence   总被引:6,自引:1,他引:5  
We report here that homologous recombination functions are required for the viability of Escherichia coli cells maintaining a 240 bp chromosomal inverted repeat (palindromic) sequence. Wild-type cells can successfully replicate this palindrome but recA , recB or recC mutants carrying the palindrome are unviable. The dependence on homologous recombination for cell viability is overcome in sbcC mutants. Directly repeated copies of the DNA containing the palindrome are rapidly resolved to single copies in wild-type cells but not in sbcC mutants. Our results suggest that double-strand breaks introduced at the palindromic DNA sequence by the SbcCD nuclease are repaired by homologous recombination. The repair is conservative and the palindrome is retained in the repaired chromosome. We conclude that SbcCD can attack secondary structures but that repair conserves the DNA sequence with the potential to fold.  相似文献   

9.
In recBCD sbcB sbcC(D) mutants of Escherichia coli homologous recombination proceeds via RecF pathway, which is thought to require RecQ, UvrD and HelD helicases at its initial stage. It was previously suggested that depletion of all three helicases totally abolishes the RecF pathway. The present study (re)examines the roles of these helicases in transductional recombination, and in recombinational repair of UV-induced DNA damage in the RecF pathway. The study has employed the ΔrecBCD ΔsbcB sbcC201 and ΔrecBCD sbcB15 sbcC201 strains, carrying combinations of mutations in recQ, uvrD, and helD genes. We show that in ΔrecBCD ΔsbcB sbcC201 strains, recombination requires exclusively the RecQ helicase. In ΔrecBCD sbcB15 sbcC201 strains, RecQ may be partially substituted by UvrD helicase. The HelD helicase is dispensable for recombination in both backgrounds. Our results also suggest that significant portion of recombination events in the RecF pathway is independent of RecQ, UvrD and HelD. These events are initiated either by RecJ nuclease alone or by RecJ nuclease associated with an unknown helicase. Inactivation of exonuclease VII by a xseA mutation further decreases the requirement for helicase activity in the RecF pathway. We suggest that elimination of nucleases acting on 3' single-strand DNA ends reduces the necessity for helicases in initiation of recombination.  相似文献   

10.
Hybrid plasmids carrying cro-lacZ gene fusions have been constructed by joining DNA segments carrying the PR promoter and the start of the cro gene of bacteriophage lambda to the lacZ gene fragment carried by plasmid pLG400 . Plasmids in which the translational reading frames of the cro and lacZ genes are joined in-register (type I) direct the synthesis of elevated levels of cro-beta-galactosidase fusion protein amounting to 30% of the total cellular protein, while plasmids in which the genes are fused out-of-register (type II) produce a low level of beta-galactosidase protein. Sequence rearrangements downstream of the cro initiator AUG were found to influence the efficiency of translation, and have been correlated with alterations in the RNA secondary structure of the ribosome-binding site. Plasmids which direct the synthesis of high levels of beta-galactosidase are conditionally lethal and can only be propagated when the PR promoter is repressed. Deletion of sequences downstream of the lacZ gene restored viability, indicating that this region of the plasmid encodes a function which inhibits the growth of the cells. The different applications of these plasmids for expression of cloned genes are discussed.  相似文献   

11.
Bacteriophage lambda can recombine in recBC sbcB sbcC mutant cells by using its own gene orf, the Escherichia coli recO, recR, and recF genes, or both. Expression of an orf-containing plasmid complements the recombination defects of orf mutant phage. However, this clone does not complement a recO mutation for conjugational recombination or recO, recR, or recF mutations for repair of UV-induced DNA damage. A plasmid clone of orf produces a protein with an apparent molecular mass of 15 kDa.  相似文献   

12.
13.
The traW gene of the Escherichia coli K-12 sex factor, F, encodes one of the numerous proteins required for conjugative transfer of this plasmid. We have found that the nucleotide sequence of traW encodes a 210-amino-acid, 23,610-Da polypeptide with a characteristic amino-terminal signal peptide sequence; in DNA from the F lac traW546 amber mutant, the traW open reading frame is interrupted at codon 141. Studies of traW expression in maxicells in the presence and absence of ethanol demonstrate that the traW product does undergo signal sequence processing. Cell fractionation experiments additionally demonstrated that mature TraW is a periplasmic protein. Electron microscopy also showed that F lac traW546 hosts do not express F pili, confirming that TraW is required for F-pilus assembly. Our nucleotide sequence also revealed the existence of an additional gene, trbI, located between traC and traW. The trbI gene encodes a 128-amino-acid polypeptide which could be identified as a 14-kDa protein product. Fractionation experiments demonstrated that TrbI is an intrinsic inner-membrane protein. Hosts carrying the pOX38-trbI::kan insertion mutant plasmids that we constructed remained quite transfer proficient but exhibited increased resistance to F-pilus-specific phages. Mutant plasmids pOX38-trbI472 and pOX38-trbI473 expressed very long F pili, suggestive of a pilus retraction deficiency. Expression of an excess of TrbI in hosts carrying a wild-type pOX38 plasmid also caused F-pilus-specific phage resistance. The possibility that TrbI influences the kinetics of pilus outgrowth and/or retraction is discussed.  相似文献   

14.
The radB101 and recN262 mutations showed essentially identical phenotypes when compared in isogenic Escherichia coli strains for their effects on gamma and UV radiation survival and on conjugal recombination in a uvrA recB recC sbcB sbcC strain. Complementation tests involving attempts to reconstitute a radB+ recN+ strain by transductions between radB101 and recN262 donors and recipients, and tests involving plasmids carrying recN+ and recN::Tn1000 inserts, indicated that the radB and recN genes are identical. We suggest that the radB101 mutation now be referred to as recN2001.  相似文献   

15.
Nucleotide sequence analysis and transposon 5 (Tn5) insertional mutagenesis indicate that the Escherichia coli gene pheR encodes tRNA(Phe) and not a repressor protein as previously reported. The coding region of pheR is identical to that of three other cloned tRNA(Phe) genes, pheU, pheV, and pheW. Multicopy plasmids carrying pheR, like those carrying pheU, pheV, or pheW, complement a temperature-sensitive lesion in the gene for the alpha-subunit of phenylalanyl-tRNA synthetase (pheS). The nucleotide sequences of the 5'-flanking DNA of pheR, pheU, and pheW are almost identical but are quite different from the same region of pheV. By comparison with pheV, which has two tandem promoters, pheR was found to have a single promoter. The expression of pheA (encoding chorismate mutase/prephenate dehydratase) in strains carrying the pheR374 allele was decreased to similar extents by multicopy plasmids containing either pheR or pheV. It is proposed that this decrease in pheA expression and the increase in expression of pheA previously reported for chromosomal pheR mutants are both mediated through the attenuation control mechanism that regulates pheA.  相似文献   

16.
17.
DNA cloned into Escherichia coli K-12 from a serotype c strain of Streptococcus mutans encodes three enzyme activities for galactose utilization via the tagatose 6-phosphate pathway: galactose 6-phosphate isomerase, tagatose 6-phosphate kinase, and tagatose-1,6-bisphosphate aldolase. The genes coding for the tagatose 6-phosphate pathway were located on a 3.28-kb HindIII DNA fragment. Analysis of the tagatose proteins expressed by recombinant plasmids in minicells was used to determine the sizes of the various gene products. Mutagenesis of these plasmids with transposon Tn5 was used to determine the order of the tagatose genes. Tagatose 6-phosphate isomerase appears to be composed of 14- and 19-kDa subunits. The sizes of the kinase and aldolase were found to be 34 and 36 kDa, respectively. These values correspond to those reported previously for the tagatose pathway enzymes in Staphylococcus aureus and Lactococcus lactis.  相似文献   

18.
Plasmid RP4 encodes two forms of a DNA primase   总被引:10,自引:0,他引:10  
  相似文献   

19.
Investigation of 62 clinical isolates of the opportunistic human pathogen Corynebacterium jeikeium revealed that 17 possessed plasmids ranging in size from 7.6 to 14.9 kb. The plasmids formed four groups on DNA restriction analysis. The complete nucleotide sequence of a representative from each group (pK43, pK64, pCJ84, and pB85766) was subsequently determined. Additionally, two plasmids (pCo455 and pCo420) were shown to be derivatives of pK43 and pK64 carrying insertion sequences of the IS3 family. Comparative genomics identified a conserved plasmid backbone consisting of two distinct DNA modules. Conserved motifs in the parAB-repA module indicated that the sequenced plasmids from C. jeikeium are new members of the pNG2 family. Recombinant derivatives of pK43 were shown to replicate in the soil bacterium Corynebacterium glutamicum and in the human pathogen Corynebacterium diphtheriae. The second plasmid module most likely encodes a novel type of DNA invertase. The respective gene is flanked by highly conserved 112-bp inverted repeats. All plasmids are 'loaded' with a characteristic set of genes encoding products of unknown function. Plasmids indistinguishable from pK43 by DNA restriction analysis were identified in different C. jeikeium strains, which revealed 16S-23S rDNA spacer length polymorphisms and specific antibiotic susceptibility profiles, implying a wide dissemination of the plasmid in clinical isolates of C. jeikeium.  相似文献   

20.
Hybrid plasmid pSP97 carrying the entire genome of polyoma virus (PY), inserted into bacterial vector psV3, transforms yeast cells with the frequency 1 x 10(-2). Plasmid pSP97 is capable of autonomous replication in S. cerevisiae, while its structure remains unaltered, the stability of hybrid plasmid in transformants is 44%--100%. Plasmid pSP155 consisting of Ori-containing DNA segment from polyoma, pBR322 and yeast gene arg4, transforms yeast cells with the frequency 5 x 10(-3), the stability of plasmid in transformants is 23%--29%. Two types of plasmids were isolated from transformants: one was identical to SP155, while the another differed structurally and phenotypically from SP155. Plasmids pSP113 and pSP114, in addition to pBR322 and yeast gene arg4, contain a viral DNA segment that encodes genes from small and middle T-antigens. These plasmids transform yeast cells with low frequency (2 x 10(-4), 3 x 10(-5)), the stability of plasmids in yeast transformants is 100%. However, hybrid plasmids identical to pSP113 were isolated from transformants. Structural rearrangements have been observed in pSP114, which carries the arg4 gene in reversed orientation compared to pSP113.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号