首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The secretions of the salivary parotid and submandibular-sublingual (SMSL) glands constitute the main part of whole human saliva (WS) in which proline-rich proteins (PRPs) and mucins represent dominant groups. Although proteome analysis had been performed on WS, no identification of PRPs or mucins by 2-DE and MS was achieved in WS and no comprehensive analysis of both glandular secretions is available so far. The aim of this study was to compare the protein map of WS to parotid and SMSL secretions for the display of PRPs and mucins. WS and glandular secretions were subjected to 2-DE and spots were analyzed by MALDI-MS. New components identified in WS were cyclophilin-B and prolyl-4-hydroxylase. Also acidic and basic PRPs as well as the proline-rich glycoprotein (PRG) could now be mapped in WS. Acidic PRPs were found equally in parotid and SMSL secretions, whereas basic PRPs and PRG were found primarily in parotid secretion. Salivary mucin MUC7 was identified in SMSL secretion. Thus, the more abundant proteins of WS can be explained mainly by mixed contributions of parotid and SMSL secretions with only few components remaining that may be derived from local sources in the oral cavity.  相似文献   

2.
In vitro hydroxyapatite adsorbed salivary proteins   总被引:1,自引:0,他引:1  
In spite of the present knowledge about saliva components and their respective functions, the mechanism(s) of pellicle and dental plaque formation have hitherto remained obscure. This has prompted recent efforts on in vitro studies using hydroxyapatite (HA) as an enamel model. In the present study salivary proteins adsorbed to HA were extracted with TFA and EDTA and resolved by 2D electrophoresis over a pH range between 3 and 10, digested, and then analysed by MALDI-TOF/TOF mass spectrometry and tandem mass spectrometry. Nineteen different proteins were identified using automated MS and MS/MS data acquisition. Among them, cystatins, amylase, carbonic anhydrase, and calgranulin B, were identified.  相似文献   

3.
Dried saliva spot sampling is a minimally invasive technique for the spatial mapping of salivary protein distribution in the oral cavity. In conjunction with untargeted nano‐flow liquid chromatography tandem mass spectrometry (nanoLC–MS/MS) analysis, DSS is used to compare the proteomes secreted by unstimulated parotid and submandibular/sublingual salivary glands. Two hundred and twenty proteins show a statistically significant association with parotid gland secretion, while 30 proteins are at least tenfold more abundant in the submandibular/sublingual glands. Protein identifications and label‐free quantifications are highly reproducible across the paired glands on three consecutive days, enabling to establish the core proteome of glandular secretions categorized into eight salivary protein groups according to their biological functions. The data suggest that the relative contributions of the salivary glands fine‐tune the biological activity of human saliva via medium‐abundant proteins. A number of biomarker candidates for Sjögren's syndrome are observed among the gland‐specifically expressed proteins, which indicates that glandular origin is an important factor to consider in salivary biomarker discovery.  相似文献   

4.
The acquired enamel pellicle is a thin protein film forming upon exposure of tooth enamel surfaces to saliva. The structural analysis of this integument relies on efficient pellicle harvesting and protein identification procedures. Material from three individual subjects and two pooled samples yielded the identification by LC-ESI-MS/MS of 130 pellicle proteins of which 89 were found in three or more experiments. A high intersubject consistency in pellicle composition was observed.  相似文献   

5.
In-depth knowledge of bodily fluid phosphoproteomes, such as whole saliva, is limited. To better understand the whole saliva phosphoproteome, we generated a large-scale catalog of phosphorylated proteins. To circumvent the wide dynamic range of phosphoprotein abundance in whole saliva, we combined dynamic range compression using hexapeptide beads, strong cation exchange HPLC peptide fractionation, and immobilized metal affinity chromatography prior to mass spectrometry. In total, 217 unique phosphopeptides sites were identified representing 85 distinct phosphoproteins at 2.3% global FDR. From these peptides, 129 distinct phosphorylation sites were identified of which 57 were previously known, but only 11 of which had been previously identified in whole saliva. Cellular localization analysis revealed salivary phosphoproteins had a distribution similar to all known salivary proteins, but with less relative representation in "extracellular" and "plasma membrane" categories compared to salivary glycoproteins. Sequence alignment showed that phosphorylation occurred at acidic-directed kinase, proline-directed, and basophilic motifs. This differs from plasma phosphoproteins, which predominantly occur at Golgi casein kinase recognized sequences. Collectively, these results suggest diverse functions for salivary phosphoproteins and multiple kinases involved in their processing and secretion. In all, this study should lay groundwork for future elucidation of the functions of salivary protein phosphorylation.  相似文献   

6.
INTRODUCTION: Saliva is a body fluid that holds promise for use as a diagnostic fluid for detecting diseases. Salivary proteins are known to be heavily glycosylated and are known to play functional roles in the oral cavity. We identified N-linked glycoproteins in human whole saliva, as well as the N-glycoproteins in parotid, submandibular, and sublingual glandular fluids. MATERIALS AND METHODS: We employed hydrazide chemistry to affinity enrich for N-linked glycoproteins and glycopeptides. PNGase F releases the N-peptides/proteins from the agarose-hydrazide resin, and liquid chromatography-tandem mass spectrometry was used to identify the salivary N-glycoproteins. RESULTS: A total of 156 formerly N-glycosylated peptides representing 77 unique N-glycoproteins were identified in salivary fluids. The total number of N-glycoproteins identified in the individual fluids was: 62, 34, 44, and 53 in whole saliva, parotid fluid, submandibular fluid, and sublingual fluid, respectively. The majority of the N-glycoproteins were annotated as extracellular proteins (40%), and several of the N-glycoproteins were annotated as membrane proteins (14%). A number of glycoproteins were differentially found in submandibular and sublingual glandular secretions. CONCLUSIONS: Mapping the N-glycoproteome of parotid, submandibular, and sublingual saliva is important for a thorough understanding of biological processes occurring in the oral cavity and to realize the role of saliva in the overall health of human individuals. Moreover, identifying glycoproteins in saliva may also be valuable for future disease biomarker studies.  相似文献   

7.
Hamadryas baboons possess salivary proline-rich proteins (PRP), as indicated by the presence of pink-staining protein bands using 1D SDS gel electrophoresis and Coomassie R250 staining. The ability of these protein bands to interact with tannic acid was further examined. In a tannin-binding assay using 5 μg tannic acid mixed with hamadryas whole saliva, we recently found four distinct protein bands of apparently 72, 55, 20, and 15 kDa that were precipitated during the experiments. In this work, we were able to identify these protein bands in a follow-up analysis using MS/MS mass spectrometry after excising such bands out of air-dried gels. Albumin and α-amylase were present in the tannic acid-protein complexes, with albumin already known to nonspecifically interact with a great diversity of chemical compounds. More interesting, we also identified a basic PRP and a cystatin precursor protein. This was the first successful attempt to identify a PRP from precipitated tannin-protein complexes in hamadryas baboons using MS/MS mass spectrometry. On the other hand, the role of cystatins in tannin binding is not yet well understood. However, there are recent reports on cystatin expression in saliva of rats responding to astringent dietary compounds. In conclusion, the follow-up data on tannin-binding proteins present in salivary secretions from hamadryas baboons adds important knowledge to primate physiology and feeding ecology, in order to shed light on the establishment and development of food adaptations in primates. It also demonstrates that tannin binding is characteristic for PRP, but might not be restricted to this particular group of proteins in primate species.  相似文献   

8.
The oral mucosal pellicle is a layer of absorbed salivary proteins, including secretory IgA (SIgA), bound onto the surface of oral epithelial cells and is a useful model for all mucosal surfaces. The mechanism by which SIgA concentrates on mucosal surfaces is examined here using a tissue culture model with real saliva. Salivary mucins may initiate the formation of the mucosal pellicle through interactions with membrane-bound mucins on cells. Further protein interactions with mucins may then trigger binding of other pellicle proteins. HT29 colon cell lines, which when treated with methotrexate (HT29-MTX) produce a gel-forming mucin, were used to determine the importance of these mucin-mucin interactions. Binding of SIgA to cells was then compared using whole mouth saliva, parotid (mucin-free) saliva and a source of purified SIgA. Greatest SIgA binding occurred when WMS was incubated with HT29-MTX expressing mucus. Since salivary MUC5B was only able to bind to cells which produced mucus and purified SIgA showed little binding to the same cells we conclude that most SIgA binding to mucosal cells occurs because SIgA forms complexes with salivary mucins which then bind to cells expressing membrane-bound mucins. This work highlights the importance of mucin interactions in the development of the mucosal pellicle.  相似文献   

9.
The secreted salivary proteins from two cereal aphid species, Sitobion avenae and Metopolophium dirhodum, were collected from artificial diets and analysed by tandem mass spectrometry. Protein identification was performed by searching MS data against the official protein set from the current pea aphid (Acyrthosiphon pisum) genome assembly and revealed 12 and 7 proteins in the saliva of S. avenae and M. dirhodum, respectively. When combined with a comparable dataset from A. pisum, only three individual proteins were common to all the aphid species; two paralogues of the GMC oxidoreductase family (glucose dehydrogenase; GLD) and ACYPI009881, an aphid specific protein previously identified as a putative component of the salivary sheath. Antibodies were designed from translated protein sequences obtained from partial cDNA sequences for ACYPI009881 and both saliva associated GLDs. The antibodies detected all parent proteins in secreted saliva from the three aphid species, but could only detect ACYPI009881, and not saliva associated GLDs, in protein extractions from the salivary glands. This result was confirmed by immunohistochemistry using whole and sectioned salivary glands, and in addition, localised ACYPI009881 to specific cell types within the principal salivary gland. The implications of these findings for the origin of salivary components and the putative role of the proteins identified are discussed in the context of our limited understanding of the functional relationship between aphid saliva and the plants they feed on. The mass spectrometry data have been deposited to the ProteomeXchange and can be accessed under the identifier PXD000113.  相似文献   

10.
Although alterations in patterns of protein secretion revealed in uterine flushings from mares suffering from endometrosis have been described, little is known about alterations at the cellular level. Hence, the aim of this study was to characterize deviations in patterns of uterine gland secretion patterns using endometrial biopsies, histochemical and newly established immunohistochemical methods. Forty-eight endometrial biopsies were obtained from mares suffering from various types of endometrosis (active and inactive, destructive and non-destructive) and degree (mild to severe) were analyzed for expression of the proteins uteroglobin, uteroferrin, calbindinD9k and uterocalin as representatives of endometrial proteins detectable by immunohistochemistry using polyclonal antibodies. Glycogen was identified using the PAS-reaction and mucopolysaccharides were stained with alcian blue. Uterine glandular epithelia within fibrotic foci mostly revealed a protein and carbohydrate pattern of expression which was independent of hormonal changes during the estrous cycle. In comparison to non-affected glands, most epithelial cells within periglandular fibrosis exhibited decreased immunostaining intensity for proteins, especially when there was destructive endometrosis. However, uteroferrin staining intensity was strong within areas of severe destructive endometrosis. Moreover, only few basal glandular epithelial cells, especially those in cystic glands, stained for mucopolysaccharides that are typically seen within the luminal epithelia. Usually a single fibrotic focus caused only slight alterations in glandular proteins and carbohydrate reaction patterns, so that only more severe endometrosis lead to deviations which were detectable in uterine flushings. The highly sensitive methods used in the present study allow studies of uterine secretion patterns in the context of routine assessment of endometrial biopsies.  相似文献   

11.
Saliva plays many biological roles, from lubrication and digestion to regulating bacterial and leukocyte adhesion. To understand the functions of individual components and families of molecules, it is important to identify as many salivary proteins as possible. Toward this goal, we used a proteomic approach as the first step in a global analysis of this important body fluid. We collected parotid saliva as the ductal secretion from three human donors and separated the protein components by two-dimensional SDS-polyacrylamide gel electrophoresis (2D SDS-PAGE). Proteins in gel spots were identified by peptide mass fingerprinting, and the results were confirmed by tandem mass spectrometry of selected peptides. Complementing this approach we used ultrafiltration to prepare a low-molecular-weight fraction of parotid saliva, which was analyzed directly or after reversed phase high-performance liquid chromatography separation by using mass spectrometric approaches. MS analyses of 2D SDS-PAGE spots revealed known components of saliva, including cystatins, histatins, lysozyme, and isoforms and/or fragments of alpha-amylase, albumin, and proline-rich proteins. We also discovered novel proteins, such as several isoforms of Zn-alpha-2-glycoprotein and secretory actin-binding protein. MS analyses of the ultrafiltrate showed that the low-molecular-weight fraction of parotid saliva was peptide-rich, with novel fragments of proline-rich proteins and histatins in abundance. Experiments using Candida albicans as the test organism showed that at least one of the novel peptides had antifungal activity. Our results show that saliva is a rich source of proteins and peptides that are potential diagnostic and therapeutic targets.  相似文献   

12.
The presence of phosphopeptides in whole saliva (saliva expectorated from the mouth) was demonstrated and their origin was evaluated. Whole saliva contained much larger numbers of small phosphopeptides than are found in the glandular secretions. Most of these originated from the acidic proline-rich proteins (PRPs) in the major salivary glands and were formed, after secretion into the oral cavity, as a result of rapid degradation by proteolytic enzymes from extraglandular sources contained in sediment from whole saliva. Some peptides may have been formed by cleavage of basic PRPs, but other phosphoproteins apparently contributed little to the observed phosphopeptides. Most of the enzymes that produced phosphopeptides are serine proteinases. The gel-electrophoretic band patterns of the phosphopeptides obtained from 26 individuals of various acidic-PRP phenotypes were remarkably similar, demonstrating that the enzymes responsible were generally present in the population surveyed and that similar cleavages occur regardless of the nature of the acidic PRPs. Many of these peptides were N-terminal proteolytic cleavage products of acidic PRPs. The N-terminal phosphorylated region of acidic PRPs contains various biological activities, such as inhibition of hydroxyapatite formation, calcium binding and binding to hydroxyapatite, the major mineral of teeth. The demonstration of these phosphopeptides in the saliva that is in contact with the oral surface may therefore be of biological importance.  相似文献   

13.
Ghafouri B  Tagesson C  Lindahl M 《Proteomics》2003,3(6):1003-1015
Human saliva contains a large number of proteins that can be used for diagnosis and are of great potential in clinical and epidemiological research. The aim of this work was to map the proteins in saliva by two-dimensional gel electrophoresis (2-DE), and to identify abundant proteins by peptide mass fingerprinting using trypsin cleavage and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry analysis. One hundred proteins were identified representing 20 different identities according to accession numbers. Abundant proteins expressed in different forms were: alpha-amylase, immunoglobulin A, prolactin-inducible protein, zinc-alpha(2)-glycoprotein and cystatins (S, SA, D and SN). Other proteins found were interleukin-1 receptor antagonist, von Ebner's gland protein (lipocalin-1) and calgranulin A and B (S100A8 and A9). Furthermore, apolipoprotein A-I, beta(2)-microglobulin, glutathione S-transferase P and fatty acid-binding protein were also identified. Our results show that human saliva contains a large number of proteins that are involved in inflammatory and immune responses. The 2-DE protein map constructed opens the possibility to investigate protein changes associated with disease processes.  相似文献   

14.
First two cases of alpha-CD recognized in the USSR are described. Their immunochemical patterns were typical of this disease. Alpha chain proteins in sera were identified with the help or antisera to IgA, containing antibodies to alpha-chains and to Fab-fragment of IgA. Not only IEP but also SRID were proved to be useful for detecting alpha-CP since double rings were formed by alpha-CP-containing sera: the external ring was formed by alpha CP and the internal ring by normal IgA. Alpha-chain proteins were found in all the patient's secretions (coprofiltrates, saliva, urine), but only in coprofiltrates alpha-CP was bound to SC; in urine and saliva free alpha-CP in these secretions to bind SC. With the help of antiserum to P-determinant alpha-CP was shown to exist in true polymeric (dimeric) form only in coprofiltrates, but not in urine or saliva. A marked shift of kappa/lambda ratio towards kappa chains was revealed in the whole serum and IgG-fraction of one patient; this can be considered either as a result of a peculiar immune response to various antigens because of the deficiency of local immune system, or as an initial phase of development of monoclonal IgGk gammopathy.  相似文献   

15.
Identification of human whole saliva protein components using proteomics   总被引:9,自引:0,他引:9  
The determination of salivary biomarkers as a means of monitoring general health and for the early diagnosis of disease is of increasing interest in clinical research. Based on the linkage between salivary proteins and systemic diseases, the aim of this work was the identification of saliva proteins using proteomics. Salivary proteins were separated using two-dimensional (2-D) gel electrophoresis over a pH range between 3-10, digested, and then analyzed by matrix assisted laser desorption/ionization-time of flight (MALDI-TOF)-TOF mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Proteins were identified using automated MS and MS/MS data acquisition. The resulting data were searched against a protein database using an internal Mascot search routine. Ninety spots give identifications with high statistical reliability. Of the identified proteins, 11 were separated and identified in saliva for the first time using proteomics tools. Moreover, three proteins that have not been previously identified in saliva, PLUNC, cystatin A, and cystatin B were identified.  相似文献   

16.
17.
Human saliva contains a large number of proteins and peptides (salivary proteome) that help maintain homeostasis in the oral cavity. Global analysis of human salivary proteome is important for understanding oral health and disease pathogenesis. In this study, large-scale identification of salivary proteins was demonstrated by using shotgun proteomics and two-dimensinal gel electrophoresis-mass spectrometry (2-DE-MS). For the shotgun approach, whole saliva proteins were prefractionated according to molecular weight. The smallest fraction, presumably containing salivary peptides, was directly separated by capillary liquid chromatography (LC). However, the large protein fractions were digested into peptides for subsequent LC separation. Separated peptides were analyzed by on-line electrospray tandem mass spectrometry (MS/MS) using a quadrupole-time of flight mass spectrometer, and the obtained spectra were automatically processed to search human protein sequence database for protein identification. Additionally, 2-DE was used to map out the proteins in whole saliva. Protein spots 105 in number were excised and in-gel digested; and the resulting peptide fragments were measured by matrix-assisted laser desorption/ionization-mass spectrometry and sequenced by LC-MS/MS for protein identification. In total, we cataloged 309 proteins from human whole saliva by using these two proteomic approaches.  相似文献   

18.

Objectives

To compare the effects of stannous (Sn) and fluoride (F) ions and their combination on acquired enamel pellicle (AEP) protein composition (proteome experiment), and protection against dental erosion (functional experiment).

Methods

In the proteome experiment, bovine enamel specimens were incubated in whole saliva supernatant for 24h for AEP formation. They were randomly assigned to 4 groups (n=10), according to the rinse treatment: Sn (800ppm/6.7mM, SnCl2), F (225ppm/13mM, NaF), Sn and F combination (Sn+F) and deionized water (DIW, negative control). The specimens were immersed 3× in the test rinses for 2min, 2h apart. Pellicles were collected, digested, and analyzed for protein content using liquid chromatography electrospray ionization tandem mass spectrometry. In the functional experiment, bovine enamel specimens (n=10) were similarly treated for pellicle formation. Then, they were subjected to a five-day erosion cycling model, consisting of 5min erosive challenges (15.6 mM citric acid, pH 2.6, 6×/d) and 2min treatment with the rinses containing Sn, F or Sn+F (3×/d). Between the treatments, all specimens were incubated in whole saliva supernatant. Surface loss was determined by profilometry.

Results

Our proteome approach on bovine enamel identified 72 proteins that were common to all groups. AEP of enamel treated with Sn+F demonstrated higher abundance for most of the identified proteins than the other groups. The functional experiment showed reduction of enamel surface loss for Sn+F (89%), Sn (67%) and F (42%) compared to DIW (all significantly different, p<0.05).

Conclusion

This study highlighted that anti-erosion rinses (e.g. Sn+F) can modify quantitatively and qualitatively the AEP formed on bovine enamel. Moreover, our study demonstrated a combinatory effect that amplified the anti-erosive protection on tooth surface.  相似文献   

19.
Human tracheobronchial epithelial cells grown in air-liquid interface culture have emerged as a powerful tool for the study of airway biology. In this study, we have investigated whether this culture system produces "mucus" with a protein composition similar to that of in vivo, induced airway secretions. Previous compositional studies of mucous secretions have greatly underrepresented the contribution of mucins, which are major structural components of normal mucus. To overcome this limitation, we have used a mass spectrometry-based approach centered on prior separation of the mucins from the majority of the other proteins. Using this approach, we have compared the protein composition of apical secretions (AS) from well-differentiated primary human tracheobronchial cells grown at air-liquid interface and human tracheobronchial normal induced sputum (IS). A total of 186 proteins were identified, 134 from AS and 136 from IS; 84 proteins were common to both secretions, with host defense proteins being predominant. The epithelial mucins MUC1, MUC4, and MUC16 and the gel-forming mucins MUC5B and MUC5AC were identified in both secretions. Refractometry showed that the gel-forming mucins were the major contributors by mass to both secretions. When the composition of the IS was corrected for proteins that were most likely derived from saliva, serum, and migratory cells, there was considerable similarity between the two secretions, in particular, in the category of host defense proteins, which includes the mucins. This shows that the primary cell culture system is an important model for study of aspects of innate defense of the upper airways related specifically to mucus consisting solely of airway cell products.  相似文献   

20.
Lepidopteran larvae secrete saliva on plant tissues during feeding. Components in the saliva may aid in food digestion, whereas other components are recognized by plants as cues to elicit defense responses. Despite the ecological and economical importance of these plant-feeding insects, knowledge of their saliva composition is limited to a few species. In this study, we identified the salivary proteins of larvae of the fall armyworm (FAW), Spodoptera frugiperda; determined qualitative and quantitative differences in the salivary proteome of the two host races—corn and rice strains—of this insect; and identified changes in total protein concentration and relative protein abundance in the saliva of FAW larvae associated with different host plants. Quantitative proteomic analyses were performed using labeling with isobaric tags for relative and absolute quantification followed by liquid chromatography-tandem mass spectrometry. In total, 98 proteins were identified (>99% confidence) in the FAW saliva. These proteins were further categorized into five functional groups: proteins potentially involved in (1) plant defense regulation, (2) herbivore offense, (3) insect immunity, (4) detoxification, (5) digestion, and (6) other functions. Moreover, there were differences in the salivary proteome between the FAW strains that were identified by label-free proteomic analyses. Thirteen differentially identified proteins were present in each strain. There were also differences in the relative abundance of eleven salivary proteins between the two FAW host strains as well as differences within each strain associated with different diets. The total salivary protein concentration was also different for the two strains reared on different host plants. Based on these results, we conclude that the FAW saliva contains a complex mixture of proteins involved in different functions that are specific for each strain and its composition can change plastically in response to diet type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号