首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isozyme polymorphism and phylogenetic interpretations in the genus Cicer L.   总被引:2,自引:0,他引:2  
Summary Allozyme variation among 50 accessions representing the cultivated chickpea (Cicer arietinum L.) and eight wild annual Cicer species was scored and used to assess genetic diversity and phylogeny. Sixteen enzyme systems revealed 22 putative and scorable loci of which 21 showed polymorphism. Variation was prevalent between species (Dst = 0.510) but not within species (Hs = 0.050). No variation for isozyme loci was detected in the cultivated chickpea accessions. Cicer reticulatum had the highest proportion of polymorphic loci (0.59) while the loci Adh-2 and Lap were the most polymorphic over all the species accessions. The phylogeny of annual Cicer species, as determined by allozyme data, generally corroborated those based on other characters in previous studies. Cicer arietinum, C. reticulatum and C. echinospermum formed one cluster, while C. pinnatifidum, C. bijugum and C. judaicum formed another cluster. Cicer chorassanicum was grouped with C. yamashitae, whereas C. cuneatum formed an independent group and showed the largest genetic distance from C. arietinum.  相似文献   

2.
Summary Total seed storage protein of the cultivated chickpea, C. arietinum L., and eight other wild annual Cicer species (all 2n = 16) was separated and compared by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The seed-protein profile was a conservative and species-specific trait. Relative interspecific similarities of protein patterns were estimated using Jaccard's similarity index, and a cluster analysis was performed. The resultant dendrogram generally agreed with the limited data already available on interspecific relationships in Cicer based on morphological characteristics, crossability, genome pairing in hybrids, karyotypes and isozyme analysis. The difference between the profiles of C. judaicum and C. pinnatifidum supported the idea that they are indeed two separate species. The closest relative of C. arietinum was C. reticulatum, followed by C. echinospermum and other species, while C. cuneatum was the farthest relative. In general, C. cuneatum was also genetically the farthest removed from any other species. The suggestion that C. reticulatum is the wild progenitor of the cultivated chickpea was therefore further supported.  相似文献   

3.
Microsatellite sequences were cloned and sequenced from Cicer reticulatum, the wild annual progenitor of chickpea (C. arietinum L.). Based on the flanking sequences of the microsatellite motifs, 11 sequence-tagged microsatellite site (STMS) markers were developed. These markers were used for phylogenetic analysis of 29 accessions representing all the nine annual Cicer species. The 11 primer pairs amplified distinct fragments in all the annual species demonstrating high levels of sequence conservation at these loci. Efficient marker transferability (97%) of the C. reticulatum STMS markers across other species of the genus was observed as compared to microsatellite markers from the cultivated species. Variability in the size and number of alleles was obtained with an average of 5.8 alleles per locus. Sequence analysis at three homologous microsatellite loci revealed that the microsatellite allele variation was mainly due to differences in the copy number of the tandem repeats. However, other factors such as (1) point mutations, (2) insertion/deletion events in the flanking region, (3) expansion of closely spaced microsatellites and (4) repeat conversion in the amplified microsatellite loci were also responsible for allelic variation. An unweighted pairgroup method with arithmetic averages (UPGMA)-based dendrogram was obtained, which clearly distinguished all the accessions (except two C. judaicum accessions) from one another and revealed intra- as well as inter-species variability in the genus. An annual Cicer phylogeny was depicted which established the higher similarity between C. arietinum and C. reticulatum. The placement of C. pinnatifidum in the second crossability group and its closeness to C. bijugum was supported. Two species, C. yamashitae and C. chorassanicum, were grouped distinctly and seemed to be genetically diverse from members of the first crossability group. Our data support the distinct placement of C. cuneatum as well as a revised classification regarding its placement.  相似文献   

4.
 Random amplified polymorphic DNA markers were used to distinguish between nine different Cicer taxa representing the cultivated chickpea and eight other related annual wild species. Of the 75 random10-mer primers tested, only 8 amplified genomic DNA across all the species. A total of 115 reproducibly scorable RAPD markers were generated, all except 1 polymorphic, and these were utilized to deduce genetic relationships among the annual Cicer species. Four distinct clusters were observed and represented C. arietinum, C. reticulatum and C. echinospermum in first cluster followed by C. chorassanicum and C. yamashitae in the second cluster, while C. pinnatifidum, C. judaicum and C. bijugum formed the third cluster. Cicer cuneatum did not cluster with any of the species and was most distantly placed from the cultivated species. Except for the placement of C. chorassanicum and C. yamashitae, deduced species’ relationships agreed with previous studies. In addition, species-diagnostic amplification products specific to all the nine species were identified. The results clearly demonstrate a methodology based on random-primed DNA amplification that can be used for studying Cicer phylogeny and chickpea improvement. Received: 27 July 1998 / Accepted: 5 August 1998  相似文献   

5.
Cicer reticulatum, C. echinospermum, C. bijugum, C. judaicum, C. pinnatifidum, C. cuneatum and C. yamashitae are wild annual Cicer species and potential donors of valuable traits to improve chickpea (C. arietinum). As part of a large project to characterize and evaluate wild annual Cicer collections held in the world gene banks, AFLP markers were used to study genetic variation in these species. The main aim of this study was to characterize geographical patterns of genetic variation in wild annual Cicer germplasm. Phylogenetic analysis of 146 wild annual Cicer accessions (including two accessions in the perennial C. anatolicum and six cultivars of chickpea) revealed four distinct groups corresponding well to primary, secondary and tertiary gene pools of chickpea. Some possible misidentified or mislabelled accessions were identified, and ILWC 242 is proposed as a hybrid between C. reticulatum and C. echinospermum. The extent of genetic diversity varied considerably and was unbalanced between species with greatest genetic diversity found in C. judaicum. For the first time geographic patterns of genetic variation in C. reticulatum, C. echinospermum, C. bijugum, C. judaicum and C. pinnatifidum were established using AFLP markers. Based on the current collections the maximum genetic diversity of C. reticulatum, C. echinospermum, C. bijugum and C. pinnatifidum was found in southeastern Turkey, while Palestine was the centre of maximum genetic variation for C. judaicum. This information provides a solid basis for the design of future collections and in situ conservation programs for wild annual Cicer.  相似文献   

6.
The cladistic analysis of the DNA sequences of the internal transcribed spacers of ribosomal cistrons (ITS1 and ITS2) for 20 species of Cicer L. (among which all the annuals), shows that various sections of the genus are not monophyletic. Annual species do not form a clade: C. arietinum, in fact, is closely related to both C. echinospermum and C. reticulatum, whereas C. bijugum, C. judaicum, and C. pinnatifidum form a separate clade. The annual C. cuneatum is sister group to the perennial C. canariense and both are archaic species within the genus. C. yamashitae is, on the contrary, the only annual species belonging to a group of perennials, within which close relationships are evident between C. graecum and C. montbretii as well as among a group of mainly Asian species.  相似文献   

7.
In order to determine the pattern of genetic diversity within and among the species of Cicer and to estimate interspecific genetic relationships, allelic variation was assayed for 23 isozyme loci in 63 accessions of 11 species of Cicer using starch gel electrophoresis. The total allozymic variation observed in the genus (H t )was equal to 0.60. When partitioned (G st), 96% of this allelic diversity was found among rather than within species. The allelic diversity among species (D st)and allelic diversity within species (H s)were equal to 0.58 and 0.02, respectively. Cicer reticulatum and C. pinnatifidum had the highest proportion of polymorphic loci (17.39%) and the highest mean number of alleles per locus (1.22 and 1.17, respectively). UPGMA cluster analysis of Nei's unbiased genetic distance revealed four genetic groups. One includes C. reticulatum, C. arietinum and C. echino spermum where the first 2 species represent a putative derivative-progenitor pair. A second cluster contains C. bijugum, C. pinnatifidum and C. judaicum. Cicer yamashitae, C. chorassanicum, C. anatolicum and C. songoricum form a third group. Finally, C. cuneatum, which has a very distinct isozyme profile and peculiar morphological features, is the only member of a fourth species group. This species grouping agrees partially with those obtained from crossability and cytogenetic studies. The results suggest that the annual habit arose from perennial progenitors at least twice in the genus Cicer.  相似文献   

8.
Genetic relationships among the annual species of Cicer L.   总被引:3,自引:0,他引:3  
Summary Genetic relationships between 7 annual species of the genus Cicer, including the cultivated chickpea, have been studied. These species were assigned to 3 crossability groups. In each group interspecific hybrids could be obtained but their fertility differed considerably in the various cross combinations. Crosses between members of different groups yielded no viable seeds. The possibility of gene transfer from the wild species to the cultivated chickpea C. arietinum was also assessed. Only two species could be considered for this purpose, C. reticulatum, which is the wild progenitor of the cultivated species, and C. echinospermum, which is in the secondary gene pool of C. arietinum. A unique postzygotic reproductive barrier mechanism was found between the members of Group II, C. judaicum, C. pinnatifidum and C. bijugum. It is based on a disharmony in the growth rate of the stigma and the anthers at the time of anthesis of the F1 interspecific hybrid so that selfpollination is avoided. It is proposed that this kind of mechanism has been involved only when an effective spatial isolation between the three species had been obtained.  相似文献   

9.
The trypsin and chymotrypsin isoinhibitors of eight annual species of Cicer, including the cultigen, C. arietinum, had the same migration rate in gel electrophoresis. According to the relative inhibitory activity found in the various species, they were grouped in three classes. These were identical to those based on the intercrossing potential of the annual chickpeas. The suggestions made in the literature regarding the value of protease inhibitors in seeds as defence mechanisms against insects were assessed and discussed according to the situation in the annual species of Cicer.  相似文献   

10.
Introgression of germplasm from wild to cultivated species ofArachis is severely impeded because abortion processes oftenoccur as a prepeg-, peg-(gynophore), or postpeg-elongation event.A comparative study of embryo sac morphology at anthesis wasundertaken to determine if observable differences were presentthat could possibly explain abortion prior to peg tip swellingfollowing soil penetration. Two wild Arachis species (A. duranensisand A. stenosperma) plus A. hypogaea cultivars NC 6 and Argentinewere studied. Differences in starch grain concentration andcytoplasmic stranding organization were observed between A.hypogaea cultivars and the wild Arachis species. These differencesprobably have a significant impact on energy availability atsyngamy and the subsequent early cell division of the embryo.An improper energy balance could contribute to the onset ofabortion in interspecific hybrids. Modification in egg apparatusorganization among all species was also observed which may accountfor low percentages of seed recovery resulting from interspecifichybridization attempts. Embryo sac morphology, interspecific hybridization, Arachis hypogaea L., Arachis species, light microscopy, scanning electron microscopy, embryo abortion, fertilization incompatibility, peanuts, groundnut  相似文献   

11.
Abstract

Chickpea is an important grain legume of the semi arid tropics and warm temperate zones, and forms one of the major components of human diet. However, a narrow genetic base of cultivated chickpea (Cicer arietinum L.) has hindered the progress in realizing high yield gains in breeding programs. Furthermore, various abiotic and biotic stresses are the major bottlenecks for increasing chickpea productivity. Systematic collection and evaluation of wild species for useful traits has revealed presence of a diverse gene pool for tolerance to the biotic and abiotic stresses. Relationships among the species of genus Cicer are presented based on crossability, karyotype and molecular markers. The reproductive barriers encountered during interspecific hybridization are also examined. Recent information on genetic linkage maps, comparison of isozymes

The functional markers generated from genic sequence (e.g. ESTs) have definite advantage over the markers generated from anonymous random regions of the genome, because they are completely linked to desired trait alleles (Anderson and Lubberstedt, 2003; Varshney et al., 2005; Buhariwala et al., 2005). At ICRISAT, Buhariwala et al. (2005) have developed an EST library from two very closely related chickpea genotypes (Cicer arietinum). A total of 106 EST-based markers were designed from 477 sequences with functional annotations and tested on C. arietinum. Forty-four EST markers were polymorphic when screened across nine Cicer species (including the cultivated species) and were used to study the species relationship. Most of the species clustered as reported in the previous studies, and hence it further supported the classification of primary (C. arietinum, C. echinospermum and C. reticulatum), secondary (C. pinnatifidum, C bijugum and C. judaicum), and tertiary (C. yamashitae, C. chrossanicum and C. cuneatum) gene-pools. A large proportion of EST alleles (45%) were only present in one or two of the accessions tested whilst the others were represented in up to twelve of the accessions tested.  相似文献   

12.
AFLP markers were used to assess genetic relationships among Cicer species with distribution in Turkey. Genetic distances were computed among 47 Cicer accessions representing four perennial and six annual species including chickpea, using 306 positions on AFLP gels. AFLP-based grouping of species revealed two clusters, one of which includes three perennial species, Cicer montbretii, Cicer isauricum and Cicer anatolicum, while the other cluster consists of two subclusters, one including one perennial, Cicer incisum, along with three annuals from the second crossability group (Cicer pinnatifidum, Cicer judaicum and Cicer bijugum) and the other one comprising three annuals from the first crossability group (Cicer echinospermum, Cicer reticulatum and Cicer arietinum). Consistent with previous relationship studies in the same accession set using allozyme and RAPD markers, in AFLP-based relationships, C. incisum was the closest perennial to nearly all annuals, and C. reticulatum was the closest wild species to C. arietinum. Cluster analysis revealed the grouping of all accessions into their distinct species-clusters except for C. reticulatum accessions, ILWC247, ILWC242 and TR54961; the former was found to be closer to the C. arietinum accessions while the latter two clustered with the C. echinospermum group. Small genetic distance values were detected among C. reticulatum accessions (0.282) and between C. reticulatum and C. arietinum (0.301) indicating a close genetic similarity between these two species. Overall, the AFLP-based genetic relationships among accessions and species were congruous with our previous study of genetic relationships using allozymes. The computed level of AFLP variation and its distribution into within and between Cicer species paralleled the previous report based on RAPD analyses. AFLP analysis also confirmed the presence of the closest wild relatives and previous projections of the origin of chickpea in southern Turkey. Results presented in this report indicate that AFLP analysis is an efficient and reliable marker technology in determination of genetic variation and relationships in the genus Cicer. Obviously, the use of AFLP fingerprinting in constructing a detailed genetic map of chickpea and cloning, and characterizing economically important traits would be promising as well.Communicated by P. Langridge  相似文献   

13.
Random amplified polymorphic DNA (RAPD) fragments were used to assess genetic relationships among Cicer spp. growing in Turkey. Seven 10-mer primers selected from a 50 random oligonucleotide primer set, depending on their ability to amplify genomic DNA in all species, were used to detect RAPD variation in 43 wild and cultivated accessions representing ten species. These primers yielded 95 reproducible amplification products, 92 of which were polymorphic. Pairwise genetic distances of accessions estimated according to Nei and Li (1979) were used to produce a dendrogram using UPGMA. The dendrogram contained two main clusters, one of which comprised accessions of the four perennial species (Cicer montbretii, Cicer isauricum, Cicer anatolicum and Cicer incisum) together with the accessions of the three annual species (Cicer pinnatifidum, Cicer judaicum and Cicer bijugum), and the other cluster included the remaining three annual species (Cicer echinospermum, Cicer reticulatum and Cicer arietinum). Analysis of RAPD variation showed that C. incisum is the most similar perennial species to annuals, and C. reticulatum is the closest annual species to chickpea. These results generally agree with our allozyme study which was carried out using same Cicer collection and previous studies of relationships among annual species. The results also show that RAPD markers can be used to distinguish Cicer species and to survey genetic variation and relationships among taxonomic units in this genus.  相似文献   

14.

Key message

Developmental context and species-specific hormone requirements are of key importance in the advancement of in vitro protocols and manipulation of seed development.

Abstract

Improvement of in vitro tissue and cell culture protocols in grain legumes such as embryo rescue, interspecific hybridization, and androgenesis requires an understanding of the types, activity, and balance of hormones within developing seeds. Towards this goal, the concentration of auxin, cytokinin, gibberellin, and abscisic acid (ABA) and their precursors and derivatives were measured in the developing seeds of field pea (Pisum sativum L.), chickpea (Cicer arietinum L.), lentil (Lens culinaris Medik.), and faba bean (Vicia faba L.) from 4 days after anthesis until 8 days after reaching maximum fresh weight. The importance of developmental context (developmental time and space) is demonstrated in both the differences and similarities between species for hormone profiles, especially with regard to cytokinin and ABA biosynthesis during the embryo formation. Auxin and its conjugates are significant during the pattern formation stage of all legumes; however, IAA-Asparagine appears important in the Vicieae species and its concentrations are greater than IAA from the globular stage of embryo development on in multi-seed fruits. Finally, the significance of non-polar gibberellins during lentil seed development is highlighted.  相似文献   

15.
Three molecular markers, including start codon targeted (SCoT) polymorphism, directed amplification of minisatellite-region DNA polymerase chain reaction (DAMD-PCR), and inter simple sequence repeat (ISSR) markers, were compared in terms of their informativeness and efficiency for analysis of genetic relationships among 38 accessions of eight annual Cicer species. The results were as follows: (1) the highest level of detected polymorphism was observed for all three marker types; (2) the rate of diversity for the three marker techniques was approximately equal, and the correlation coefficients of similarity were statistically significant for all three marker systems; (3) the three molecular markers showed relatively similar phylogenetic grouping for examined species. Diversity analysis showed that Cicer reticulatum is the closest wild species to the cultivated chickpea, and this finding supports the hypothesis that C.?reticulatum is the most probable progenitor of the cultivated species. C.?bijugum, C.?judaicum, and C.?pinnatifidum were clustered together, and in other clusters C.?yamashitae and C.?cuneatum were grouped close together. To our knowledge, this is the first detailed comparison of performance among two targeted DNA region molecular markers (SCoT and DAMD-PCR) and the ISSR technique on a set of samples of Cicer. The results provide guidance for future efficient use of these molecular methods in genetic analysis of Cicer.  相似文献   

16.
Lack of requisite genetic variation in cultivated species has necessitated systematic collection, documentation and evaluation of wild Cicer species for use in chickpea variety improvement programs. Cicer arietinum has very narrow genetic variation, and the use of a wild relative in chickpea breeding could provide a good opportunity for increasing the available genetic variation of cultivated chickpea. Genetic diversity and the relationship of 71 accessions, from the core area of chickpea origin and domestication (Southeastern Turkey), belonging to five wild annual species and one cultivated species (Cicer arietinum) were analysed using iPBS-retrotransposon and ISSR markers. A total of 136 scorable bands were detected using 10 ISSR primers among 71 accessions belonging to 6 species, out of which 135 were polymorphic (99.3 %), with an average of 13.5 polymorphic fragments per primer, whereas iPBS detected 130 bands with 100 % polymorphism with an average of 13.0 bands per primer. C. echinospermum and C. pinnatifidum were the most diverse among species, whereas C. arietinum exhibited lower polymorphism. The average polymorphism information contents (PIC) value for both marker systems was 0.91. The clustering of the accessions and species within groups was almost similar, when iPBS and ISSR NeighborNet (NNet) planar graphs were compared. Further detailed studies are indispensable in order to collect Cicer germplasm, especially C. reticulatum, from southeastern Turkey particularly, from Karacada? Mountain for preservation, management of this species, and to study their genetic diversity at molecular level. This study also demonstrates the utility and role of iPBS-retrotransposons, a dominant and ubiquitous part of eukaryotic genomes, for diversity studies in wild chickpea and in cultivated chickpea.  相似文献   

17.
Allozymic variation at 30 isozyme loci was examined electrophoretically in nine annual and one perennial species ofCicer. While most of the accessions examined were monomorphic, species can be differentiated on the basis of their enzyme phenotypes. Several groups of species were identified based upon genetic distance values. For example,C. arietinum, C. reticulatum, andC. echinospermum shared the same alleles for most of the loci exmained. PerennialC. anatolicum is also closely related to this group. Similarly,C. judaicum, C. bijugum, andC. pinnatifidum formed another group. Two annual species,C. chorassanicum andC. yamashitae clustered together, whereasC. cuneatum was the most distantly related species. Correlations were found between genetic distances and geographic distribution. Results from enzyme electrophoresis tend to support the previously reported taxonomic treatments based upon crossability and morphological similarity. However,C. yamashitae, which has been classified in the second crossability group, is quite distinct genetically and morphologically from the remaining species of the group. An isozyme gene duplication observed in the genus suggested the monophyletic origin of the species examined in the present study.  相似文献   

18.
Seed of three chickpea (Cicer arietinum L.), three cowpea [Vignaunguiculata (L.) Walp.] and four soya bean [Glycine max (L.)Merr.] cultivars were hermetically stored for up to 2 yearsin various constant environments which included temperaturesfrom —20 to 70 °C and moisture contents (fresh weightbasis) from 5 to 25 per cent. In all cases the survival curvescould be described by negative cumulative normal distributions.The longevity of the various seed lots differed but the valueof the standard deviation (the reciprocal of which gives theslope of the survival curve when percentage germination is transformedto probit) was the same for all cultivars within a species whenstored under similar conditions. Within each species the relativeeffects of moisture and temperature on longevity did not differsignificantly between cultivars. In all three species therewas a negative logarithmic relationship between seed moisturecontent and longevity, but the relative effect of moisture contentdiffered between the species: differences in the longevity ofsoya bean seed as a function of moisture content were less thanfor either cowpea or chickpea. The relative effect of temperatureon seed longevity did not differ between the three species,and the seed of all three species showed increasing temperaturecoefficients for the change in rate of loss of viability withincrease in temperature. The complete pattern of loss in viabilityin all three species can be described by a single equation whichwas developed for barley and has also been shown to apply toonion seed. The constants applicable to the three grain legumeshave been calculated so that it is now possible to predict percentageviability of any seed lot of these species after any storageperiod under a very wide range of storage conditions. Cicer arietinum L., chickpea, Glycine max (L.) Merr., soya bean, Vigna unguiculata (L.) Walp., cowpea, seed longevity, seed storage, moisture content, temperature  相似文献   

19.
Three interspecific crosses were developed using Cicer arietinum (ICC 4918) as the female parent and wild Cicer species [C. reticulatum - JM 2100, JM 2106 and C. echinospermum - ICCW 44] as the male parent. Cicer arietinum (ICC 4918) × C. reticulatum (JM 2100) cross produced the largest number of F2 plants and was chosen for linkage mapping using Random Amplified Polymorphic DNA (RAPD) primers. A partial linkage map was constructed based upon the segregation of 36 RAPD markers obtained by amplification using 35 primers. The linkage map consists of two linkage groups with 17 linked markers covering a total of 464.9 cM. Analyses also revealed association of three morphological traits with linked RAPD markers. Out of seven morphological traits tested for association with linked markers in the segregating plants, four Quantitative trait loci (QTL) were detected for the trait leaf length and three QTLs each for the traits leaf width and erect plant habit.  相似文献   

20.
Variation in Two Sorbus Species Endemic to the Isle of Arran, Scotland   总被引:4,自引:0,他引:4  
HULL  P.; SMART  G. J. B. 《Annals of botany》1984,53(5):641-648
A study of the morphology of plants from four species of Sorbus,S. arraensis, S. pseudofennica, S. aucuparia and S. rupicola,two of them endemic to North Arran, suggested that the originof the two endemic groups could have been by hybridization. Variation between individuals within the hybrid groups indicatesthat the two groups, probably of hybrid origin (S. arranensisand S. pseudofennica), could each consist of a set of geneticallyisolated clones reproducing by apomixis, with the possibilityin the case of S. pseudofennica of occasional genetic interchangeby sexual reproduction. The overlap of characters between the two hybrid groups suggeststhat the inflow of genetic material by hybridization and geneticmodification in these groups is continuing. Sorbus arranensis Hedl., Sorbus pseudofennica E. F. Warb., Sorbus aucuparia L., Sorbus rupicola (Syme) Hedl., interspecific hybridization, apomixis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号