首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sialylation of eCG was examined to determine its influence on the in vivo metabolism and biological activity of the molecule. Sialic acid was decrementally removed from eCG by incubation with agarose-linked neuraminidase for varying time periods. Pharmacokinetic parameters for the disappearance of 4,000 IU (267 micrograms) of three desialylated eCG preparations (20%, 53%, and 80% sialic acid removed) and control eCG were determined in sheep. The clearance rate of eCG increased (p less than 0.05) with each decrement of sialic acid. The removal of 53% sialic acid enhanced the distribution of eCG into the tissues, compared to control and 20% desialylated eCG (p less than 0.05), presumably because of increased lipid solubility and decreased molecular size. Desialylation to 53% did not alter the elimination half-life of eCG. The removal of 80% sialic acid resulted in the disappearance of eCG from the serum within 1 h, whereas control eCG was still present at 120 h. In vivo trials in rats disclosed that the control eCG preparation increased ovulatory rate at doses of 10-100 IU and ovarian weight at doses of 10-300 IU relative to saline-treated rats (p less than 0.01). The 20% desialylated eCG induced superovulatory and ovarian weight responses, but 100-500 IU were required to achieve the same result as that produced by control eCG. The 53% and 80% desialylated eCG preparations induced a mild superovulatory response (p less than 0.01) but no ovarian weight response. It was concluded that sialic acid was significant to the distribution and disappearance of eCG. The effects of carbohydrate removal on biological activity (e.g., superovulation) are primarily a function of clearance rate rather than tissue-specific phenomena.  相似文献   

2.
Various partially or fully desialylated human erythropoietins were obtained by neuraminidase digestion of the hormone, without non-specific proteolysis and degradation of carbohydrates. Asialoerythropoietin showed a specific activity of 220-IU/mg protein in vivo, although that of the intact erythropoietin was 2.2 x 10(5) IU/mg. A linear relationship was found between the logarithm of the specific activity in vivo and the number of sialic acids. The asialoerythropoietin showed a four-times-higher specific activity in vitro compared with intact erythropoietin using mouse bone marrow cells. It also showed an approximately six-times-higher specific activity in a colony-forming assay for the erythroid colony-forming unit and the erythroid burst-forming unit. Partially or fully de-N-glycosylated erythropoietin derivatives also showed lower in vivo activity but higher in vitro activity than the intact erythropoietin, dependent on the number of sialic acids. To clarify the reason for the enhanced biological activity of asialoerythropoietin in vitro, the binding of intact 125I-erythropoietin or 125I-asialoerythropoietin to cells containing specific receptors for the hormone was analyzed. 125I-asialoerythropoietin bound to spleen cells from anemic mice approximately five times faster than did intact 125I-erythropoietin. The amount of 125I-asialoerythropoietin internalized by target cells, measured in the absence of NaN3, was four times higher than that of intact erythropoietin. These results demonstrate that asialoerythropoietin binds to its receptor faster than the intact form. This may be the main reason for the increased activity of asialoerythropoietin in vitro.  相似文献   

3.
Human chorionic gonadotropin is a glycoprotein hormone that, like LH, stimulates steroidogenesis in gonadal cells. Using a desialylation process, 95 per cent of the sialic acid residues from an intact standard hCG molecule were eliminated and then the electrophoretic properties and the bioactivity of the desialylated hCG were determined. Using rat Leydig cells as a biological model, the binding affinity to LH receptors of Leydig cell membranes, steroidogenic activity and second messenger production were studied. The results indicate that the loss of sialic acid from the hCG molecule slightly increases the binding activity to LH receptors and results in steroidogenic activity with an increased ED50. Cyclic AMP production was significantly reduced however and arachidonic acid release was not observed. Several possible mechanisms that could explain these results are discussed. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
Various deglycosylated derivatives of recombinant human erythropoietin (hEPO) were prepared and used to determine the role of the sugar chains in the expression of its biological activity in vivo and in vitro. Three N-linked oligosaccharides of hEPO have been partially or fully removed to obtain N-glycan (NG) (2)-, NG(1)-, and NG(0)-hEPO carrying two, one, and no N-linked sugar chains, respectively. The preparation lacking only O-linked sugar chain O O-glycan (OG) (0)-hEPO was also used. As de-N-glycosylation proceeded, the in vivo activity of the hormone decreased drastically, and the activity of these derivatives was correlated with the number of sialic acids bound to them. On the contrary, the in vitro activity was increased by the de-N-glycosylation; NG(0)-hEPO showed a 3-fold higher specific activity than the intact hormone. This was confirmed by binding experiments of the derivatives to target cells. The in vitro activity and the affinity also correlated with the number of sialic acids bound to the deglycosylated hEPO preparations. On the other hand, OG(0)-hEPO was as active as the intact hormone in vivo and in vitro. In conclusion, the N-linked sugar chains are not required for in vitro activity but required for in vivo activity, acting as anchors for the essential terminal sialic acids. The O-linked sugar chain has no essential role in the biological activity of the hormone in vivo or in vitro.  相似文献   

5.
Determination of biological activity and its comparison with clinical behavior is important in the quality assessment of therapeutic glycoproteins. In vivo studies are usually employed for evaluating bioactivity of these glycomolecules. However, alternative methods are required to simplify the bioassay and avoid ethical issues associated with in vivo studies. Negatively charged sialic acid residues are known to be critical for in vivo bioactivity of rHuEPO. To address this need, we employed the human acute myeloid leukemia cell line UT-7 for the determination of proliferative stimulation induced by rHuEPO. Relative potencies of various intact and sugar-trimmed rHuEPO preparations were estimated using the International Standard for Human r-DNA derived EPO (87/684) as a reference for bioactivity. The cellular response was measured with a multi-channel photometer using a colorimetric microassay, based on the metabolism of the Resazurin sodium by cell viability. For a resourceful probing of physiological features of rHuEPO with significance, we obtained partly or completely desialylated rHuEPO digested by the neuraminidase enzyme without degradation of carbohydrates. Two-fold higher specific activity was shown by asialoerythropoietin in in vitro analysis compared with the sialoerythropoietin. Further, computational studies were also carried out to construct the 3D model of the erythropoietin (EPO) protein structure using standard comparative modeling methods. The quality of the model was validated using Procheck and protein structure analysis (ProSA) server tools. N–glycan units were constructed; moreover, EPO protein was glycosylated at potential glycosylation amino acid residue sites. The method described should be suitable for potency assessments of pharmaceutical formulations of rHuEPO (European Pharmacopeia, 2016).  相似文献   

6.
The terminal galactosyl units of desialylated alpha1-acid glycoprotein were selectively labeled with tritium by a galactose oxidase/NaB3H4 procedure. The 3H-labeled glycoprotein was effective as an acceptor in sialytransferase reactions catalyzed by rat liver microsomes in vitro with unlabeled CMP-N-acetyl-neuramininic acid as sialic acid donor. Permethylation/hydrolysis of glycopeptides derived from the resialylated 3H-labeled glycoprotein yielded radioactive 2,3,4-trimethylgalactose indicating that rat liver microsomes are capable of transferring sialic acid to position C-6 of the terminal galactosyl units of desialylated alpha1-acid glycoprotein. No indication was obtained for transfer of sialic acid to other positions. This result is discussed in view of the multiplicity of positions of attachment of sialic acid to galactosyl residues in native alpha1-acid glycoprotein.  相似文献   

7.
Human erythropoietin contains three Asn-type and one mucin-type sugar chains. That the branching structure of the outer portion of Asn-type sugar chains is correlated to its biological activity in vivo has been reported recently (Takeuchi, M., Inoue, N., Strickland, T. W., Kubota, M., Wada, M., Shimizu, R., Hoshi, S., Kozutsumi, H., Takasaki, S., and Kobata, A. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 7819-7822). In this study, the effect of trimming of sugar chains on the biological activity in vitro of this hormone was examined by using several glycosidases. Human erythropoietin produced by recombinant Chinese hamster ovary cells showed three times higher activity after desialylation. The activity was not changed significantly by further removal of the mucin-type sugar chain from the hormone, indicating no contribution of this type of sugar chain to the activity of erythropoietin in vitro. Sequential removal of galactose and N-acetylglucosamine from the outer chain moieties of the desialylated Asn-type sugar chains raised the activity of the hormone up to four and five times the intact erythropoietin, respectively. The activation effect was diminished slightly by further removing alpha-mannosyl residues and to a great extent by removing beta-mannosyl residues from the core portions of the Asn-type sugar chains. N-Glycanase digestion of intact erythropoietin resulted in almost complete loss of the activity in vitro. These results indicate that the core portion of the Asn-type sugar chains is necessary for erythropoietin to express its full biological activity in vitro and suggest that removal of the core portion of the sugar chains destroys the active conformation of erythropoietin.  相似文献   

8.
An in vitro bioassay based on suppression of GnRH-stimulated FSH secretion by pituitary cells in culture was used to monitor inhibin activity after dialysis, gel filtration or polyacrylamide gel electrophoresis of protein preparations from a variety of gonadal secretions and extracts under native and dissociating conditions. The suggestion that inhibin is a peptide of molecular weight less than 5000 was not confirmed. Although some fractions of low molecular weight suppressed FSH secretion, the amount of activity was low and the dose response curves were not parallel with a standard preparation of inhibin. Under most conditions, inhibin eluted with an apparent molecular weight of about 90 000. However, gel filtration of rete testis fluid protein in 1 M acetic acid resulted in elution of inhibin activity with a lower apparent molecular weight and with polyacrylamide gel electrophoresis in 0.1% (w/v) sodium dodecylsulfate, the apparent molecular weight was 30 000. It is concluded that inhibin is a protein which tends to aggregate and coelute with larger molecules.  相似文献   

9.
Neuraminidase treatment of mouse mammary tumor virus, Rauscher murine leukemia virus, and Mason-Pfizer monkey virus resulted in loss of their capacity to inhibit hemagglutination of influenza virus. Hemagglutination-inhibition activity of these RNA tumor viruses could be restored by in vitro resialylation catalyzed by sialyl transferase. The major glycoprotein in the intact envelope of desialylated and, to some extent, native virions could be specificallly labeled in vitro with CMP-(14C) sialic acid. These studies further characterize the individual glycoproteins of mouse mammary tumor virus, Rauscher murine leukemia virus, and Mason-Pfizer monkey virus.  相似文献   

10.
The sialyltransferase (= glycoprotein-sialic acid transferase) was studied in the sponge Geodia cydonium, a mesozoan organism. The experiments were performed both in intact cellular and in isolated enzyme systems. It is shown, that desialylated cells show a lower aggregation potency than the controls. During aggregation enzymic sialylation of desialylated sponge cells occurs in the presence of an aggregation factor, which is associated with a high molecular weight particle. The sialylation process is temperature-dependent and can be inhibited by N-ethylmaleimide. Sialylation occurs predominantly at a distinct cell surface component, the aggregation receptor. The sialyltransferase was isolated and purified by the following steps: Sepharose 4B, CM-cellulose, Nonidet treatment, and Sephadex G-100. By this procedure the enzyme was purified 680-fold with a 31% yield. The sialyltransferase is originally associated with the high molecular weight particle also carrying the aggregation factor. In the last step the aggregation factor was separated from the sialyltransferase. The enzyme catalyzes the transfer of sialic acid from CMP-sialic acid to the desialylated aggregation receptor. The molecular weight of the sialyltransferase has been determined to be 52,000. Kinetic studies revealed no lag phase and a dependence on enzyme concentration. The purified transferase has a pH optimum of 7.75 and requires 200 mM NaCl for activity. No requirement for Mg2+ or Ca2+ could be observed. The reaction is inhibited by 10 micronM N-ethylmaleimide.  相似文献   

11.
Carbohydrate chains of C1-inhibitor were identified with a binding assay using different lectins. Lectins from Sambucus nigra (SNA) and Maackia amurensis (MAA) that are specific for sialic acids bound to C1-inhibitor. Lectin from Datura stramonium (DSA) reacted also with the inhibitor indicating complex and hybrid sugar structures. C1-inhibitor was enzymatically desialylated and reexamined for lectin binding. SNA and MAA did not react anymore, but in addition to DSA, peanut agglutinin, which can bind to carbohydrate chains after sialic acids are removed, bound to desialylated C1-inhibitor. C1-inhibitor contains about 30 sialic acid residues per molecule. SDS-polyacrylamide gel electrophoresis showed that desialylated C1-inhibitor had a faster mobility than native C1-inhibitor. The N-terminal sequence of desialylated C1-inhibitor was the same as of native C1-inhibitor and no change in the inhibition of human plasma kallikrein was observed.  相似文献   

12.
Sialyltransferase activity in regenerating rat liver   总被引:6,自引:3,他引:3       下载免费PDF全文
Liver microsomal fractions catalyse the transfer of sialic acid from CMP-N-acetyl-neuraminic acid to various exogenous acceptors such as desialylated fetuin, desialylated human Tamm–Horsfall glycoprotein and desialylated bovine submaxillary-gland mucin. An increase in the rate of incorporation of sialic acid into desialylated glycoproteins was found after a lag period (7h) in regenerating liver. The increase was maximum 24h after partial hepatectomy for all acceptors tested. At later times after operation the sialyltransferase activity remained high only for desialylated fetuin. No soluble factors from liver or serum of partially hepatectomized animals influenced the activity of the sialyltransferases bound to the microsomal fraction. The sensitivity of sialyltransferases to activation by Triton X-100, added to the incubation medium, was unchanged in the microsomal preparation from animals 24h after sham operation or partial hepatectomy. The full activity of sialyltransferases towards the various desialylated acceptors showed some differences. Human Tamm–Horsfall glycoprotein was a good acceptor of sialic acid only when desialylated by mild acid hydrolysis. After this treatment, but not after enzymic hydrolysis, a decrease in molecular weight of human Tamm–Horsfall glycoprotein was observed. Further, the sialyltransferase activity as a function of incubation temperature gave different curves according to the acceptor used. The relationship between the biosynthesis of glycoproteins by regenerating liver and the sialyltransferase activity of microsomal fraction after partial hepatectomy is discussed.  相似文献   

13.
14.
Glycophorins extracted from membranes of young and old human red blood cells have within an error of +/- 1.5% the same sialic acid content when referred to a relative measure of the number of glycophorins. The degree of surface iodination in glycophorins, which was shown to be the same in young and old cells, served as this relative measure. This finding implies that senescent human red blood cells hardly reveal desialylated surface proteins (less than or equal to 3%). However, the sialic acid content per cell was repeatedly reported to be 10 to 15% lower in old than in young cells. Therefore, we conclude 1) that human red blood cells lose intact glycophorin together with membrane during red blood cell senescence, and 2) that removal of desialylated and senescent red blood cells from the circulation proceeds by different routes.  相似文献   

15.
Baculovirus-insect cell production of bioactive porcine FSH   总被引:1,自引:0,他引:1  
The in vitro and in vivo bioactivity of recombinant porcine FSH (rpFSH) produced from insect cells through use of a baculovirus expression system were studied and compared with those of natural FSH preparations. Determination of in vitro bioactivity, using the rat Sertoli cell aromatase bioassay, indicated that rpFSH is as active as purified pituitary FSH. Determination of in vivo bioactivity, using the mouse uterine weight bioassay, indicated that rpFSH is as active as purified pituitary FSH. Using the mouse Leydig cell testosterone bioassay, it was demonstrated that the intrinsic LH bioactivity of rpFSH is negligible. The increases in ovarian and uterine weight, and the stimulation in follicular growth in immature hypophysectomized rats induced by rpFSH supplemented with hCG were comparable to those induced by natural FSH preparations. Furthermore, rpFSH alone in hypophysectomized mice stimulated preantral follicular growth to preovulatory stages, and the subsequent injection of hCG caused ovulation. These results demonstrate that in vitro and in vivo biological characteristics of rpFSH produced from baculovirus-insect cells are indistinguishable from those of FSH isolated from natural sources.  相似文献   

16.
The in vivo biological activity of erythropoietin (Epo) is dependent on its being adequately sialylated. Current in vitro bioassays for Epo do not correlate with the in vivo bioassays as the former do not take into account the role the liver plays in clearing desialylated glycoproteins from the circulation. Here we describe a sialylation-sensitive cell-based Epo bioassay. In the first instance, Epo activity in vitro was measured using proliferation of AS-E2 cells, and in vivo using the polycythaemic mouse bioassay. Activity in vivo was progressively abolished by controlled desialylation, whereas activity in vitro was essentially unaffected. Incorporation of an incubation step with a solid-phase galactose-binding lectin (Erythrina crista-galli), effectively mimicking passage through the liver in vivo, renders the in vitro bioassay sensitive to desialylation, such that Epo desialylated almost to completion had <10% of the activity of untreated Epo. These studies offer proof of principle, that rational manipulation of in vitro bioassays can allow prediction of activity in vivo without the use of live animals.  相似文献   

17.
Trypanosoma cruzi trans-sialidase (TS) is a recently described enzyme which transfers alpha(2-3)-linked sialic acid from host-derived sialylated glycoconjugates to parasite surface molecules [Schenkman et al. (1991) Cell, 65, 1117]. We report here on the ability of TS to transfer sialic acid from donor sialyl-alpha(2-3)lactose to sialidase-treated sheep and human erythrocytes. Up to approximately 50% resialylation of both desialylated red cells could be attained. Resialylation of desialylated sheep erythrocytes restores their resistance to lysis by human complement. This ascribes a possible biological role for T. cruzi TS and demonstrates directly that sialic acid is solely responsible for preventing alternative pathway activation of human complement by sheep erythrocytes.  相似文献   

18.
The receptivity of human erythrocytes to invasion by Plasmodium falciparum merozoites can be decreased by neuraminidase or trypsin treatment, an observation that supports a role for the erythrocyte sialoglycoproteins (glycophorins) in invasion. We have found that alpha 1-acid glycoprotein (AGP), added to in vitro cultures, can restore invasion of enzyme-treated human erythrocytes. AGP is structurally different from the glycophorins although it does carry 12% sialic acid. Its ability to restore receptivity to desialylated cells is dependent on its sialic acid complement, its concentration, and its binding to the erythrocyte surface. We present evidence that AGP forms a bridge between the merozoite and the enzyme-treated erythrocyte that allows the stronger and more complex interactions of invasion to proceed. We suggest that the glycophorins play the same role on the surface of the intact erythrocyte.  相似文献   

19.
Neuraminidase-treated rat lymphocytes adhere strongly to rat hepatocytes in vitro. Binding between cells is due to stereo-specific interactions between a mammalian hepatic membrane lectin and galactosyl residues which are exposed on the lymphocyte surface after removal of sialic acid residues. The hepatic galactose specific lectin may play a role in the trapping of recirculating desialylated lymphocytes in the liver.  相似文献   

20.
Three preparations of inhibin extracted from ram rete testis fluid (RTF) and from human seminal plasma (HSP) reduce tritiated thymidine incorporation into testicular desoxyribonucleic acids (DNA) in vitro. Effect of low molecular inhibin from RTF is dose-dependent. Castrated ram serum does not modify testicular DNA synthesis in vitro. Besides their suppressive action on follicle stimulating hormone (FSH) secretion in vivo and in vitro, these inhibin preparation display a direct inhibiting effect on testicular DNA synthesis and, thus, on mitotic activity. Identity between inhibin and testicular chalones are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号