首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Humans are exposed to a variety of chemicals in their everyday lives through interactions with the environment and through the use of consumer products. It is a basic requirement that these products are tested to assure they are safe under normal and reasonably foreseeable conditions of use. Within the European Union, the majority of tests used for generating toxicological data rely on animals. However recent changes in legislation (e.g., 7th amendment of the Cosmetics Directive and REACH) are driving researchers to develop and adopt non-animal alternative methods with which to assure human safety. Great strides have been made to this effect, but what other opportunities/technologies exist that could expedite this? Tissue engineering has increasing scope to contribute to replacing animals with scientifically robust alternatives in basic research and safety testing, but is this application of the technology being fully exploited? This review highlights how the consumer products industry is applying tissue engineering to ensure chemicals are safe for human use without using animals, and identifies areas for future development and application of the technology.Key words: tissue engineering, consumer safety, 3Rs, in vitro, alternative, replacement, irritation, corrosion, three-dimensional, toxicity  相似文献   

2.
Ocular irritation testing has been one of the animal test methods most criticised by animal welfare advocates. Additional criticism has arisen from within the scientific community, based on the variability of the animal test results and the questionable relevance of the extremely high dose levels employed. As a result, the Draize eye irritation test has been one of the main targets for in vitro replacement. Despite extensive efforts, however, there is still no in vitro method that is fully validated as a regulatory replacement. In spite of this, many individual companies are using diverse in vitro ocular irritation tests to gain important safety and efficacy information about their products and raw materials, eliminating the need for animal testing in the process. This is done in a safe fashion by applying intelligent testing paradigms. ECVAM has played a major role in this success, through its many programmes that have emphasised the importance of understanding the true toxicological need, and then using in vitro tests to provide that information. Thus, even in the absence of a successfully validated regulatory assay, the desired result of reducing animal testing is being met.  相似文献   

3.
The Committee to Promote Principles of Reduction, Refinement and Replacement of Animal Testing in Industrial Toxicology Laboratories was established in 1987 to work toward industrywide improvements in laboratory animal testing methods. The committee's goals are to gather information about effective nonanimal testing techniques and other methods of conserving and improving the care of laboratory animals, to work toward the systematic validation of nonanimal alternatives, and to disseminate useful information about progressive programs and policies throughout the industrial toxicology community. This is the first in a continuing series of reports the committee plans to produce as part of an ongoing program to promote communication among industrial toxicologists about successful methods of reducing, refining and replacing animal testing. Here are some of the report's major findings: (1) Animal care and use committees charged with the oversight of laboratory animal use are a universal practice at the companies surveyed. (2) Significant reductions in the number of animals used for acute toxicity testing have taken place at all the companies during the last 5- to 10-year period. (3) Structure-activity relationships (predicting a test compound's properties based on the known properties of familiar chemicals with similar structures) are widely used to minimize, but not replace, the use of animals. (4) Tissue and organ culture systems are being used with increasing frequency for screening and mechanistic studies, but are not completely replacing animal evaluations as a final step. (5) There is a pressing need for the systematic and scientifically sound validation of nonanimal alternative techniques to reduce the use of animals in toxicology testing while satisfying requirements for the protection of public safety.  相似文献   

4.
5.
In Europe, in light of ethical, political and commercial pressure, every effort should be made to replace animals with alternatives (e.g. in vitro models), to reduce the number of animals used in experiments to a minimum and to refine current testing strategies in a way that ensures animals undergo minimum pain and distress. Methods currently used in toxicology for mandatory safety tests rely heavily on the dosing of animals, followed by the detection and pathological evaluation of manifested toxic lesions. Through the integration of so-called 'omics' technologies, a global analysis of treatment-related changes on the molecular level becomes feasible and therefore might provide a means for predicting toxicity before classical toxicological endpoints. This Opinion article summarizes the key features of pushing the '3R' principles in animal testing, discusses the possible impact on safety testing in toxicology and describes the potential of using omics technologies for improved toxicity prediction to meet ethical, political and commercial expectations.  相似文献   

6.
7.
Liverpool John Moores University and FRAME conducted a joint research project, sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with REACH. This paper focuses on the use of alternative (non-animal) methods (both in vitro and in silico) for acute systemic toxicity and toxicokinetic testing. The paper reviews in vitro tests based on basal cytotoxicity and target organ toxicity, along with QSAR models and expert systems available for this endpoint. The use of PBPK modelling for the prediction of ADME properties is also discussed. These tests are then incorporated into a decision-tree style, integrated testing strategy, which also includes the use of refined in vivo acute toxicity tests, as a last resort. The implementation of the strategy is intended to minimise the use of animals in the testing of acute systemic toxicity and toxicokinetics, whilst satisfying the scientific and logistical demands of the EU REACH legislation.  相似文献   

8.
This paper presents some results of a joint research project conducted by FRAME and Liverpool John Moores University, and sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with REACH. This paper focuses on the use of alternative (non-animal) methods (both in vitro and in silico) for repeat dose (sub-acute, sub-chronic and chronic) toxicity testing. It reviews the limited number of in silico and in vitro tests available for this endpoint, and outlines new technologies which could be used in the future, e.g. the use of biomarkers and the 'omics' technologies. An integrated testing strategy is proposed, which makes use of as much non-animal data as possible, before any essential in vivo studies are performed. Although none of the non-animal tests are currently undergoing validation, their results could help to reduce the number of animals required for testing for repeat dose toxicity.  相似文献   

9.
3,3',4,4'-Tetrachloroazobenzene (TCAB) and 3,3',4, 4'-tetrachloroazoxybenzene (TCAOB) are dioxin-like chemicals that were investigated for toxicity in 13-week gavage studies in male and female B6C3F(1) mice and F344N rats by the National Toxicology Program. As part of the comprehensive toxicological investigation of these chemicals, peripheral blood smears from mice treated 5 days per week for 13 weeks with 0.1-30mg/kg/day TCAB or TCAOB were analyzed for the frequency of micronucleated (MN) normochromatic erythrocytes (NCE). Both chemicals produced significant increases in MN-NCE in male and female mice. In contrast to these positive results in subchronic exposure studies, no significant increases were seen in acute bone marrow MN tests in male mice administered three daily injections of 50-200mg/kg/day TCAB and TCAOB. The results with TCAB and TCAOB suggest that the routine integration of MN tests with subchronic toxicity studies may allow detection of mutagenic activity for some chemicals that fail to elicit responses in short-term, high dose tests. In addition, the integration of mutagenicity tests into general toxicity tests reduces the use of laboratory animals and the cost of the testing.  相似文献   

10.
Seely JC 《Lab animal》2008,37(5):206-209
Although exposure to drugs or toxicants can affect children and adults very differently, many compounds lack specific safety information for children. Studies in juvenile animals can help researchers assess pediatric patients' potential response to certain chemicals. Juvenile studies are highly sensitive to animal age, sex and species and must be planned with care to prevent misinterpretation of experimental data. The author reviews considerations for the design of these studies, focusing on toxicological and pathological aspects.  相似文献   

11.
The final EU REACH legislation has recently been adopted. This article considers the progress that has been made toward reducing the numbers of animals likely to be required to fulfil the testing requirements, and also considers the benefits to animal welfare and science that have arisen since the original REACH system proposals were published in 2003. Several positive changes have been made, including: the use of exposure-based testing; the requirement for scientific justification of any proposed animal testing; mandatory data sharing; and the fact that the EU is to take responsibility for the development and validation of alternative methods. While these changes are to be commended, there is still much room for improvement, particularly with respect to the adoption of integrated testing strategies that make maximum use of non-animal approaches to expedite the risk assessment process of existing chemicals, with the use of refined and updated animal tests only as a last resort.  相似文献   

12.
Gura T 《Cell》2008,134(4):557-559
With the growing cost of using animals to test the safety of new chemicals and an increasing backlog of chemicals awaiting testing, the quest for cell-based in vitro alternatives for toxicity testing is gaining momentum.  相似文献   

13.
14.

Background  

Bioactivity profiling using high-throughput in vitro assays can reduce the cost and time required for toxicological screening of environmental chemicals and can also reduce the need for animal testing. Several public efforts are aimed at discovering patterns or classifiers in high-dimensional bioactivity space that predict tissue, organ or whole animal toxicological endpoints. Supervised machine learning is a powerful approach to discover combinatorial relationships in complex in vitro/in vivo datasets. We present a novel model to simulate complex chemical-toxicology data sets and use this model to evaluate the relative performance of different machine learning (ML) methods.  相似文献   

15.
To ensure patient safety, medical device manufacturers are required by the Food and Drug Administration and other regulatory bodies to perform biocompatibility evaluations on their devices per standards, such as the AAMI-approved ISO 10993-1:2018 (ANSI/AAMI/ISO 10993-1:2018).However, some of these biological tests (e.g., systemic toxicity studies) have long lead times and are costly, which may hinder the release of new medical devices. In recent years, an alternative method using a risk-based approach for evaluating the toxicity (or biocompatibility) profile of chemicals and materials used in medical devices has become more mainstream. This approach is used as a complement to or substitute for traditional testing methods (e.g., systemic toxicity endpoints). Regardless of the approach, the one test still used routinely in initial screening is the cytotoxicity test, which is based on an in vitro cell culture system to evaluate potential biocompatibility effects of the final finished form of a medical device. However, it is known that this sensitive test is not always compatible with specific materials and can lead to failing cytotoxicity scores and an incorrect assumption of potential biological or toxicological adverse effects. This article discusses the common culprits of in vitro cytotoxicity failures, as well as describes the regulatory-approved methodology for cytotoxicity testing and the approach of using toxicological risk assessment to address clinical relevance of cytotoxicity failures for medical devices. Further, discrepancies among test results from in vitro tests, use of published half-maximal inhibitory concentration data, and the derivation of their relationship to tolerable exposure limits, reference doses, or no observed adverse effect levels are highlighted to demonstrate that although cytotoxicity tests in general are regarded as a useful sensitive screening assays, specific medical device materials are not compatible with these cellular/in vitro systems. For these cases, the results should be analyzed using more clinically relevant approaches (e.g., through chemical analysis or written risk assessment).

Medical devices are engineered to be of durable construction and to accommodate the functionality needed for proper device application. The biocompatibility of the materials, as well as their processing, is also important to ensure that the patients are not negatively affected by the devices when they enter the clinical setting. Certain materials of constructions used for medical devices (and manufacturing processes or processing aids) may contain chemicals that can lead to failing cytotoxicity scores using traditional, regulatory-mandated methodologies. Examples of common materials include plastics (e.g., polyethylene or polypropylene [co]polymers, polyvinyl chloride [PVC]) and metals (e.g., nitinol, copper [Cu]-containing alloys). Although providing stable and reliable materials for use in relation to performance parameters, various metals/alloys and plastics may evoke undesired cytotoxic effects. These effects might be observed as reduced cellular activity or decay in the in vitro assay, especially when standard methods and test parameters (e.g., extraction ratios) are used.1,2To prevent adverse effects (e.g., toxicity, or other types of biocompatibility-related issues) from occurring among patients and clinical end users, manufacturers are required to perform biocompatibility evaluations per guidance provided in e.g., ANSI/AAMI/ISO 10993-1:2018.3 This standard provides an overall framework for the biological evaluation, emphasizing a risk-based approach, as well as general guidance on relevant tests for specific types of contact to patients or users. Of note, traditional biocompatibility tests, within the battery of both in vivo and in vitro methods, could take up to 6 months (or take years, in the case of long-term systemic toxicity testing). Lengthy turnaround times stem from in vivo test methods, which are performed on animal models and include irritation, sensitization, systemic toxicity, genotoxicity, and carcinogenicity studies. Traditional in vitro tests involve exposure of cells or cellular material to device extracts in order to characterize toxicity in terms of cytotoxicity, genotoxicity, cellular metabolic activity, and aspects of hemocompatibility.3In recent years, as a complement to or a substitute for traditional testing methods, a risk-based approach using a chemical and materials characterization for evaluation of patient safety has become mainstream. The framework for this approach is provided in ISO 10993-18:2020.4 Moreover, the Association for the Advancement of Medical Instrumentation (AAMI) and, by extension, regulatory bodies (including the Food and Drug Administration [FDA] and International Organization for Standardization [ISO]) have driven the use of chemical and material characterization. Particularly for medical devices in long-term contact with patient (e.g., implantable devices), use of chemical and material characterization can reduce unnecessary animal testing and provide results that are scientifically sound and detailed, while being more cost and time efficient. For example, ISO 10993-13 highlights that a correctly conducted risk assessment can provide justification to exclude long-term biological testing, where the nature and extent of exposure confirms that the patient is being exposed to very low levels of chemicals that are below relevant toxicological thresholds.3Throughout the ISO 10993 series, it also is emphasized that conducting animal testing for biological risk evaluation should only be considered after all alternative courses of action (review of prior knowledge, chemical or physical characterization, in vitro evaluations, or alternative means of mitigation) have been exhausted. In addition, analytical chemistry used for chemical characterization can be used as a means for investigating possible culprits when traditional biocompatibility tests, such as cytotoxicity tests, fail, especially in cases where a known substance(s) in the material has cytotoxic potential (e.g., silver-infused wound dressing that provides antibacterial properties).However, it should be kept in mind that although chemistry can be a powerful tool in many cases, not all medical devices extracts are compatible with the analytical methods and instruments used, and these studies may not provide the full understanding of the toxicity profile of the device. In those cases, animal testing or further justification may still be needed to demonstrate a safe biocompatibility profile for the device.Cytotoxicity testing per AAMI/ISO 10993-5:2009/(R)20145 has historically been one of the most used (and is considered the most reactive) of the biocompatibility tests6,7 and can be efficiently used to detect abnormal effects to cells that may arise if harmful chemicals are present in device extracts. However, it also is recognized that cell-based test methods do not necessarily correlate to in vivo toxicological effects and actual clinical patient safety, often showing a reaction when no clinical adverse effects are known or expected to occur. For instance, some soluble metal ions (e.g., Cu, nickel [Ni]) are known to exert toxic effects on cells in an in vitro setting; however, their presence in surgical instruments and implants has demonstrated high patient tolerance and negligible effects upon clinical use.This article provides a brief evaluation of the clinical impact of metals and plasticizers commonly used in medical device materials that may lead to patient exposure during the use of devices, with emphasis given to those that may result in cytotoxicity failures in an in vitro setting. In addition, an approach to evaluating valid clinical risks using a toxicological risk assessment is discussed.  相似文献   

16.
We have assessed each of the OECD Health Effects Test Guidelines (TGs) that were included in an annex to the Internet consultation issued by the European Commission relating to the Registration, Evaluation and Authorisation of Chemicals (REACH) legislation for the testing of new and existing chemical substances. Each guideline has been analysed with respect to its design and its scientific and animal welfare implications, the extent to which it makes use of modern techniques, and its suitability to be used in the REACH system for the testing of large numbers of chemicals. The scientific basis of the test and its justification are considered, as well as the numbers of animals required, and the potential adverse effects on them. The prospects and possibilities for applying the Three Rs (reduction, refinement and replacement) to each of the TGs are also discussed. We have proposed an overall testing strategy for how these TGs and other methods could best be deployed for chemicals testing, should it be necessary to fill data gaps. Certain TGs have been omitted from the strategy, when we have considered them to be unnecessary for chemicals testing. A series of recommendations has been made for improving the TGs with regard to both their scientific content and ways in which they could be better designed in relation to optimising the use of the animals concerned, and minimising adverse welfare consequences to them. Our investigations show that there is an urgent need to update the TGs to reflect modern techniques and methods, and to use current approaches for applying refinement strategies to improve the scientific and animal welfare aspects of the procedures used. Improvements can and should be made in all aspects of toxicity testing, from sample preparation, and animal housing, care and feeding, to dose formulation, test material administration, and the histopathological and clinical analysis of tissue samples. Opportunities for streamlining individual assays are very limited, but testing could be made more efficient by: a) only undertaking studies that provide relevant data; b) making greater use of screens and preliminary testing; c) applying some tests simultaneously to the same animals; d) using one sex; and e) eliminating redundant tests. In conclusion, it is clear that, as they stand, the OECD Health Effects TGs are unsuitable for use in the European Union REACH system, for which potentially very large numbers of laboratory animals will be needed for the testing of a very large number of chemicals.  相似文献   

17.
We have assessed each of the OECD Health Effects Test Guidelines (TGs) that were included in an annex to the Internet consultation issued by the European Commission relating to the Registration, Evaluation and Authorisation of Chemicals (REACH) legislation for the testing of new and existing chemical substances. Each guideline has been analysed with respect to its design and its scientific and animal welfare implications, the extent to which it makes use of modern techniques, and its suitability to be used in the REACH system for the testing of large numbers of chemicals. The scientific basis of the test and its justification are considered, as well as the numbers of animals required, and the potential adverse effects on them. The prospects and possibilities for applying the Three Rs (reduction, refinement and replacement) to each of the TGs are also discussed. We have proposed an overall testing strategy for how these TGs and other methods could best be deployed for chemicals testing, should it be necessary to fill data gaps. Certain TGs have been omitted from the strategy, when we have considered them to be unnecessary for chemicals testing. A series of recommendations has been made for improving the TGs with regard to both their scientific content and ways in which they could be better designed in relation to optimising the use of the animals concerned, and minimising adverse welfare consequences to them. Our investigations show that there is an urgent need to update the TGs to reflect modern techniques and methods, and to use current approaches for applying refinement strategies to improve the scientific and animal welfare aspects of the procedures used. Improvements can and should be made in all aspects of toxicity testing, from sample preparation, and animal housing, care and feeding, to dose formulation, test material administration, and the histopathological and clinical analysis of tissue samples. Opportunities for streamlining individual assays are very limited, but testing could be made more efficient by: a) only undertaking studies that provide relevant data; b) making greater use of screens and preliminary testing; c) applying some tests simultaneously to the same animals; d) using one sex; and e) eliminating redundant tests. In conclusion, it is clear that, as they stand, the OECD Health Effects TGs are unsuitable for use in the European Union REACH system, for which potentially very large numbers of laboratory animals will be needed for the testing of a very large number of chemicals.  相似文献   

18.
Risk assessment of meat and milk from cloned animals   总被引:4,自引:0,他引:4  
Research on, and commercialization of, cloned cattle has been conducted for more than 20 years. Early techniques relied on the physical splitting of embryos or using embryo cells for nuclear transfer to generate cloned animals. Milk and meat from these animals entered into the human food market with no evidence of problems. With the advent of nuclear transfer, which enables the direct transference and preservation of high-value meat- and milk-producing genotypes to offspring, concerns have been raised about whether the products from somatic cell nuclear transfer-produced animals are safe for human consumption. Studies on the biochemical properties of food products from cloned and noncloned animals have thus far not detected any differences. All data to date indicate no significant differences in the measured parameters between animals created by nuclear transfer and normally bred animals. Public acceptance of cloned animal products depends upon forthcoming US Food and Drug Administration approval along with convincing safety data.  相似文献   

19.
Mechanism-based safety evaluation and reduction of animal use are important issues in recent developmental toxicology. In vitro developmental toxicity tests with proteomic analysis are the most promising solution to these issues. Groebe et al. systematically applied proteomic analysis to the embryonic stem cell test, a validated in vitro developmental toxicity test, and found protein-expression changes induced by model test chemicals selected from various categories of toxicity. Cluster analysis of all the proteins with expression changes classified the test chemicals into two groups: highly embryotoxic chemicals and non- or weakly embryotoxic chemicals. In addition, some protein biomarker candidates that were known to be involved in normal development were identified. Although further mechanistic investigations are needed, the use of in vitro developmental toxicity tests with proteomic analysis will contribute to mechanism-based safety evaluation with minimal use of animals.  相似文献   

20.
C8- and C9-alkylphenols and their ethoxylates (APE) are widely used commercial products mainly used in industrial applications, in the formulation of crop protection chemicals, and in industrial and household cleaners. Recent regulatory focus on these compounds has included an assessment of their potential to meet criteria for persistent, bioaccumulative, and toxic compounds (PBT). To fully evaluate either the relative persistence or bioaccumulation potential of any APE, degradation intermediates and metabolic by-products of these compounds should also be considered. To facilitate the evaluation of the ultimate fate of APE in the environment, a review of the degradation pathways and identification of degradation intermediates was performed (part I of a two-part series). In part II of this series, the relative persistence of APE as indicated by degradation half-lives was examined based on a review of abiotic and biological degradation data. To assess the bioaccumulation potential of APE, the relevant literature was also reviewed. The available data for C8- and C9-APE show that the commercial products and their degradation intermediates do not meet any national or international criteria for identifying these compounds as PBT substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号