首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Transduction of the murine retinal pigmented epithelium (RPE) with adenovirus vectors requires technically difficult and invasive subretinal injections. This study tested the hypothesis that recombinant vectors based on feline immunodeficiency virus (FIV) could access the retina following intravitreal injection.

Methods

FIV vectors expressing E. coli β‐galactosidase (FIVβgal) were injected alone, or in combination with adenovirus vectors expressing eGFP, into the vitreous of normal mice and eyes evaluated for transgene expression. In further studies, the utility of FIV‐mediated gene transfer to correct lysosomal storage defects in the anterior and posterior chambers of eyes was tested using recombinant FIV vectors expressing β‐glucuronidase. FIVβgluc vectors were injected into β‐glucuronidase‐deficient mice, an animal model of mucopolysacharridoses type VII.

Results

The results of this study show that similar to adenovirus, both corneal endothelium and cells of the iris could be transduced following intravitreal injection of FIVβgal. However, in contrast to adenovirus, intravitreal injection of FIVβgal also resulted in transduction of the RPE. Immunohistochemistry following an intravitreal injection of an AdeGFP (adenovirus expressing green fluorescent protein) and FIVβgal mixture confirmed that both viruses mediated transduction of corneal endothelium and cells of the iris, while only FIVβgal transduced cells in the retina. Using the β‐glucuronidase‐deficient mouse, the therapeutic efficacy of intravitreal injection of FIVβgluc (FIV expressing β‐glucuronidase) was tested. Intravitreal injection of FIVβgluc to the eyes of β‐glucuronidase‐deficient mice resulted in rapid reduction (within 2 weeks) of the lysosomal storage defect within the RPE, corneal endothelium, and the non‐pigmented epithelium of the ciliary process. Transgene expression and correction of the lysosomal storage defect remained for at least 12 weeks, the latest time point tested.

Conclusion

These studies demonstrate that intravitreal injection of FIV‐based vectors can mediate efficient and lasting transduction of cells in the cornea, iris, and retina. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

2.

Background

Polyethylenimines (PEIs) and cationic polymers have been used successfully in gene delivery. In earlier reports, only large PEIs (MW>10 000) have shown significant transfection efficiency. In the present study, the roles of small PEIs (MW 700 and 2000) were studied as additional compounds to see if they can improve gene delivery with cationic liposomes.

Methods

The TKBPVlacZ expression plasmid was transfected in the CV1‐P (monkey fibroblastoma) and SMC (rabbit smooth muscle) cell lines using various combinations of PEIs (MW 700, 2000, and 25 000) and Dosper liposomes. The transfection efficiency was determined with the fluorometric ONPG (o‐nitrophenol‐β‐D ‐galactopyranoside) assay and histochemical X‐gal staining. The toxicity of the transfection reagents was estimated by the MTT [3‐(4,5‐dimethylthiazolyl‐2)‐2,5‐diphenyl tetrazolium bromide] assay.

Results

Transfection of TKBPVlacZ plasmid by the small PEIs (MW 700 and 2000) combined with Dosper liposomes was associated with high expression of the lacZ reporter gene in the CV1‐P and SMC cell lines. The transfection efficiencies of the low‐molecular‐weight PEI/liposome combinations were several fold higher than those of PEIs or liposomes alone. PEI/liposome combinations had no toxicity on the cell lines tested.

Conclusions

The low‐molecular‐weight PEIs could be used successfully for gene delivery when combined with the cationic liposomes, resulting in a synergistic increase of the transfection efficiency in both cell lines studied. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

3.

Background

The low efficiency and toxicity of transfection in a primary culture of hepatocytes using cationic lipids remains a limiting step to the study of gene function and the setting up of non‐viral gene therapy.

Methods

A novel class of cationic lipids (GBs) derived from natural glycine betaine compounds covalently linked to acyl chains by enzymatically hydrolysable peptide and ester bonds, a structure designed to reduce cytotoxicity, was used to improve transfection efficiency in a primary culture of rat hepatocytes. The relationship between lipid structure, lipoplex formulation and transfection efficiency was studied using six GBs (12‐14‐16, 22‐24‐26) varying in their spacer and acyl chains.

Results

GB12, characterized by short [(CH2)10] acyl chains and spacer, allowed plasmid uptake in all cells and reporter gene expression in up to 40% of hepatocytes with a low cytotoxicity, a much higher efficiency compared with transfections using other reagents including Fugene6? and Lipofectin?. We also showed that numerous cells accumulated high amounts of plasmids demonstrating that GB12 promoted a very efficient DNA transfer through plasma membrane leading to an increase in nuclear plasmid translocation, allowing a much higher gene expression. Moreover, GB12‐transfected hepatocytes survived to injection in normal livers and were found to express the LacZ reporter gene.

Conclusions

The non‐toxic GB12 formulation is a powerful vehicle for plasmid delivery in cultured hepatocytes with relevance in liver gene therapy. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

4.

Background

Materno‐fetal transfer of intravenously administered liposome‐plasmid DNA complexes has been demonstrated only in mice. Studies on its materno‐fetal transfer in the pregnant monkey model is needed because of critical differences in placental structure between primates including humans and rodents.

Methods

The reporter plasmid pEGFP‐C1 was formulated in cationic lipid containing polybrene and vesicular stomatitis virus G protein. The fusogenic liposome‐plasmid DNA complexes were intradermally injected into pregnant common marmosets (N=2), a New World monkey, near term. DNA extracted from fetal tissues was subjected to PCR for detection of the egfp gene. Confocal microscopy and immunostaining were performed to determine the sites of transgene expression in the fetal organs.

Results

The egfp gene was detected in fetal blood and major organs (heart, liver, lung). The encoded protein was mainly produced in the endothelial cells of blood vessels in the fetal lungs.

Conclusions

This is the first report on materno‐fetal transfer of intradermally administered fusogenic liposome‐plasmid DNA complexes and fetal expression of a transgene in primates. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

5.

Background

Gene therapy has been used to treat a variety of health problems, but transfection inefficiency and the lack of safe vectors have limited clinical progress. Fabrication of a vector that is safe and has high transfection efficiency is crucial for the development of successful gene therapy. The present study aimed to synthesize chitosan‐alginate nanoparticles that can be used as carriers of the pAcGFP1‐C1 plasmid and to use these nanoparticles with an ultrasound protocol to achieve high efficiency gene transfection.

Methods

Chitosan was complexed with alginate and the pAcGFP1‐C1 plasmid at different charge ratios to create chitosan‐alginate‐DNA nanoparticles (CADNs). The average particle size and loading efficiency were measured. Plasmid DNA retardation and integrity were analysed on 1% agarose gels. The effect of CADNs and ultrasound on the efficiency of transfection of cells and subcutaneous tumors was evaluated.

Results

In the CADNs, the average size of incorporated plasmid DNA was 600–650 nm and the loading efficiency was greater than 90%. On the basis of the results of the plasmid DNA protection test, CADNs could protect the transgene from DNase I degradation. The transgene product expression could be enhanced efficiently if cells or tumor tissues were first given CADNs and then treated with ultrasound.

Conclusions

The use of CADNs combined with an ultrasound regimen is a promising method for safe and effective gene therapy. Copyright © 2009 John Wiley & Sons, Ltd.
  相似文献   

6.

Background

Insulin deficiency is currently treated with pharmacological insulin secretagogues, insulin injections or islet transplants. Secondary failure of pharmacological agents is common; insulin injections often fail to achieve euglycemic control; and islet transplants are rare. Non‐β cells capable of regulated insulin secretion in vivo could be a functional cure for diabetes. Hepatocytes are good candidates, being naturally glucose‐responsive, protein‐secreting cells, while the liver is positioned to receive direct nutrient signals that regulate insulin production.

Methods

Human liver‐derived Chang cells were modified with a plasmid construct in which a bifunctional promoter comprising carbohydrate response elements and the human metallothionein IIA promoter controlled human proinsulin cDNA expression. Secretory responses of stable cell clones were characterized in vitro and in vivo by proinsulin radioimmunoassay.

Results

Transfected Chang cells secreted 5–8 pmol proinsulin/106 cells per 24 h in continuous passage for at least a year in response to 5–25 mM glucose and 10–90 µM zinc in vitro. Glucose and zinc synergistically increased proinsulin production by up to 30‐fold. Non‐glucose secretagogues were also active. Glucose transporter 2 (GLUT2) and glucokinase cDNA co‐transfection enhanced glucose responsiveness. Intraperitoneally implanted Chang cells secreted proinsulin in scid and Balb/c mice. Serum proinsulin levels were further increased 1.3‐fold (p<0.05) after glucose and 1.4‐ to 1.6‐fold (p<0.005) after zinc administration in vivo.

Conclusions

These results are the first to demonstrate stable proinsulin production in a human liver‐derived cell line with activity in vitro and in vivo and provide a basis for engineering hepatocytes as in vivo bioimplants for future diabetes treatment. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

7.

Background

Methods for gene transfer to the cornea that yield high‐level expression without inflammation or trauma are currently lacking. Because electroporation has proven effective for gene transfer in other tissues in terms of expression levels and safety, this study quantitatively evaluated its use in the cornea.

Methods

To evaluate the use of electroporation in the mouse cornea, plasmids expressing either luciferase or green fluorescent protein were injected intracorneally or subconjunctivally and square‐wave electric pulses were immediately applied to the eyes. Gene expression was quantified at later times and trauma and inflammation were monitored visually and by measuring interleukin‐6 (IL‐6) production.

Results

The application of electric pulses to eyes injected with plasmid resulted in nanogram levels of gene product expression. At an optimal field strength of 200 V/cm, no trauma, corneal edema or inflammation was observed. However, at higher field strengths, corneal damage was detected. Compared with injection of DNA alone, up to 1000‐fold more gene product was produced using electroporation. Expression was detected as early as 6 h post‐electroporation, remained high for 3 days, and decreased by 7 days. Gene expression was detected over the entire surface of the cornea in both epithelial and stromal layers.

Conclusions

These results demonstrate that electroporation is an excellent method for delivering genes to multiple cell layers within the mouse cornea and that it results in extremely high levels of gene expression with little, if any, inflammatory response or tissue damage, making this a very useful technique for corneal gene transfer. Copyright © 2001 John Wiley & Sons, Ltd.
  相似文献   

8.

Background

High levels of foreign gene expression in mouse hepatocytes can be achieved by rapid tail vein injection of a large volume of a naked DNA solution, the ‘hydrodynamics‐based procedure’. Rats are more tolerant of the frequent phlebotomies required for monitoring blood parameters than mice, and thus are better for some biomedical research.

Methods

We tested this technique for the delivery of a therapeutic protein in normal rats, using a rat erythropoietin (Epo) expression plasmid vector, pCAGGS‐Epo.

Results

We obtained maximal Epo expression when the DNA solution was injected in a volume of 25 ml (approximately 100 ml/kg body weight) within 15 s. We observed a dose‐response relationship between serum Epo levels and the amount of injected DNA up to 800 µg. Using quantitative real‐time PCR, the vector‐derived Epo mRNA expression was mainly detected in the liver. When a lacZ expression plasmid was injected similarly, β‐galactosidase was exclusively detected in the liver, mainly in hepatocytes. Toxicity attributable to the technique was mild and transient, as assessed by histochemical analysis. Epo gene expression and erythropoiesis occurred with Epo gene transfer in a dose‐dependent manner, and persisted for at least 12 weeks, the last time point examined. Repeated administration of the plasmid DNA also effectively led to erythropoiesis.

Conclusions

These results demonstrate that gene transfer into the liver via rapid tail vein injection can easily be achieved in the rat, which is more than 10 times larger than the mouse, and has significant value for gene function analysis in rats. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

9.

Background

Gene therapy strategies for the treatment of vascular disease such as the prevention of post‐angioplasty restenosis require efficient, non‐toxic transfection of vascular cells. In vitro studies in these cells contribute to vector development for in vivo use and for the evaluation of genes with therapeutic potential. The aim of this project was to evaluate a novel synthetic vector consisting of a liposome (L), an integrin targeting peptide (I), and plasmid DNA (D), which combine to form the LID vector complex.

Methods

Cultures of porcine smooth muscle cells and endothelial cells were established and then transfected with the LID vector, using the reporter genes luciferase and green fluorescent protein and the metalloprotease inhibitor TIMP‐1.

Results

The LID vector system transfected primary porcine vascular smooth muscle cells and porcine aortic endothelial cells with efficiency levels of 40% and 35%, respectively. By increasing the relative DNA concentration four‐fold, incubation periods as short as 30 min achieved the same levels of luciferase transgene expression as 4 h incubations at lower DNA concentrations. The transfection did not affect cell viability as measured by their proliferative potential. Serum levels of up to 20% in the transfection medium had no adverse affect on the efficiency of transfer and gene expression in either cell type. Transfections with the cDNA for TIMP‐1 produced protein levels that peaked at 130 ng/ml per 24 h and persisted for 14 days at 10 ng/ml per 24 h.

Conclusion

This novel vector system has potential for studies involving gene transfer to cardiovascular cells in vitro and in vivo. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

10.

Objectives

Oroxylin A, a natural flavonoid isolated from Scutellaria baicalensis, has been reported to have anti‐hepatic injury effects. However, the effects of oroxylin A on alcoholic liver disease (ALD) remains unclear. The aim of this study was to elucidate the effects of oroxylin A on ALD and the potential mechanisms.

Materials and methods

Male ICR mice and human hepatocyte cell line LO2 were used. Yes‐associated protein (YAP) overexpression and knockdown were achieved using plasmid and siRNA technique. Cellular senescence was assessed by analyses of the senescence‐associated β‐galactosidase (SA‐β‐gal), senescence marker p16, p21, Hmga1, cell cycle and telomerase activity.

Results

Oroxylin A alleviated ethanol‐induced hepatocyte damage by suppressing activities of supernatant marker enzymes. We found that oroxylin A inhibited ethanol‐induced hepatocyte senescence by decreasing the number of SA‐β‐gal‐positive LO2 cells and reducing the expression of senescence markers p16, p21 and Hmga1 in vitro. Moreover, oroxylin A affected the cell cycle and telomerase activity. Of importance, we revealed that YAP pharmacological inhibitor verteporfin or YAP siRNA eliminated the effect of oroxylin A on ethanol‐induced hepatocyte senescence in vitro, and this was further supported by the evidence in vivo experiments.

Conclusion

Therefore, these aggregated data suggested that oroxylin A relieved alcoholic liver injury possibly by inhibiting the senescence of hepatocyte, which was dependent on its activation of YAP in hepatocytes.
  相似文献   

11.
12.

Aim

To attack a widespread myth.

Location

World‐wide.

Methods

Simple mathematical logical and empirical examples.

Results

As both species and area are finite and non‐negative, the species–area relationship is limited at both ends. The log species–log area relationship is normally effectively linear on scales from about 1 ha to 107 km2. There are no asymptotes. At the intercontinental scale it may get steeper; at small scales it may in different cases get steeper or shallower or maintain its slope.

Main conclusion

The species–area relationship does not have an asymptote.
  相似文献   

13.

Background

Interferon‐α2 (IFNα2) is routinely used for anti‐hepatitis B virus (HBV) treatment. However, the therapeutic efficiency is unsatisfactory, particularly in East Asia. Such inefficiency might be a result of the short half‐life, relatively low local concentration and strong side‐effects of interferons. Frequent and repeated injection is also a big burden for patients. In the present study, a single dose of vector‐delivered IFNα1 was tested for its anti‐HBV effects.

Methods

Adeno‐associated viral vector (AAV‐IFNα1) was generated to deliver the IFNα1 gene into hepatocytes. IFNα1, hepatitis B surface (HBsAg) and e (HBeAg) antigens were measured by enzyme‐linked immunosorbent assay and/or western blotting. The level of viral DNA was measured by quantitative real‐time polymerase chain reaction.

Results

AAV‐IFNα1 effectively transduced HBV‐producing cells (HepAD38) and mouse hepatocytes, where IFNα1 was expressed in a stable manner. Both intracellular and extracellular HBsAg and HBeAg were significantly reduced in vitro. In the HBV‐producing mice, the concentration of IFNα1 in the liver was eight‐fold higher than that in plasma. Compared with control groups, HBeAg/HBsAg antigen levels were reduced by more than ten‐fold from day 1–5, and dropped to an undetectable level on day 9 in the AAV‐IFNα1 group. Concurrently, the level of viral DNA decreased over 30‐fold for several weeks.

Conclusions

A single dose administration of AAV‐IFNα1 viral vector displayed prolonged transgene expression and superior antiviral effects both in vitro and in vivo. Therefore, the use of AAV‐IFNα1 might be a potential alternative strategy for anti‐HBV therapy. Copyright © 2008 John Wiley & Sons, Ltd.
  相似文献   

14.

Background

The goal of this work was the development of a gene targeting technology that will enable the delivery of therapeutic genes to brain cancer cells in vivo following intravenous administration. High‐grade brain gliomas overexpress the epidermal growth factor receptor (EGFR) and EGFR antisense gene therapy could reduce the growth of EGFR‐dependent gliomas.

Methods

A human EGFR antisense gene driven by the SV40 promoter in a non‐viral plasmid carrying elements that facilitate extra‐chromosomal replication was packaged in the interior of 85 nm pegylated immunoliposomes (PILs). The PILs were targeted to U87 human glioma cells with the 83‐14 murine monoclonal antibody (MAb) to the human insulin receptor (HIR).

Results

Confocal fluorescent microscopy demonstrated that the unconjugated HIR MAb is rapidly internalized by the glioma cells. Endocytosis followed by entry into the nucleus was also demonstrated for the HIR MAb conjugated PILs carrying fluorescein‐labeled plasmid DNA. The PILs delivered exogenous genes to virtually all cells in culture, based on β‐galactosidase histochemistry. The targeting of a luciferase gene to the U87 cells with the PILs resulted in luciferase levels in excess of 150 pg/mg protein after 72 h of incubation. The level of luciferase gene expression in the U87 cells achieved with the PIL gene targeting system was comparable to that with lipofectamine. Targeting the EGFR antisense gene to U87 glioma cells with the PILs resulted in more than 70% reduction in [3H]thymidine incorporation into the cells; this was paralleled by a 79% reduction in the level of immunoreactive EGFR.

Conclusion

The present work describes the targeting of an EGFR antisense gene to human brain cancer cells, which results in a 70–80% inhibition in cancer cell growth. PILs provide a new approach to gene targeting that is effective in vivo following intravenous administration without viral vectors. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

15.

Background

Glycosylated polylysines and histidylated polylysines complexed with plasmid DNA (pDNA) were proposed to develop polymer‐based gene delivery systems. The present work has been undertaken in two steps to study the uptake and the intracellular processing of pDNA, which are still poorly understood in the polyfection pathway.

Methods and results

The kinetics of the uptake and the intracellular processing of pDNA complexed with lactosylated polylysine, histidylated polylysine or histidylated polylysine bearing lactosyl residues (polyplexes) into a CF human airway epithelial cell line were assessed by flow cytometry and confocal microscopy. Complexes formed from histidylated polylysine, even though they were less taken up by cells, show better transfection efficiency with compared with lactosylated complexes. Lactosylated polymers segregated more rapidly when compared with non‐lactosylated polymers into compartments different from those containing pDNA on internalization. Intracellular location and pH measurements indicated that polymers ended up in compartments of pH ~6.2 while pDNA reached less acidic compartments of pH ~6.6. These compartments did not contain the LAMP‐1 lysosomal marker.

Conclusions

The present study exhibits that, upon internalization, pDNA and polylysine conjugates underwent segregation with a rate depending on the polylysine substitution and polymer degradation. The better transfection efficiency of polyplexes with histidylated polylysine can be ascribed to their prolonged stability inside the endocytic vesicles that likely favored the pDNA escape in the cytosol. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

16.
17.

Background

The pig lung, given its gross anatomical, histological and physiological similarities to the human lung, may be useful as a large animal model, in addition to rodents, in which to assess the potential of vectors for pulmonary airway gene transfer. The aim of this study was to assess the utility of the pig lung as a model of gene transfer to the human lung with a synthetic vector system.

Methods

The LID vector system consists of a complex of lipofectin (L), integrin‐binding peptide (I) and plasmid DNA (D). LID complexes containing a β‐galactosidase reporter gene under a CMV promoter or a control plasmid at1 mg/3 ml PBS, or 3 ml buffer, was administered to the right lower lobe ofthe pig lung through a bronchoscope. Pigs were culled at 48 h and lung sections prepared for immunohistochemical and histological analysis. Bronchoalveolar lavage fluid was collected and analysed for TNF‐α by ELISA.

Results

Immunohistochemical staining for the β‐galactosidase reporter gene indicated high efficiency of gene transfer by the LID vector to pig bronchial epithelium with 46% of large bronchi staining positively. There was no evidence for vector‐specific inflammation assessed by leukocytosis and cytokine production.

Conclusions

This study demonstrates the use of the pig for studies of gene transfer in the lung and confirms in a second species the potential of the LID vector for gene therapy of pulmonary diseases such as cystic fibrosis. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

18.

Background

Lentiviral vectors allow gene transfer into non‐dividing cells. Further development of these vector systems requires stable packaging cell lines that enable adequate safety testing.

Methods

To generate a packaging cell line for vectors based on simian immunodeficiency virus (SIV), expression plasmids were constructed that contain the codon‐optimized gag‐pol gene of SIV and the gene for the G protein of vesicular stomatitis virus (VSV‐G) under the control of an ponasterone‐inducible promoter. Stable cell lines expressing these packaging constructs were established and characterized.

Results

The RT activity and vector titers of cell clones stably transfected with the inducible gag‐pol expession plasmid could be induced by ponasterone by more than a factor of 1000. One of these clones was subsequently transfected with the ponasterone‐inducible VSV‐G expression plasmid to generate packaging cells. Clones of the packaging cells were screened for vector production by infection with an SIV vector and subsequent induction by ponasterone. In the supernatant of selected ponasterone‐induced producer clones vector titers of more than 1×105 transducing units/ml were obtained. Producer cell clones were stable for at least five months, as tested by vector production.

Conclusions

The packaging cells described should be suitable for most preclinical applications of SIV‐based vectors. By avoiding regions of high homology between the vector and the packaging constructs, the design of the SIV packaging cell line should reduce the risk of transfer of packaging genes to target cells and at the same time provide flexibility with respect to the SIV vector constructs that can be packaged. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

19.

Background

No effective long‐term treatment is available for rheumatoid arthritis. Recent advances in gene therapy and cell therapy have demonstrated efficiency in collagen‐induced arthritis (CIA). Interleukin‐4 (IL‐4) is already known to be efficient in CIA in systemic injection or administered by gene therapy. This study was designed to evaluate the effect of a non‐viral gene therapy of CIA, involving injection of syngeneic fibroblasts transfected with a plasmid encoding for IL‐4.

Methods

Immortalised fibroblasts from DBA/1 mice (DBA/1/0 cells) were transfected with a plasmid expressing IL‐4 cDNA (DBA/1/IL‐4 cells). Xenogeneic fibroblasts from Chinese hamster ovary (CHO) transfected with a plasmid expressing IL‐4 cDNA (CHO/IL‐4) were studied also. The cells were engrafted in mice developing CIA by subcutaneous injection of 3 × 106 DBA/1/0 or DBA/1/IL‐4 or CHO/IL‐4 cells.

Results

Injection of DBA/1/IL‐4 cells, on days 10 and 25 after immunisation, was associated with a significant and lasting improvement in the clinical and histological evidence of joint inflammation and destruction as compared with DBA/1/0 and CHO/IL‐4 cells. DBA/1/IL‐4 cell treatment decreased also the production of IgG2a antibody to CII and the proliferation of CIIB‐specific nodal T cells. Later treatments (engraftments on days 23 and 35 after immunisation) exerted also an anti‐inflammatory effect, as evaluated on clinical and histological signs of CIA.

Conclusions

Taken together, these findings indicate that systemic administration of syngeneic cells transfected with an anti‐inflammatory cytokine gene, namely IL‐4, with a non‐viral method is effective in CIA and may attenuate the cytokine imbalance seen in this disease. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

20.

Background

Retroviral particles that are inappropriately enveloped can transduce target cells if pre‐associated with cationic liposomes. This study optimises and addresses the mechanism of liposome‐enhanced gene delivery, and explores the potential for such agents to compensate for fusion deficiency associated with chimaeric envelope proteins.

Methods

Particles bearing wild‐type, chimaeric or no envelope proteins were complexed with DOTAP or DC‐Chol/DOPE cationic liposomes and added to target cells for various times. Particle binding was determined by detection of cell‐associated capsid protein and infectivity was measured histochemically.

Results

Stable association of cationic liposomes with retrovirus particles significantly enhanced their binding rate to target cells in proportion to the increase of transduction kinetics for infectious virus. Binding of virus was equivalent with or without envelope protein and/or virus receptor, indicating that a non‐specific interaction precedes receptor recognition. Non‐infectious combinations were rescued by the intrinsic fusogenicity of the cationic liposomes, which enabled entry of the viral core, but left subsequent events unaltered. The optimised transduction rate with non‐enveloped particles and DOTAP approached that of amphotropic‐enveloped virus in some cases, although the effect was target‐cell‐dependent. DC‐Chol/DOPE was less potent at direct fusion but was able to enhance 600‐fold the receptor‐dependent action of chimaeric envelopes that were deficient in fusion by virtue of the addition of targeting domains.

Conclusions

These data have implications for the development of retroviral vector targeting strategies from the perspectives of the specificity of target cell interaction and compensating for chimaeric envelope fusion deficiency. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号