首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
ECVAM has funded and managed validation studies on in vitro tests for skin corrosion, resulting in the validities of four in vitro tests being endorsed by the ECVAM Scientific Advisory Committee: the rat skin transcutaneous electrical resistance (TER) assay, two tests based on the use of commercial reconstituted human skin equivalents, EPISKIN and EpiDerm, and another commercially-produced test, CORROSITEX. In the European Union (EU), a new test method on skin corrosion (B.40), incorporating the rat skin TER and human skin model assays, was included in Annex V of Directive 67/548/EEC in mid-2000, thereby making the use of in vitro alternatives for skin corrosion testing of chemicals mandatory in the EU. At the recommendation of its Skin Irritation Task Force, ECVAM has funded prevalidation studies on five in vitro tests for acute skin irritation: EpiDerm, EPISKIN, PREDISKIN, the pig-ear test, and the mouse-skin integrity function test (SIFT). However, none of the tests met the criteria (set by the Management Team for the studies) for inclusion in a large-scale formal validation study. Thus, to date, there are no validated in vitro tests for predicting the dermal irritancy of chemicals. Following further work on the EPISKIN, EpiDerm and SIFT test protocols and/or prediction models after the completion of the prevalidation studies, it appears that the modified tests could meet the performance criteria defined for progression to a validation study. This will now be assessed independently by the ECVAM Skin Irritation Task Force, with the objective of taking a decision before the end of 2002 on whether to conduct a formal validation study.  相似文献   

2.
ECVAM sponsored a formal validation study on three in vitro tests for skin irritation, of which two employ reconstituted human epidermis models (EPISKIN, EpiDerm), and one, the skin integrity function test (SIFT), employs ex vivo mouse skin. The goal of the study was to assess whether the in vitro tests would correctly predict in vivo classifications according to the EU classification scheme, "R38" and "no label" (i.e. non-irritant). 58 chemicals (25 irritants and 33 non-irritants) were tested, having been selected to give broad coverage of physico-chemical properties, and an adequate distribution of irritancy scores derived from in vivo rabbit skin irritation tests. In Phase 1, 20 of these chemicals (9 irritants and 11 non-irritants) were tested with coded identities by a single lead laboratory for each of the methods, to confirm the suitability of the protocol improvements introduced after a prevalidation phase. When cell viability (evaluated by the MTT reduction test) was used as the endpoint, the predictive ability of both EpiDerm and EPISKIN was considered sufficient to justify their progression to Phase 2, while the predictive ability of the SIFT was judged to be inadequate. Since both the reconstituted skin models provided false predictions around the in vivo classification border (a rabbit Draize test score of 2), the release of a cytokine, interleukin-1alpha (IL-1alpha), was also determined. In Phase 2, each human skin model was tested in three laboratories, with 58 chemicals. The main endpoint measured for both EpiDerm and EPISKIN was cell viability. In samples from chemicals which gave MTT assay results above the threshold of 50% viability, IL-1alpha release was also measured, to determine whether the additional endpoint would improve the predictive ability of the tests. For EPISKIN, the sensitivity was 75% and the specificity was 81% (MTT assay only); with the combination of the MTT and IL-1alpha assays, the sensitivity increased to 91%, with a specificity of 79%. For EpiDerm, the sensitivity was 57% and the specificity was 85% (MTT assay only), while the predictive capacity of EpiDerm was not improved by the measurement of IL-1alpha release. Following independent peer review, in April 2007 the ECVAM Scientific Advisory Committee endorsed the scientific validity of the EPISKIN test as a replacement for the rabbit skin irritation method, and of the EpiDerm method for identifying skin irritants as part of a tiered testing strategy. This new alternative approach will probably be the first use of in vitro toxicity testing to replace the Draize rabbit skin irritation test in Europe and internationally, since, in the very near future, new EU and OECD Test Guidelines will be proposed for regulatory acceptance.  相似文献   

3.
Currently, two reconstructed human skin models, EpiDerm and EPISKIN are being evaluated in an ECVAM skin irritation validation study. A common skin irritation protocol has been developed, differing only in minor technical details for the two models. A small-scale study, applying this common skin irritation protocol to the SkinEthic reconstructed human epidermis (RHE), was performed at ZEBET at the BfR, Berlin, Germany, to consider whether this protocol could be successfully transferred to another epidermal model. Twenty substances from Phase III of the ECVAM prevalidation study on skin irritation were tested with the SkinEthic RHE. After minor, model-specific adaptations for the SkinEthic RHE, almost identical results to those obtained with the EpiDerm and EPISKIN models were achieved. The overall accuracy of the method was more than 80%, indicating a reliable prediction of the skin irritation potential of the tested chemicals when compared to in vivo rabbit data. As a next step, inter laboratory reproducibility was assessed in a study conducted between ZEBET and the Department of Experimental Toxicology, Schering AG, Berlin, Germany. Six coded substances were tested in both laboratories, with three different batches of the SkinEthic model. The assay results showed good reproducibility and correct predictions of the skin irritation potential for all six test chemicals. The results obtained with the SkinEthic RHE and the common protocol were reproducible in both phases, and the overall outcome is very similar to that of earlier studies with the EPISKIN and EpiDerm models. Therefore, the SkinEthic skin irritation assay test protocol can now be evaluated in a formal "catch-up" validation study.  相似文献   

4.
During the past decade, several validation studies have been conducted on in vitro methods for discriminating between skin irritating and non-irritating chemicals. The reconstructed human skin models, EpiDerm and EPISKIN, provided the most promising results. Based on experience of the similar performance of the two skin models, it was suggested that a common test protocol and prediction model should be developed for the prediction of skin irritation potential with the two models. When the EPISKIN protocol was applied with the EpiDerm model, an acceptable specificity (80%) was achieved, whereas the sensitivity (60%) was low. In 2003, the EPISKIN protocol was further refined by extending the post-incubation period following exposure to test chemicals. This extension and additional technical improvements to the EpiDerm protocol were evaluated with 19 chemicals from the prevalidation study. With the new test design, high sensitivity (80%) and specificity (78%) were obtained. The statistical probability for correct classifications was high, so the test was considered to be ready for formal validation. However, since test optimisation had been conducted with the same test chemicals as were used in the ECVAM prevalidation study, it was decided that the optimisation of the protocol had to be verified with a new set of chemicals. Thus, in the current study, 26 additional chemicals (10 rabbit irritants and 16 non-irritants), which had previously been selected and tested by LOREAL with EPISKIN, were evaluated in three independent experiments with EpiDerm. With this unbalanced testing set, a specificity of 94%, and a sensitivity of 60% were obtained, while the positive and negative predictivity and accuracy remained almost unchanged (around 80%) in comparison to the in vivo rabbit data. Overall, 45 chemicals (20 irritants and 25 non-irritants) were tested according to the final protocol. The resulting high positive (82%) and negative predictive values (79%) confirmed the reliability (accuracy of 80%) of the improved test protocol of the EpiDerm model.  相似文献   

5.
A formal validation study was performed, in order to investigate whether the commercially-available reconstructed human epidermis (RHE) models, EPISKIN, EpiDerm and SkinEthic, are suitable for in vitro skin absorption testing. The skin types currently recommended in the OECD Test Guideline 428, namely, ex vivo human epidermis and pig skin, were used as references. Based on the promising outcome of the prevalidation study, the panel of test substances was enlarged to nine substances, covering a wider spectrum of physicochemical properties. The substances were tested under both infinite-dose and finite-dose conditions, in ten laboratories, under strictly controlled conditions. The data were subjected to independent statistical analyses. Intra-laboratory and inter-laboratory variability contributed almost equally to the total variability, which was in the same range as that in preceding studies. In general, permeation of the RHE models exceeded that of human epidermis and pig skin (the SkinEthic RHE was found to be the most permeable), yet the ranking of substance permeation through the three tested RHE models and the pig skin reflected the permeation through human epidermis. In addition, both infinite-dose and finite-dose experiments are feasible with RHE models. The RHE models did not show the expected significantly better reproducibility, as compared to excised skin, despite a tendency toward lower variability of the data. Importantly, however, the permeation data showed a sufficient correlation between all the preparations examined. Thus, the RHE models, EPISKIN, EpiDerm and SkinEthic, are appropriate alternatives to human and pig skin, for the in vitro assessment of the permeation and penetration of substances when applied as aqueous solutions.  相似文献   

6.
Exposure to chemicals absorbed by the skin can threaten human health. In order to standardise the predictive testing of percutaneous absorption for regulatory purposes, the OECD adopted guideline 428, which describes methods for assessing absorption by using human and animal skin. In this study, a protocol based on the OECD principles was developed and prevalidated by using reconstructed human epidermis (RHE). The permeation of the OECD standard compounds, caffeine and testosterone, through commercially available RHE models was compared to that of human epidermis and animal skin. In comparison to human epidermis, the permeation of the chemicals was overestimated when using RHE. The following ranking of the permeation coefficients for testosterone was obtained: SkinEthic > EpiDerm, EPISKIN > human epidermis, bovine udder skin, pig skin. The ranking for caffeine was: SkinEthic, EPISKIN > bovine udder skin, EpiDerm, pig skin, human epidermis. The inter-laboratory and intra-laboratory reproducibility was good. Long and variable lag times, which are a matter of concern when using human and pig skin, did not occur with RHE. Due to the successful transfer of the protocol, it is now in the validation process.  相似文献   

7.
A summary is presented of the activities initiated, and the progress achieved, between April 1993 and December 2001 in implementing the Three Rs in one of the main priority areas of the European Centre for the Validation of Alternative Methods (ECVAM) - the production and quality control of biologicals. These have included organising eight key workshops, and financial contributions to, and sponsorship of, relevant international workshops, symposia and conferences. Noteworthy activities include financial support and/or participation in a number of prevalidation and validation studies. These involved alternative methods for the batch potency testing of: human tetanus vaccines; human and veterinary tetanus antisera and immunoglobulin; rabies vaccines; Leptospira hardjo vaccines; Clostridium perfringens vaccines; and erysipelas vaccines. They also involved a cell culture test for specific toxicity testing of diphtheria toxoid vaccines. In addition, ECVAM funded a study on the use of humane endpoints for vaccine quality control tests involving severe suffering, such as the potency testing of erysipelas, rabies and pertussis vaccines. ECVAM has also contributed financially to the compilation of manuals and expert reports, and to training in test methods. Following the report of an ECVAM Task Force, ECVAM financially supported the prevalidation of some in vitro methods for the potency testing of a recombinant hormone. A proposal is presented for promotion of regulatory acceptance, and suggestions are made for possible future activities.  相似文献   

8.
The European Cosmetic Toiletry and Perfumery Association (COLIPA), along with contributions from the European Centre for the Validation of Alternative Methods (ECVAM), initiated a multi-lab international prevalidation project on the reconstructed skin micronucleus (RSMN) assay in EpiDerm? for the assessment of the genotoxicity of dermally applied chemicals. The first step of this project was to standardize the protocol and transfer it to laboratories that had not performed the assay before. Here we describe in detail the protocol for the RSMN assay in EpiDerm? and the harmonized guidelines for scoring, with an atlas of cell images. We also describe factors that can influence the performance of the assay. Use of these methods will help new laboratories to conduct the assay, thereby further increasing the database for this promising new in vitro genotoxicity test.  相似文献   

9.
In view of the increasing need to identify non-animal tests able to predict acute skin irritation of chemicals, the European Centre for the Validation of Alternative Methods (ECVAM) focused on the evaluation of appropriate in vitro models. In vitro tests should be capable of discriminating between irritant (I) chemicals (EU risk: R38) and non-irritant (NI) chemicals (EU risk: "no classification"). Since major in vivo skin irritation assays rely on visual scoring, it is still a challenge to correlate in vivo clinical signs with in vitro biochemical measurements. Being particularly suited to test raw materials or chemicals with a wide variety of physical properties, in vitro skin models resembling in vivo human skin were involved in prevalidation processes. Among many other factors, cytotoxicity is known to trigger irritation processes, and can therefore be a first common event for irritants. A refined protocol (protocol 15min-18hours) for the EPISKIN model had been proposed for inclusion in the ECVAM formal validation study. A further improvement on this protocol, mainly based on a post-treatment incubation period of 42 hours (protocol 15min-42hours), the optimised protocol, was applied to a set of 48 chemicals. The sensitivity, specificity and accuracy with the MTT assay-based prediction model (PM) were 85%, 78.6% and 81.3% respectively, with a low rate of false negatives (12%). The improved performance of this optimised protocol was confirmed by a higher robustness (homogeneity of individual responses) and a better discrimination between the I and NI classes. To improve the MTT viability-based PM, the release of a membrane damage marker, adenylate kinase (AK), and of cytokines IL-1alpha and IL-8 were also investigated. Combining these endpoints, a simple two-tiered strategy (TTS) was developed, with the MTT assay as the first, sort-out, stage. This resulted in a clear increase in sensitivity to 95%, and a fall in the false-positive rate (to 4.3%), thus demonstrating its usefulness as a "decision-making" tool. The optimised protocol proved, both by its higher performances and by its robustness, to be a good candidate for the validation process, as well as a potential alternative method for assessing acute skin irritation.  相似文献   

10.
The ECVAM-funded skin irritation validation study (SIVS) was initiated in 2003, with the aim to evaluate whether the EpiDerm, EPISKIN and the SIFT alternative methods were able to reliably identify skin irritant and non-irritant chemicals, and could therefore be candidates for replacing the rabbit Draize test for skin irritation. The primary goal of the study was to evaluate the predictive capacity of the assays with regard to the EU classification system, which employs the risk phrases, "R38", for skin irritants, and "no label" for non-irritants. A secondary objective was the retrospective analysis of the data, to assess whether the in vitro tests would be able to discriminate between strong irritants (category 2), mild irritants (category 3) and non-irritants (no category), as defined by the OECD and United Nations proposal for a Globally Harmonised System (GHS) for the classification and labelling of dermal irritancy. A Chemicals Selection Sub-Committee (CSSC) was appointed to identify test chemicals to be used in the SIVS, for which existing, high quality in vivo data were available, with which to correlate the in vitro measurements. Since chemicals from the European Centre for the Ecotoxicology and Toxicology of Chemicals (ECETOC) database of reference chemicals for skin irritation/skin corrosion had been extensively used in preceding studies, the CSSC made use of novel sources for potential test chemicals. The first source of chemicals screened was the New Chemicals Database (NCD), which is the central archive within the EU notification scheme for 'new' commercial chemicals. Data registered in the NCD originate from standard assays, submitted in compliance with the legislation which regulates the marketing of industrial chemicals, and are subject to quality assurance by the competent authorities of the EU Member States. In addition, to obtain 'existing' chemicals which were readily available from major manufacturing and/or distribution sources, additional databases were surveyed, such as the Toxic Substance Control Act (TSCA) database maintained by the US Environmental Protection Agency (EPA), and the ECETOC database, with the exclusion of the chemicals used in the previous optimisation and prevalidation phases. A total of approximately 3500 chemicals from the NCD and 1600 from the additional databases were screened. Pre-determined selection criteria were applied, primarily to ensure the quality of the in vivo data and the practicability of their use in testing. Overall, the number of chemicals fulfilling the CSSC selection criteria was found to be limited, particularly in the case of GHS category 2 chemicals. However, a total set of 60 chemicals were selected and proposed to the Management Team of the SIVS for independent coding and supply to the participating laboratories. The selected chemicals: i) represented statistically justified sample sizes for distinguishing R38 from no-label chemicals; ii) provided a balanced representation of the three GHS categories, to allow for the post hoc evaluation of the performance of the assays for that classification system; and iii) acknowledged, to a certain degree, the large prevalence known to exist for chemicals which have oedema and erythema scores of 0. The selected chemicals represented a variety of molecular structures, functional chemical groups, and effect and use categories, as well as a wide range of physico-chemical properties. They represented a challenging set of chemicals, relevant to current industrial commerce, with which to validate the alternative methods.  相似文献   

11.
The potential for a compound to induce carcinogenicity is a key consideration when ascertaining hazard and risk assessment of chemicals. Among the in vitro alternatives that have been developed for predicting carcinogenicity, in vitro cell transformation assays (CTAs) have been shown to involve a multistage process that closely models important stages of in vivo carcinogenesis and have the potential to detect both genotoxic and non-genotoxic carcinogens. These assays have been in use for decades and a substantial amount of data demonstrating their performance is available in the literature. However, for the standardised use of these assays for regulatory purposes, a formal evaluation of the assays, in particular focusing on development of standardised transferable protocols and further information on assay reproducibility, was considered important to serve as a basis for the drafting of generally accepted OECD test guidelines. To address this issue, a prevalidation study of the CTAs using the BALB/c 3T3 cell line, SHE cells at pH 6.7, and SHE cells at pH 7.0 was coordinated by the European Centre for the Validation of Alternative Methods (ECVAM) and focused on issues of standardisation of protocols, test method transferability and within- and between-laboratory reproducibility. The study resulted in the availability of standardised protocols that had undergone prevalidation [1,2]. The results of the ECVAM study demonstrated that for the BALB/c 3T3 method, some modifications to the protocol were needed to obtain reproducible results between laboratories, while the SHE pH 6.7 and the SHE pH 7.0 protocols are transferable between laboratories, and results are reproducible within- and between-laboratories. It is recommended that the BALB/c 3T3 and SHE protocols as instituted in this prevalidation study should be used in future applications of these respective transformation assays. To support their harmonised use and regulatory application, the development of an OECD test guideline for the SHE CTAs, based on the protocol published in this issue, is recommended. The development of an OECD test guideline for the BALB/c 3T3 CTA should likewise be further pursued upon the availability of additional supportive data and improvement of the statistical analysis.  相似文献   

12.
The ECVAM validation concept, which was defined at two validation workshops held in Amden (Switzerland) in 1990 and 1994, and which takes into account the essential elements of prevalidation and biostatistically defined prediction models, has been officially accepted by European Union (EU) Member States and by the Federal regulatory agencies of the USA and the OECD. The ECVAM validation concept was introduced into the ongoing ECVAM/COLIPA validation study of in vitro phototoxicity tests, which ended successfully in 1998. The 3T3 neutral red uptake in vitro phototoxicity test was the first experimentally validated in vitro toxicity test recommended for regulatory purposes by the ECVAM Scientific Advisory Committee (ESAC). It was accepted by the EU into the legislation for chemicals in the year 2000. From 1996 to 1998, two in vitro skin corrosivity tests were successfully validated by ECVAM, and they were also officially accepted into the EU regulations for chemicals in the year 2000. Meanwhile, in 2002, the OECD Test Guidelines Programme is considering the worldwide acceptance of the validated in vitro phototoxicity and corrosivity tests. Finally, from 1997 to 2000, an ECVAM validation study on three in vitro embryotoxicity tests was successfully completed. Therefore, the three in vitro embryotoxicity tests, the whole embryo culture (WEC) test on rat embryos, the micromass (MM) test on limb bud cells of mouse embryos, and the embryonic stem cell test (EST) including a permanent embryonic mouse stem cell line, are considered for routine use in laboratories of the European pharmaceutical and chemicals industries.  相似文献   

13.
From 1996 to 2000, ZEBET (Centre for Documentation and Evaluation of Alternative Methods to Animal Experiments at the BgVV, Berlin, Germany) coordinated the European Centre for the Validation of Alternative Methods (ECVAM) prevalidation and validation study on three embryotoxicity tests: a) a test employing embryonic stem cell lines (EST); b) the micromass (MM) test; and c) the postimplantation rat whole-embryo culture assay (WEC test). The main objectives of the study were to assess the performance of these three in vitro tests in discriminating between non- embryotoxic, weakly embryotoxic and strongly embryotoxic compounds. Phase I of the study (1997) was designed as a prevalidation phase, for test protocol optimisation, and for the establishment of a comprehensive database of in vivo and in vitro data on embryotoxic compounds. Phase II (1998-2000) involved a formal validation trial, conducted under blind conditions on 20 test compounds selected from the database, which were coded and distributed to the participating laboratories. In the preliminary phase of the validation study, six chemicals out of the 20, which showed embryotoxic potential, were tested. These results were used to define new biostatistically based prediction models (PMs) for the MM and WEC tests, and to evaluate those developed previously for the EST. As a next step, the PMs were evaluated by using the results for the remaining 14 chemicals of the definitive phase of the validation study. The three in vitro embryotoxicity tests proved to be applicable to testing a diverse group of chemicals with different embryotoxic potentials (non-embryotoxic, weakly embryotoxic, and strongly embryotoxic). The reproducibility of the three in vitro embryotoxicity tests were acceptable according to the acceptance criteria defined by the Management Team. The concordances between the embryotoxic potentials derived from the in vitro data and from the in vivo data were good for the EST and the WEC (PM2) test, and sufficient for the MM test and the WEC (PM1) tests according to the performance criteria defined by the Management Team before the formal validation study. When applying the PM of the EST to the in vitro data obtained in the definitive phase of the formal validation study, chemicals were classified correctly in 78% of the experiments. For the MM and the WEC tests, the PMs provided 70% and 80% (PM2) correct classifications, respectively. And, very importantly, an excellent predictivity (100%, except for PM1 of the WEC test, with 79%, considered as good) was obtained with strong embryotoxic chemicals in each of the three in vitro tests.  相似文献   

14.
It is claimed that the modular approach to validation, which involves seven independent modules, will make the assessment of test validity more flexible and more efficient. In particular, the aspects of between-laboratory variability and predictive capacity are formally separated. Here, the main advantage of the approach is to offer the opportunity for reduced labour, and thus to allow study designs to be more time efficient and cost effective. The impact of this separation was analysed by taking the ECVAM validation study on in vitro methods for skin corrosivity as an example of a successful validation study - two of its methods triggered new OECD test guidelines. Lean study designs, which reduced the number of tests required by up to 60%, were simulated with the original validation data for the EPISKIN model. By using resampling techniques, we were able to demonstrate the effects of the lean designs on three between-laboratory variability measures and on the predictive capacity in terms of sensitivity and specificity, in comparison with the original study. Overall, the study results, especially the levels of confidence, were only slightly affected by the lean designs that were modelled. It is concluded that the separation of the two modules is a promising way to speed-up prospective validation studies and to substantially reduce costs, without compromising study quality.  相似文献   

15.
ECVAM's activities in the field of biologicals have contributed in many ways to the successful incorporation of Three Rs methods, as summarised elsewhere in these proceedings. The progress achieved is impressive, but large numbers of animals are still needed in order to meet the requirements stipulated by various regulations. ECVAM's activities in this area should therefore be continued and extended. Besides the well-established organisation of ECVAM workshops and contributions to conferences, further prevalidation and validation studies should be funded. In addition, studies on refinement, and training courses on validated and well-established Three Rs methods, could be initiated. There is a need for more communication and information exchange, especially between regulators and industry concerning the Three Rs. ECVAM could provide a suitable forum for such activities. An ECVAM Biologicals Task Force should be established in order to define a list of priorities.  相似文献   

16.
This paper outlines the research, prevalidation and validation activities that ECVAM has undertaken in collaboration with its partners in the field of topical toxicity testing and human volunteer studies, from its creation until now (1994-2002).  相似文献   

17.
Huggins has reported on the current situation relating to the development of alternatives to the Draize eye irritation test with rabbits, and an ECVAM Working Group have reviewed the efforts needed in order to replace this animal test within the next 10 years by using the results of non-animal assessment methods. Our report reviews regulatory experience gained over the last 20 years with the EU chemicals notification procedure with respect to the assessment of eye lesions observed in Draize tests. The nature of eye lesions and their importance for classification and labelling of possible hazards to human eyes are evaluated and discussed, with a view to promoting the development of specific in vitro assays which are able to discriminate between eye damage, moderate eye irritation, and minor irritation effects which are completely reversible within a few days. Structural alerts for the prediction of eye irritation/corrosion hazards to be classified and labelled according to international classification criteria, are presented, which should be validated in accordance with internationally agreed (OECD) principles for (Q)SAR system validation. Physicochemical limit values for prediction of the absence of any eye irritation potential relevant for human health can make available a definition of the applicability domains of alternative methods developed for the replacement of the Draize eye irritation test.  相似文献   

18.
The neutral red release (NRR) assay is a cytotoxicity test that can be used to measure the immediate toxic effects of test substances on the cell membrane, resulting in the leaking of intracellular contents. The assay has already been used for several years to evaluate the cytotoxicities of various kinds of products, such as cosmetics, pharmaceuticals, industrial chemicals and household products. It has undergone in-house validation by many companies, and has been found to be particularly useful for identifying substances that are potentially capable of causing adverse reactions on coming into brief contact with the eye or the skin at relatively high concentrations, such as might occur in an adventitious splash into the eye or onto the skin, followed by a quick rinse. Because of the relatively long existence of the NRR assay, its practicality and its proven usefulness for particular purposes, ECVAM decided to review the status of the method, in order to decide whether prevalidation and formal validation studies on the test might be profitable. The review of the status of the test was carried out by performing a comprehensive review of the literature, and by conducting a survey involving companies and institutes with experience in using the test. Both the review and the survey revealed that the assay could provide extremely valuable information when it was used for particular purposes, such as for the evaluation and comparison of immediate toxic effects on the eye or the skin caused by certain products or chemicals such as surfactants. Most of those who responded in the survey favoured a prevalidation/validation study.  相似文献   

19.
Clonogenic assays have been established in hematology for 30 years. They have been widely used in fundamental studies on hematopoiesis and they are also routinely used in clinical hematology to confirm diagnosis or to predict time to recovery in cases of bone marrow failure. Their use in toxicological studies is more recent. Adverse effects of xenobiotics can induce hematological problems and pathologies such as neutropenia, thrombocytopenia, anemia, and aplastic anemia. Three clonogenic assays are proposed for granulopoiesis, megakaryopoieisis and erythropoieisis. Hematopoietic progenitors from murine or human origin can be cultured in the presence of xenobiotics using validated protocols to complete standard animal toxicological studies. These clonogenic assays can help to predict adverse effects of drugs or toxicants. Clonogenic assays using white blood cell progenitors (CFU-GM culture) have recently been validated by ECVAM and can be used routinely. Megakaryocyte progenitor (CFU-MK) culture is under development and prevalidation in toxicological studies supported by ECVAM. Red blood cells progenitor culture (BFU-E) has been proposed but needs international validation to be recognized. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
A validation study on an in vitro skin irritation assay was performed with the reconstructed human epidermis (RhE) LabCyte EPI-MODEL24, developed by Japan Tissue Engineering Co. Ltd (Gamagori, Japan). The protocol that was followed in the current study was an optimised version of the EpiSkin protocol (LabCyte assay). According to the United Nations Globally Harmonised System (UN GHS) of classification for assessing the skin irritation potential of a chemical, 12 irritants and 13 non-irritants were validated by a minimum of six laboratories from the Japanese Society for Alternatives to Animal Experiments (JSAAE) skin irritation assay validation study management team (VMT). The 25 chemicals were listed in the European Centre for the Validation of Alternative Methods (ECVAM) performance standards. The reconstructed tissues were exposed to the chemicals for 15 minutes and incubated for 42 hours in fresh culture medium. Subsequently, the level of interleukin-1 alpha (IL-1 α) present in the conditioned medium was measured, and tissue viability was assessed by using the MTT assay. The results of the MTT assay obtained with the LabCyte EPI-MODEL24 (LabCyte MTT assay) demonstrated high within-laboratory and between-laboratory reproducibility, as well as high accuracy for use as a stand-alone assay to distinguish skin irritants from non-irritants. In addition, the IL-1α release measurements in the LabCyte assay were clearly unnecessary for the success of this model in the classification of chemicals for skin irritation potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号