首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyribosomes, the groups of ribosomes simultaneously translating a single mRNA molecule, are very common in both, prokaryotic and eukaryotic cells. Even in early EM studies, polyribosomes have been shown to possess various spatial conformations, including a ring-shaped configuration which was considered to be functionally important. However, a recent in situ cryo-ET analysis of predominant regular inter-ribosome contacts did not confirm the abundance of ring-shaped polyribosomes in a cell cytoplasm. To address this discrepancy, here we analyzed the cryo-ET structure of polyribosomes in diluted lysates of HeLa cells. It was shown that the vast majority of the ribosomes were combined into polysomes and were proven to be translationally active. Tomogram analysis revealed that circular polyribosomes are indeed very common in the cytoplasm, but they mostly possess pseudo-regular structures without specific inter-ribosomal contacts. Although the size of polyribosomes varied widely, most circular polysomes were relatively small in size (4–8 ribosomes). Our results confirm the recent data that it is cellular mRNAs with short ORF that most commonly form circular structures providing an enhancement of translation.  相似文献   

2.
Synthesis of glycosaminoglycans (GAGS) by fibroblasts derived from seven patients with Down's syndrome, five patients with Edwards' syndrome, and two patients with Patau's syndrome were studied in cell culture. The aneuploid strains were compared with diploid fibroblasts from age-matched controls. In terms of hyaluronic acid and sulfated GAG synthesis, the amount of synthesized hyaluronic acid was not significantly different between postnatal aneuploid strains and controls.  相似文献   

3.
In the process of protein synthesis, the translating ribosomes of eukaryotic cells form polyribosomes that are found to be multiplex functional complexes possessing elements of ordered spatial organization. As revealed by a number of electron microscopy studies, the predominant visible configurations of the eukaryotic polyribosomes are circles (circular polyribosomes) and two-stranded formations (so-called double-row polyribosomes). The “long” (i.e. heavy loaded) polyribosomes are usually represented by double-row structures, which can be interpreted as either topologically circular (“col-lapsed rings”), or topologically linear (zigzags or helices). In the present work we have analyzed the mRNA path within the eukaryotic polyribosomes, isolated from a wheat germ cell-free translation system, by integrating two approaches: the visualization of mRNA ends in polyribosomes by marking them with gold nanoparticles (3′-end) and initiating 40S subunits (5′-end), as well as by the cryoelectron tomography. Examination of the location of the mRNA markers in polyribosomes and mutual orientation of ribosomes in them has shown that the double-row polyribosomes of the same sample can have both circular and linear arrangements of their mRNA.  相似文献   

4.
Mangiarotti G 《Biochemistry》1999,38(13):3996-4000
The nuclei of Dictyostelium discoideum cells have been found to contain polyribosomes active in protein synthesis. mRNA molecules enter nuclear polyribosomes while they are still being synthesized. "Non sense mediated mRNA decay" occurs in the nucleus, through the interaction of the mRNAs containing a nonsense codon with newly formed nuclear ribosomes, rather than with cytoplasmic ribosomes, as previously generally supposed.  相似文献   

5.
Over half of the chloroplast ribosomes isolated from growing cultures of Chlamydomonas reinhardtii are bound to chloroplast thylakoid membranes if completion of nascent polypeptide chains is prevented by chloramphenicol. The free chloroplast ribosomes are recovered in homogenate supernatants, and presumably originate from the chloroplast stroma. Only about 10% of these free chloroplast ribosomes are polyribosomes, even under conditions when 70% of free cytoplasm ribosomes are recovered as polyribosomes. The nonionic detergent Nonidet P-40 liberates atypical polyribosomes (Type I), from membranes, which require both ribonuclease and proteases for complete conversion to monomeric ribosomes. Thus Type I particles are held together by mRNA but are also held together by peptide bonds. These Type I polyribosomes probably are not bound to intact membrane, but might be bound to some protein-containing sub-membrane particle. The Type I polyribosomes are dissociated to ribosomal subunits by puromycin and high salt, and contained 0.2 to 1 nascent chain per ribosome. If membranes are treated with Nonidet and proteases at the same time, polyribosomes which are digested to monomeric ribosomes by ribonuclease alone (Type II) are obtained. Type II polyribosomes are smaller than Type I, and probably represent the true size distribution of polyribosomes on the membranes. At least 50% of the membrane-bound ribosomes are polyribosomes, since that much membrane bound chloroplast RNA is recovered as Type I or Type II polyribosomes.  相似文献   

6.
ALTERATIONS IN POLYRIBOSOMES DURING ERYTHROID CELL MATURATION   总被引:18,自引:7,他引:11       下载免费PDF全文
This communication presents a morphological study of the changes in ribosome content and organization which occur during the maturation of erythroid cells of the phenylhydrazine-treated rabbit. Electron micrographs of thin sectioned nucleated and non-nucleated erythroid cells have been subjected to a quantitative analysis of the distribution of ribosomes as polyribosomes of various sizes and as single ribosomes. The ribosomes of nucleated erythroid cells of marrow are virtually all arranged in the polyribosome configuration consisting of clusters of 2 to 6 individual ribosomes. These cells are the most active in the erythroid series in protein biosynthesis. During maturation to the non-nucleated reticulocyte stage, found in the circulating blood, there is a decrease in protein synthesizing capacity, a fall in total ribosome content, and, more significantly, a decrease in the number and size of polyribosomes. Maturation to the ribosome-free erythrocyte, either under in vitro or in vivo conditions, entails a further decrease in protein synthesis which correlates with a progressive disaggregation of the biosynthetically active polyribosomes into smaller clusters and inactive single ribosomes. Possible models which may account for the stability of the polyribosome and for the mechanism of polyribosome dissociation are discussed.  相似文献   

7.
The size classes of polyribosomes involved in the synthesis of ribulose-1,5-bisphosphate carboxylase large subunit were determined by binding radioiodinated specific antibodies to polyribosomal preparations from Chlamydomonas reinhardi. Antibodies specific to the denatured large subunit and to the native enzyme bound primarily to small polyribosomes (N = two to five ribosomes). The binding of antibodies to small polyribosomes was unexpected since the large subunit is a large polypeptide (molecular weight 55,000) coded for by a corresponding large mRNA (12-14S). Control experiments showed that this unexpected pattern of antibody binding was not a result of messenger RNA degradation, "run-off" of ribosomes from polyribosomes, or adventitious binding of the completed enzyme to a selected class of polyribosomes. In addition, polyribosomes bearing nascent large subunit chains have been immunoprecipitated from small polyribosome fractions. A large RNA species that can direct the synthesis of large subunit in vitro was extracted from small polyribosomes.  相似文献   

8.
Ohshima S  Seyama A 《Human cell》2012,25(3):78-85
Tetraploid cells with unstable chromosomes frequently arise as an early step in tumorigenesis and lead to the formation of aneuploid cells. The mechanisms responsible for the chromosome instability of polyploid cells are not fully understood, although the supernumerary centrosomes in polyploid cells have been considered the major cause of chromosomal instability. The aim of this study was to examine the integrity of mitotic spindles and centrosomes in proliferative polyploid cells established from normal human fibroblasts. TIG-1 human fibroblasts were treated with demecolcine (DC) for 4?days to induce polyploidy, and the change in DNA content was monitored. Localization of centrosomes and mitotic spindles in polyploid mitotic cells was examined by immunohistochemistry and laser scanning cytometry. TIG-1 cells treated with DC became almost completely tetraploid at 2?weeks after treatment and grew at the same rate as untreated diploid cells. Most mitotic cells with 8C DNA content had only two centrosomes with bipolar spindles in established tetraploid cells, although they had four or more centrosomes with multipolar spindles at 3?days after DC treatment. The frequency of aneuploid cells increased as established tetraploid cells were propagated. These results indicate that tetraploid cells that form bipolar spindles with two centrosomes in mitosis can proliferate as diploid cells. These cells may serve as a useful model for studying the chromosome instability of polyploid cells.  相似文献   

9.
This report details the procedural requirements for preparing cell-free extracts of yeast rich in polyribosomes. This enabled us to demonstrate the occurrence of polyribosomes in yeast, to show their role in protein synthesis, and to devise methods for their resolution and isolation. When certain precautions are met (the use of log phase cells, rapidly halting cell growth, gentle methods of disruption, sedimentation through exponential density gradients, etc.), individual polyribosome size classes ranging up to the heptosome can be fractionated and separated from their nearest neighbors. Larger size classes are resolved partially among themselves, free of smaller polyribosomes. This was confirmed by extensive electron micrographic studies of material from the various fractions obtained upon density gradient centrifugation of yeast extracts. Modifications of the gradients and procedure should allow fractionation and isolation of the larger polyribosomes, including those containing polycistronic messages. Yeast polyribosomes are disaggregated to single ribosomes by longer term grinding, cell disruption by the French pressure cell, the Hughes press, or by incubation with dilute RNAse. Yeast polyribosomes are active in the incorporation of amino acids into polypeptide; the single ribosomes exhibit only slight activity. The latter activity is probably due to the presence of a small fraction of monosomes still containing mRNA. Poly-U stimulates amino acid incorporation only in the single ribosomes.  相似文献   

10.
The mode of action of the antibiotic, trichodermin, on yeast cells has been investigated. Trichodermin specifically inhibits protein synthesis and, during the in vivo inhibition of protein synthesis, ribosomes remain in polyribosomes rather than shifting to monoribosomes. This observation suggests that trichodermin inhibits either an elongation step or a termination step of protein biosynthesis. These two possibilities were distinguished by comparing the action of trichodermin with that of cycloheximide, a known elongation inhibitor, upon the reformation of polyribosomes during recovery from a block in polypeptide chain initiation. Cycloheximide slows the recovery of polyribosomes from monoribosomes following a block in polypeptide chain initiation whereas trichodermin enhances the recovery of polyribosomes. This observation is interpreted to mean that trichodermin primarily inhibits the termination step of protein biosynthesis.  相似文献   

11.
Fibronectin biosynthesis by human embryonic fibroblasts transformed with virus SV-40 was studied in intact cells and in a cell-free protein synthesizing system on free and membrane-bound polyribosomes isolated from these cells. It was found that fibronectin release from transformed fibroblasts into the culturing medium was decreased 4.5-fold, while its per cent content--2-fold. The amount of fibronectin precipitated by antibodies in the course of an immunoprecipitation reaction in transformed cells appeared to be somewhat higher than in normal cells, although when expressed on a per cent basis this content was decreased only 1.5-fold. However, the content of fibronectin monomer with Mr = 220 kD exceeded that in normal fibroblast cell material 1.6 times. Study on fibronectin biosynthesis in a cell-free system revealed that in transformed cells 45% of fibronectin is synthesized on free polyribosomes as compared to 13% in normal fibroblasts. It is assumed that the decreased fibronectin biosynthesis in human fibroblasts transformed with virus SV-40 results in spatial uncoupling of polyribosomes and membrane structures responsible for protein transport from the cell, as a result of which a significant part of fibronectin synthesized by transformed fibroblasts undergoes intracellular degradation.  相似文献   

12.
A comparative study of the relative rates of intracellular total protein metabolism in diploid and aneuploid (with trisomy for chromosome 7) human embryo fibroblasts in the logarithmic and stationary growth phases was carried out. Using double labeling with [14C]proline (24 hrs) and [3H]proline (3 hrs), it was found that: the rates of intracellular protein metabolism during transition to the stationary phase of growth are increased in diploid cells and decreased in cells with trisomy for chromosome 7; the relative rate of protein metabolism in the logarithmic phase is higher in trisomic cells than in diploid ones. The intracellular degradation of procollagen in trisomic cells is increased approximately by 17% as compared to normal fibroblasts. Treatment of cell lysates with bacterial collagenase revealed the presence of procollagen incomplete degradation products in anomalous fibroblasts. The observed differences in the rates and mode of protein metabolism during transition of diploid and trisomic fibroblasts to the stationary phase of growth suggest that the odd autosome interferes with the normal coordinated activity of genes in chromosomes.  相似文献   

13.
Summary The effect of cycloheximide upon protein synthesis, RNA metabolism, and polyribosome stability was investigated in the parent and in two temperature-sensitive mutant yeast strains defective respectively in the initiation of polypeptide chains and in messenger RNA synthesis. Cycloheximide at high concentrations (100 g/ml) severely inhibits but does not completely stop protein synthesis (Fig. 1); the incorporation of 14C-amino acids into polyribosome-associated nascent polypeptide chains continues at a slow but measurable rate (Figs. 2 and 3). Polyribosome structures are stable in the parent strain at 36° whether or not cycloheximide is present (Fig. 5). However, in Mutant ts- 136, a mutant defective in messenger as well as in stable RNA production, polyribosomes decay at the restrictive temperature (36° C) at the same rate whether or not cycloheximide is present (Fig. 5). Thus the maintenance of polyribosome structures is dependent upon the continued synthesis of messenger RNA even under conditions of extremely slow polypeptide chain elongation. In mutant ts- 187, a mutant defective in the initiation of polypeptide chains, all of the polyribosomes decay to monoribosomes within 2 minutes after a shift to the restrictive temperature; cycloheximide completely prevents this decay demonstrating that this mutant is capable of continued messenger RNA synthesis at 36° C. Consistent with these observations is the fact that a newly synthesized heterogeneously sedimenting RNA fraction continues to enter polyribosomes in the presence of cycloheximide whereas the entrance of newly synthesized ribosomal RNA is severely inhibited (Figs. 7, 8, 9). The decay or lack of decay of polyribosomes at the restrictive temperature is, therefore, a rapid and discriminating test for the analysis of mutants defective in macromolecule synthesis. Mutants which exhibit a decay of polyribosomes in the presence of cycloheximide are likely to be defective directly or indirectly in the synthesis of messenger RNA whereas mutants in which decay is prevented or slowed by cycloheximide are likely to be defective in some factor required for the association of ribosomes and messenger RNA.  相似文献   

14.
Poliovirus has a single-stranded RNA genome of positive polarity that serves two essential functions at the start of the viral replication cycle in infected cells. First, it is translated to synthesize viral proteins and, second, it is copied by the viral polymerase to synthesize negative-strand RNA. We investigated these two reactions by using HeLa S10 in vitro translation-RNA replication reactions. Preinitiation RNA replication complexes were isolated from these reactions and then used to measure the sequential synthesis of negative- and positive-strand RNAs in the presence of different protein synthesis inhibitors. Puromycin was found to stimulate RNA replication overall. In contrast, RNA replication was inhibited by diphtheria toxin, cycloheximide, anisomycin, and ricin A chain. Dose-response experiments showed that precisely the same concentration of a specific drug was required to inhibit protein synthesis and to either stimulate or inhibit RNA replication. This suggested that the ability of these drugs to affect RNA replication was linked to their ability to alter the normal clearance of translating ribosomes from the input viral RNA. Consistent with this idea was the finding that the protein synthesis inhibitors had no measurable effect on positive-strand synthesis in normal RNA replication complexes. In marked contrast, negative-strand synthesis was stimulated by puromycin and was inhibited by cycloheximide. Puromycin causes polypeptide chain termination and induces the dissociation of polyribosomes from mRNA. Cycloheximide and other inhibitors of polypeptide chain elongation "freeze" ribosomes on mRNA and prevent the normal clearance of ribosomes from viral RNA templates. Therefore, it appears that the poliovirus polymerase was not able to dislodge translating ribosomes from viral RNA templates and mediate the switch from translation to negative-strand synthesis. Instead, the initiation of negative-strand synthesis appears to be coordinately regulated with the natural clearance of translating ribosomes to avoid the dilemma of ribosome-polymerase collisions.  相似文献   

15.
Migration of diploid postnatal and embryonic diploid and aneuploid cells was studied using a modified method of investigation of leukocyte migration under agarose. The method permits to study migration of fibroblasts and other proliferating cells. Embryonic fibroblasts were shown to move faster, than postnatal fibroblasts. Cells with trisomy 7, 9 and C, and triploid cells were found to move slower than diploid cells. Locomotor disturbances are supposed to be the basis of impairment of morphogenesis in chromosomal anomalies in man.  相似文献   

16.
Summary The ribosomal profiles in lysates from resting and phytohemagglutinin stimulated human lymphocytes have been analyzed by sucrose gradient centrifugation. The percentage of polyribosomes increased during lymphocyte transformation reaching a maximal value of 60 to 70% of the total ribosomes after 72 hours of mitogen addition. This time period coincides with maximalin vivo protein synthesis. On the other hand, in nonstimulated lymphocytes, about 25% of the ribosomal particles appeared as aggregates, independently of the incubation period.Experiments performed with homologous cell free systems containing ribosomes and supernatant fluids prepared from unstimulated or activated lymphocytes demonstrate that the mixtures containing both components from stimulated lymphocytes are several fold more active in polypeptide synthesis than the systems which contain ribosomal particles and cell sap from resting cells. Assays carried out with mixtures combining the components from both sources indicate that the increased activity depends on ribosomes as well as on the supernatant fractions.Dedicated to Professor LUIS F. LELOIR on the occasion of his 70th birthday.  相似文献   

17.
The 70 kDa heat shock proteins (Hsp70s) are a ubiquitous class of molecular chaperones. The Ssbs of Saccharomyces cerevisiae are an abundant type of Hsp70 found associated with translating ribosomes. To understand better the function of Ssb in association with ribosomes, the Ssb-ribosome interaction was characterized. Incorporation of the aminoacyl-tRNA analog puromycin by translating ribosomes caused the release of Ssb concomitant with the release of nascent chains. In addition, Ssb could be cross-linked to nascent chains containing a modified lysine residue with a photoactivatable cross-linker. Together, these results suggest an interaction of Ssb with the nascent chain. The interaction of Ssb with the ribosome-nascent chain complex was stable, as demonstrated by resistance to treatment with high salt; however, Ssb interaction with the ribosome in the absence of nascent chain was salt sensitive. We propose that Ssb is a core component of the translating ribosome which interacts with both the nascent polypeptide chain and the ribosome. These interactions allow Ssb to function as a chaperone on the ribosome, preventing the misfolding of newly synthesized proteins.  相似文献   

18.
Bacterial polyribosomes possess characteristic electrophoretic mobilities in agarose-acrylamide composite gels. In cells whose normal protein synthesis is inhibited by certain antibiotics, the resolution of the gel electrophoresis technique has permitted the detection of specific increases in the mobility of the polyribosomes. Antibiotics producing these changes in polyribosome mobility include inhibitors of the 30 S as well as the 50 S subunit.The in vivo action of streptomycin has been studied in some detail. Streptomycin alters the polyribosomes of sensitive strains, haploid as well as heterodiploid, but does not alter polyribosomes of strains resistant to or dependent upon streptomycin. Streptomycin-altered polyribosomes are stable in vivo for more than one hour and exhibit a considerably prolonged run-off time following rifampicin treatment. They are also significantly more resistant to the in vitro RNase degradation than control ribosomes. The subunit composition (50 S30 S) of the altered polyribosomes remains unchanged from the control (1:1).Since the electrophoretic mobility of monosomes remains unchanged during the antibiotic treatment, the evidence presented suggests that the alteration of polyribosome mobility involves a stacking of the ribosomes on mRNA.  相似文献   

19.
Flow cytometric measurements of nuclear DNA content often involve the calculation of a DNA index, which compares the DNA fluorescence from two different populations. Such DNA indices have been used to classify aneuploid peaks from tumour tissue into different categories relative to normal diploid cells. This report describes a correction based on the channel for unstained particles that is required if DNA index values are to give a true and reproducible indication of relative DNA content.  相似文献   

20.
A B Fulton  K M Wan  S Penman 《Cell》1980,20(3):849-857
Acridine fluorescence reveals polyribosomes in fibroblasts and Triton-extracted skeletal frameworks; simultaneous phase-contrast images show cellular structure. Polyribosomes appear near nuclei of both intact fibroblasts and skeletal frameworks. Simultaneous autoradiography of cells so examined locates radioactive proteins. After synthesis, most proteins diffuse rapidly through the cytoplasm; intact cells autoradiographed afer a 35S pulse show grains throughout. In sharp contrast, extraction with Triton leaves only radioactive skeletal proteins, which, although released from ribosomes, are near polyribosomes after a pulse. After a chase, skeletal-associated radioactivity is found throughout the framework structure. However, skeletal proteins migrate only if protein synthesis continues. Emetine administered following a pulse block protein migration; skeletal framework radioactivity remains near polyribosomes. This also indicates limited exchange between skeletal framework and soluble cytoplasmic proteins. The fact that proteins insert themselves into the skeletal framework at or near their synthesis site, with limited subsequent exchange, appears to contradict current view of protein self-assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号