首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The effects of vitamin K3 or dicumarol on plasma membrane boundhexacyanoferrate (III) and hexabromoiridate (IV) reductase activityand on the H+ pumping rate were investigated. Incubation withvitamin K3 followed by intense rinsing stimulated the subsequentreduction of hexabromoiridate (IV) and hexacyanoferrate (III)as well as proton secretion induced by external electron-acceptors,while pretreatment with dicumarol inhibited proton secretioninduced by redox activity and hexacyanoferrate (III) reductionrate, but not the effects of hexabromoiridate (IV). A 30 minincubation in 0·2 mM K3 or dicumarol, followed by rinsing,inhibited H+ secretion for about 2 d. Incubation for more than12 h in 0·1 mM dicumarol or 0·2 mM K3 caused lethalinjury to the root cells. Key words: Vitamin K.3, dicumarol, plasmalemma redox system, Zea mays L., proton pump  相似文献   

2.
Three artificial electron acceptors of different Eo and charge,hexacyanoferrate (III) (K3Fe(CN)6), hexachloroiridate (IV) (K2IrCl6),and hexabromoiridate (IV) (K2IrBr6), were compared with respectto their rate of reduction by roots of Zea mays L., the concomitantproton secretion, and to the effect on plasmalemma depolarization. It has been shown that these plasma membrane impermeable electronacceptors were reduced by a plasmalemma reductase activity.At low concentrations proton secretion was slightly inhibited,at higher concentrations, however, the rate of proton secretionwas stimulated. The root cell plasmalemma showed a transientdepolarization after addition of all three electron acceptors.The depolarization was concentration-dependent for the iridatecomplexes but not for hexacyanoferrate (III). For both iridatecomplexes maximum depolarization was reached at 50 µmoldm–3. A hypothetical model as an explanation of the redox dependentproton secretion will be given. Key words: Hexachloroiridate (IV), hexabromoiridate (IV), hexacyanoferrate (III), plasmalemma redox, membrane potential, Zea mays  相似文献   

3.
Summary Intact plants can reduce external oxidants by an appearingly trans-membrane electron transport. In vivo an increase in net medium acidification accompanies the reduction of the apoplastic substrate. Up to now, several NAD(P)H dehydrogenases,b-type cytochromes, and a phylloquinone have been identified and partially purified from plant plasma membranes. The occurrence of a quinone in the plasma membrane of maize roots supports the hypothetical model of a proton-transferring redox system, i.e., an electron transport chain with a quinone as mobile electron and proton carrier. In the present study the trans-membrane electron transport system of intact maize (Zea mays L.) roots was investigated. Flow-through and ionostat systems have been used to estimate the electron and proton transport activity of this material. Application of 4,4,4-trifluoro-1-(2-thienyl)-butane-1,3-dione (thenoyltrifluoroacetone) inhibited the reduction of ferricyanide in the incubation solution of intact maize roots up to 70%. This inhibition could not be washed off by rinsing the roots with fresh incubation medium. The acidification of the medium induced after ferricyanide application was inhibited to about 62%. The effects of thenoyltrifluoroacetone on proton fluxes in the absence of ferricyanide have been characterized in a pH-stat system. The net medium acidification by maize roots was inhibited up to 75% by thenoyltrifluoroacetone in the absence of ferricyanide, while dicumarol inhibited net acidification completely. The inhibition of H+-ATPase activity was estimated with plasma membrane vesicles isolated by phase partitioning and treated with 0.05% (w/v) Brij 58. ATP-dependent proton gradients and Pi release were measured after preincubation with the effectors. The proton pumping activity by those plasma membrane vesicles was inhibited by dicumarol (53.6%) and thenoyltrifluoroacetone (77.8%), while the release of Pi was unaffected by both inhibitors.Abbreviations Brij 58 polyoxyethylene 20-cetyl ether - duroquinone tetramethyl-p-benzoquinone - HCF III hexacyanoferrate III - TTFA thenoyltrifluoroacetone - vitamin K1 2-methyl-3-phytyl-1,4-naphthoquinone - vitamin K3 2-methyl-1,4-naphthoquinone  相似文献   

4.
Summary We investigated changes of thiols (GSH, GSSG, and cysteine) induced by transplasma membrane electron transport after addition of artificial electron acceptors and the influence of the thiol level on redox activity. GSH, GSSG, and cysteine content of maize (Zea mays L. cv. Golden Bantam) roots and coleoptile segments was determined by high performance liquid chromatography with a fluorescence detector. GSSG increased after treatment with 0.8 mM diamide, an SH-group oxidizer. GSH level of roots increased after treatment with diamide, while GSH levels of coleoptiles decreased. Incubation of roots with the GSH biosynthesis inhibitor buthionine-D,L-sulfoximine for 6 days lowered the glutathione level up to 80%. However, the GSH/GSSG ratio of maize roots remained constant after treatment with both effectors. The GSH/GSSG ratio and the glutathione level were changed by addition of artificial electron acceptors like hexacyanoferrate (III) or hexabromoiridate (IV), which do not permeate the plasma membrane. Hexacyanoferrate (III) reduction was inhibited up to 25% after the cellular glutathione level was lowered by treatment with diamide or buthionine-D,L-sulfoximine. Proton secretion induced by reduction of the electron acceptors was not affected by both modulators. The change in glutathione level is different for roots and coleoptiles. Our data are discussed with regard to the role of GSH in electron donation for a plasma membrane bound electron transport system.Abbreviations Buthionine-D,L-sulfoximine s-n-butyl-homocysteine sulfoximine - cys cysteine - diamide 1,1-azobis (N,N-dimethyl-formamide) - DTE dithioerythritol - EDTA ethylenediaminetetraacetic acid - GSH reduced glutathione - GSSG oxidizied glutathione, glutathione disulfide - HBI IV hexabromoiridate (IV) (K2[IrBr6]) - HCF III hexacyanoferrate (III) (K3[Fe(CN)6] - NEM N-ethylmaleimide - PM plasma membrane - Tris Tris(hydroxymethyl)aminomethane  相似文献   

5.
Summary In the present study nitrate uptake by maize (Zea mays L.) roots was investigated in the presence or absence of ferricyanide (hexacyanoferrate III) or dicumarol. Nitrate uptake caused an alkalization of the medium. Nitrate uptake of intact maize seedlings was inhibited by ferricyanide while the effect of dicumarol was not very pronounced. Nitrite was not detected in the incubation medium, neither with dicumarol-treated nor with control plants after application of 100 M nitrate to the incubation solution. In a second set of experiments interactions between nitrate and ferricyanide were investigated in vivo and in vitro. Nitrate (1 or 3 mM) did neither influence ferricyanide reductase activity of intact maize roots nor NADH-ferricyanide oxidoreductase activity of isolated plasma membranes. Nitrate reductase activity of plasma-membrane-enriched fractions was slightly stimulated by 25 M dicumarol but was not altered by 100 M dicumarol, while NADH-ferricyanide oxidoreductase activity was inhibited in the presence of dicumarol. These data suggest that plasma-membrane-bound standard-ferricyanide reductase and nitrate reductase activities of maize roots may be different. A possible regulation of nitrate uptake by plasmalemma redox activity, as proposed by other groups, is discussed.Abbreviations ADH alcohol dehydrogenase - HCF III hexacyanoferrate III (ferricyanide) - ME NADP-dependent malic enzyme - NR nitrate reductase - PM plasma membrane - PM NR nitrate reductase copurifying with plasma membranes  相似文献   

6.
Intact Zea mays L. cv. Golden Bantam seedlings which were not cold adapted were exposed to various temperatures. Trans plasma membrane potential difference was measured in a temperature range from 0 to 40 °C using intracellular microelectrodes. The depolarization caused by electron transfer across the PM to artificial external electron acceptors was investigated. Active membrane potential increased with temperature in the range from 0 to 15 °C but was independent of temperature above 20 °C. Depolarization caused by the non-membrane-permeating electron acceptors hexacyanoferrate III (HCF III) and hexabromoiridate IV (HBIIV) took place over the whole temperature range investigated. The effect of HBI IV increased up to 10 °C whereas the HCF III effects increased up to 25 °C.  相似文献   

7.
The action of the 4-hydroxycoumarins dicumarol and warfarin, antagonists of probable vitamin K type components of the plasma membrane electron-transport system, on plasma membrane redox activity of intact maize roots was compared. Both effectors inhibited electron transfer to extracellular hexacyanoferrate III. While the effect of the strongly lipophilic dicumarol on the electron-transport system was irreversible by rinsing, the inhibition caused by the hydrophilic warfarin could be reverted completely by exchange of the incubation medium. We take these results as possible evidence for the integration of dicumarol into the plasma membrane. The action of warfarin may be confined to enzymic sites freely accessible from the aqueous apoplasmic solution.  相似文献   

8.
Proton-induced x-ray emission was used to investigate the penetration of compounds of the membrane-impermeant electron acceptors hexabromoiridate IV, hexachloroiridate IV, and hexacyanoferrate III into corn (Zea mays L.) roots. Maps of the heavy element distribution in cross-sections of fixed, epoxy-embedded roots showed for hexabromoiridate IV small amounts of Br in samples treated for 24 h with concentrations normally used in physiological experiments (0.02 mM). After treatment with high concentrations (0.8 mM) of these complexes, Fe and Ir as well as Br were found in root cross-sections. In samples taken at a distance of 5 mm behind the root tip, we found an even distribution of Fe, Ir, and Br over the whole cross-section. In samples taken 15 mm behind the root tip, about 99% of both Br and Ir was confined to the rhizodermal cell layer. The distribution did not change with the complex used. These data are consistent with the view that apoplastic diffusion of the electron acceptors was blocked by the hypodermal Casparian band.  相似文献   

9.
Summary Excised roots from aeroponic axenically 48 h dark-grown sunflower (Helianthus annuus L.) seedlings showed redox activities, being able to oxidize/reduce all the exogenously added electron donors/acceptors, that affected the H+/K+ net fluxes simultaneously measured in the medium. Trials were performed with in vivo and CN-poisoned roots; these showed null+/K+ net flux activity but still oxidized/reduced all the e donors/acceptors tested except NADH. NADH enhanced the rate of H+ efflux by in vivo roots, otherwise not changing any of the normal flux kinetic characteristics, suggesting that NADH donates e and H+ to the exocellular NADH oxidoreductase activity of a CN-sensitive redox chain in the plasmalemma of the root cells. K+ influx was not affected, probably because the NADH concentration was not very high. The e donor HFC(hexacyanoferrate)(II) activated the H+ efflux in a very different way: maximum H+ efflux rate was maintained, but both the maximum rate plateau and the optimal pH range were extended, and hence the total H+ efflux was significantly enhanced. At the same time, the K+ influx was doubled. The different H+-efflux kinetics, together with the small but significant HCF(II) oxidation by CN-poisoned roots, were taken as evidence that, besides the CN-sensitive redox chain, an alternative CN-resistant redox chain in the plasmalemma was involved in HCF(II) oxidation. The effect of the oxidized form HCF(III) on H+ and K+ fluxes was the opposite to that described for HCF(II), but the other H+ efflux kinetic characteristics were similar (the maximum rate plateau was extended so that total H+ efflux equaled that of the controls). It is proposed that HCF(III) accepts e only from the alternative CN-resistant redox chain. We could not measure the effect of HCI(hexachloroiridate)(IV) on H+ efflux, as the pH electrodes alone quickly reduced the compound. HCI(IV) promoted a rapid transitory K+ efflux, followed by recovery of K+ influx. The HCI(IV) reduction by in vivo or CN-poisoned roots was extremely rapid, following similar kinetics. Thus, only the CN-resistant redox chain was involved in both cases. The redox chain inhibitor cis-platinum(II) annulled ion fluxes in the presence of both NADH and HCF(III), and later even inverted them (a small H+ influx down the gradient would induce K+ efflux). Cis-platinum(II) did not affect HCF(III) reduction by in vivo roots, and only slightly depressed that by CN-poisoned roots. Overall, the effects of the exogenously added e donors/acceptors tested were consistent with the existence of a CN-resistant redox chain in the plasmalemma of the root cells which would donate/accept e even when the H+ and K+ fluxes were annulled by CN or even inverted by cis-platinum(II) treatments. Thus, in the plasmalemma of in vivo roots this chain would compete for electrons with the normal CN-sensitive one, as in plant mitochondria. The effects on the K+ flux were consistent with the current hypothesis that this contributes to counteracting the changes in membrane potential caused by redox activities and the H+ flux induced by the different redox compounds tested.Abbreviations cis-Pt(II) cis-platinum(II) diammine dichloride - HCF(II) hexacyanoferrate(II) (or ferrocyanide) potassium salt - HCF(III) hexacyanoferrate(III) (or ferricyanide) potassium salt - HCI(IV) hexachloroiridate(IV) - PMOR plasmalemma oxidoreductase complex  相似文献   

10.
Summary The occurrence of a vitamin-K-like substance (naphthoquinone group) and flavins (flavin mononucleotide and flavin adenine dinucleotide) is demonstrated in plasma membranes isolated from maize (Zea mays L.) roots, on the basis of high-pressure liquid chromotography and spectral analysis. At least three NAD(P)H dehydrogenases could be purified to homogeneity from this plant material. Two of these proteins (25 and 30 kDa) reduce hexacyanoferrate III and quinones, while the third (41 kDa) reduces oxalacetic acid but not hexacyanoferrate III in the presence of NADH. Low-temperature spectra demonstrate the occurrence of a b-type cytochrome in plasma membranes isolated from maize roots. The latter compound could be reduced by ascorbic acid (E0 > +80 mV) and shows an -band maximum at 559 nm (at –196 °C). NADH-dependent cytochromeb reduction could be observed only in the presence of detergent and increased after preincubation with vitamin K3 (menadione). On the basis of the presented data a possible function of naphthoquinones in plasma membrane electron transfer is discussed.Abbreviations Brij 58 polyoxyethylene 20 cetyl ether - Coenzyme Q10 ubiquinone-50 - duroquinone tetramethyl-p-benzoquinone - E0 standard redox potential - Na2EDTA ethylenediaminetetraacetic acid disodium salt - HEPES N-[2-hydroxyethyl]piperazine-N[2-ethane-sulfonic acid] - juglone 5-hydroxy-1,4-naphthoquinone - PMSF phenylmethylsulfonyl fluoride - vitamin K1 2-methyl-3-phyty 1-1,4-naphthoquinone - vitamin K3 2-methyl-1,4-naphthoquinone  相似文献   

11.
Hexachloroiridate IV, a new artificial electron acceptor for the constitutive plant plasma membrane redox system has been investigated. It appeared not to permeate through biological membranes. Due to its higher redox potential, it is a more powerful electron acceptor than hexacyanoferrate III (ferricyanide) and even micromolar concentrations are rapidly reduced. Hexachloroiridate IV increased H+ efflux over a concentration range of 0.05 to 0.1 millimolar. Lower concentrations slightly inhibited proton extrusion. Calcium stimulated both proton and electron transfer rates. Like hexacyanoferrate III-reduction, irridate reduction was inhibited by auxin.  相似文献   

12.
Electron transport across plasma membranes has been observed in vivo in several plant species and tissues after the application of ferricyanide (hexacyanoferrate III, HCF III). In the present work, a transmembrane electron flow was demonstrated in sealed and NAD(P)H-loaded right-side-out (apoplastic-side-out) plasma membrane vesicles isolated from maize (Zea mays L.) roots. HCF III was reduced at a rate of up to 126 nmol min(-1) mg(-1) protein by NADPH-loaded vesicles, while reduction rates with NADH-loaded vesicles were several-fold lower. Coincident with the reduction of HCF III, NAD(P)H oxidation was observed inside the vesicles. The dependence of reduction on K+ indicated an electrogenic transmembrane electron flow. Application of 100 microM calcium decreased HCF III reduction up to 66%, while pre-incubation with 200 microM warfarin or diphenylene iodonium inhibited transmembrane electron transport only weakly. Fe(3+)-EDTA was not reduced significantly by NADPH-loaded plasma membrane vesicles, whereas XTT was reduced at a rate of 765 pmol min(-1) mg(-1) protein. The results suggested a major function for NADPH in transmembrane electron flow and were discussed in conjunction with in vivo experiments.  相似文献   

13.
J Pnitz  W Roos 《Journal of bacteriology》1994,176(17):5429-5438
Hyphal cells of three fungal species of the genus Penicillium reduced the nonpermeable, external electron acceptor hexabromoiridate IV (HBI IV). In Penicillium cyclopium, the rate of HBI IV reduction by hyphal cells was drastically increased by the addition of beta-glucose. The stimulation showed high specificity for this sugar and did not require its uptake and cellular metabolism. Cell wall oxidases (e.g., glucose oxidase) did not seem to be involved in the reduction of HBI IV, as no measurable H2O2 was formed from added glucose and removal of oxygen had no effect. We propose that there is a glucose-binding component outside the plasma membrane which controls transmembrane electron fluxes in response to external glucose. Reduction of HBI IV was accompanied by rapid acidification of the cellular interior (measured by confocal pH topography). Subsequently, the outer medium was acidified of the cellular interior (measured by confocal pH topography). Subsequently, the outer medium was acidified with an e-/H+ stoichiometry of > 1. In plasma membrane vesicles containing endogenous electron donors, the membrane-residing fluoroprobe Di-8-ANEPPS reported a transient depolarization of the membrane potential triggered by the external electron acceptor. Inhibitors of ATP-dependent proton pumping enhanced the extent of this depolarization, inhibited the subsequent normalization of membrane potential, and, in whole cells, reduced the amount of redox-triggered proton extrusion. From these and other findings, it is concluded that the observed trans-plasma membrane redox process activates the H(+)-ATPase via membrane depolarization and cytosolic acidification.  相似文献   

14.
Summary The influence of exogenous potassium hexacyanoferrate (III) (HCF III) on elongation of maize (Zea mays L.) coleoptile segments was investigated. Addition of HCF III led to a strong stimulation of growth both in the presence and absence of indole-3-acetic acid (IAA). The magnitude of growth stimulation was dependent on the presence of IAA, HCF III concentration, incubation time, and phase growth. The reduced form, potassium hexacyanoferrate (II), was without effect on growth. In the presence of HCF III, elongation was suppressed when coleoptile segments were treated with N,N-dicyclohexylcarbodiimide, cycloheximide or atebrine (quinacrine). The addition of HCF III stimulated the IAA-induced proton extrusion, and the e/H+ ratio decreased with incubation time. HCF III also strongly stimulated elongation ofAvena saliva L. coleoptile segments andGlycine max L. hypocotyl segments. These results suggested that a plasma membrane redox system (NADH oxidase type I) may be involved in the regulation of growth through the activity of the plasma membrane-bound ATPase.Abbreviations CH cycloheximide - DCCD N,N-dicyclohexylcarbodiimide - HCF III potassium hexacyanoferrate (III) (potassium ferricyanide) - HCF II potassium hexacyanoferrate (II) (potassium ferrocyanide) - IAA indole-3-acetic acid  相似文献   

15.
The euryhaline charophyte Lamprothamnium papulosum has the abilityto reduce the extracellular electron acceptor ferricyanide (Fe3+Cy).Addition of 0.5 mol m–3 Fe3+Cy stimulated H+-efflux ata rate of 0.8 H+/Fe3+Cy-reduced and increased K+-efflux intoa potassium-free medium at a rate of 0.66 K+/Fe3+Cy-reduced.0.5 mol m–3 Fe3+Cy-induced maximum membrane depolarizationfor cells with resting potentials more negative than the diffusionpotential. The peak value of Fe3+Cy-induced depolarizationswas similar to the potential obtained by poisoning the electrogenicpump with DCCD. The value of maximum depolarization was determinedby (K+)0. Em tended to more positive values with increasing(K+)0. Depolarizations coincided with a decrease in membraneresistance (Rm) from a resting value of 1.5 m2 to 0.2 m2 inthe depolarized state. Depolarization increased the sensitivityof the membrane potential (Em) to (K+)0. The resting potentialwas only slightly changed when (K+)0 was increased from 3 to15 mol m–3. The Fe3+ Cy-induced depolarized Em changedin a Nernstian fashion when (K+)0 was increased. It is concludedthat Fe3+Cy reduction causes a net depolarization current flowacross the plasmalemma. The depolarization shifts the membranefrom a hyperpolarized pump dominated state into a depolarizedK+ diffusion state. Key words: Ferricyanide reduction, membrane potential, Lamprothamnium  相似文献   

16.
Light-induced changes of cytosolic pH (pHc) and the plasmalemmapotential (Em) in dark-adapted leaf cells of the aquatic plant,Egeria densa were measured simultaneously with double-barreledpH-sensitive microelectrodes. Upon illumination, pHc increasedtransiently and then decreased to a level that was lower thanthe original value, while the plasmalemma was greatly hyperpolarizedafter an initial small depolarization. DCMU inhibited the light-inducedchanges in both pHc and Em. DCMU acted without directly inhibitingthe electrogenic proton pump in the plasmalemma since a decreasein pHc caused by treatment with butyrate (H+-loading) hyperpolarizedthe plasmalemma in DCMU-pretreated cells. N.N-Dicyclohexylcarbodiimide(DCCD) also inhibited the light-induced changes in both pHcand Em. This result may be explained by direct inhibition ofthe proton pump in the plasmalemma by DCCD since the decreasein pHc caused by butyrate did not induce membrane hyperpolarizationin DCCD-treated leaf cells. Fusicoccin induced membrane hyperpolarizationand slight acidification of the cytosol. DCCD inhibited thefusicoccin-induced changes in both pHc and Em. The mechanismof the light-induced changes in pHc is discussed in relationto activities of the proton pump in the plasmalemma and photosynthesis. (Received January 10, 1994; Accepted June 9, 1994)  相似文献   

17.
Root excision fromTriticum vulgare L. var.muticum seedlings induced a membrane potential drop, homeostasis disturbances, and loss of absorbing capacity in roots. During subsequent 3 - 4 h incubation the initial physiological properties of the roots were restored. At that period K+absorption could be blocked by tetraethylammonium (TEA) without changing pH of the incubation medium. After 5 - 6 h of incubation the membrane hyperpolarization and the enhancement of the absorbing capacity were observed. At that period K+ influx, at presence or absence of valinomycin in incubation medium, was coupled with acidification of the external medium and was not blocked by TEA.  相似文献   

18.
S. Lüthje  M. Niecke  M. Böttger 《Protoplasma》1995,184(1-4):145-150
Summary Plasma membranes of maize (Zea mays L., cv. Sil Anjou 18) roots were isolated by aqueous two-phase partitioning. Multi elemental analysis by proton induced X-ray emission (PIXE) was used for the investigation of elemental composition of plasma membranes. Fe, Cu, and Zn as well as P, S, and Ca were identified. We did not find significant amounts of V, Mn, Se, Mo, or W.Abbreviations EDTA ethylenediaminetetraacetic acid - HCF III hexacyanoferrate III (ferricyanide, K3[FeCN6]) - Hepes 2-[4-(2-hydroxyethyl)-1-piperazine]-ethanesulfonic acid - PIXE proton induced X-ray emission (proton microprobe) - STA siliciotungstic acid - Tris tris (hydroxymethyl)aminomethane  相似文献   

19.
Vitamin B6 is essential for cellular functions and growth due to its involvement in important metabolic reactions. Humans and other mammals cannot synthesize vitamin B6 and thus must obtain this micronutrient from exogenous sources via intestinal absorption. The intestine, therefore, plays a central role in maintaining and regulating normal vitamin B6 homeostasis. Due to the water-soluble nature of vitamin B6 and the demonstration that transport of other water-soluble vitamins in intestinal epithelial cells involves specialized carrier-mediated mechanisms, we hypothesized that transport of vitamin B6 in these cells is also carrier mediated in nature. To test this hypothesis, we examined pyridoxine transport in a model system for human enterocytes, the human-derived intestinal epithelial Caco-2 cells. The results showed pyridoxine uptake to be 1) linear with time for up to 10 min of incubation and to occur with minimal metabolic alteration in the transported substrate, 2) temperature and energy dependent but Na+ independent, 3) pH dependent with higher uptake at acidic compared with alkaline pHs, 4) saturable as a function of concentration (at buffer pH 5.5 but not 7.4) with an apparent Michaelis-Menten constant (Km) of 11.99 ± 1.41 µM and a maximal velocity (Vmax) of 67.63 ± 3.87 pmol · mg protein-1 · 3 min-1, 5) inhibited by pyridoxine structural analogs (at buffer pH 5.5 but not 7.4) but not by unrelated compounds, and 6) inhibited in a competitive manner by amiloride with an apparent inhibitor constant (Ki) of 0.39 mM. We also examined the possible regulation of pyridoxine uptake by specific intracellular regulatory pathways. The results showed that whereas modulators of PKC, Ca+2/calmodulin (CaM), and nitric oxide (NO)-mediated pathways had no effect on pyridoxine uptake, modulators of PKA-mediated pathway were found to cause significant reduction in pyridoxine uptake. This reduction was mediated via a significant inhibition in the Vmax, but not the apparent Km, of the pyridoxine uptake process. These results demonstrate, for the first time, the involvement of a specialized carrier-mediated mechanism for pyridoxine uptake by intestinal epithelial cells. This system is pH dependent and amiloride sensitive and appears to be under the regulation of an intracellular PKA-mediated pathway. vitamin B6; intestinal transport; transport regulation; Caco-2 cell  相似文献   

20.
Steigner, W. Khler, K., Simonis, W. and Urbach, W. 1988. Transientcytoplasmic pH changes in correlation with opening of potassiumchannels in Eremosphaera.—J. exp. Bot. 39: 23–36. The role of the cytoplasmic pH (pHc) of Eremosphaera viridisin the signal transduction chain after light-off from the chloroplaststo the K+ channels in the plasmalemma of this unicellular algawas investigated. The temporary opening of K+ channels is indicatedby a transient hypcrpolarization (TP). To record rapid changesof pHc, continuous measurements with pH sensitive micro-electrodeswere carried out. (i) Under normal conditions pHc in the light(7·56 ±0·2) did not differ from pHc inthe dark (7·62 ±0·2). (ii) The vacuolepH ranged between 4·8 and 5·2. (iii) After light-offa rapid transient acidification of pHc O19±0·07occurred and a TP was released, (iv) In every case, the startof the transient acidification after light-off preceded thehyperpolarization by about 3s. (v) Light-on caused a rapid transientalkalinization but never a TP. (vi) Change to acid externalmedium (3.2) transiently acidified the cytoplasm and was ableto release a TP. (vii) After addition of NH4Cl, pHc again showeda rapid transient acidification and the release of a TP. The origin of the protons appearing in the cytoplasm after light-offis discussed critically with respect to the buffer capacity.Either direct or indirect translocation is a possible mechanismfor the movement of H+ from the chloroplasts into the cytoplasm.The intracellular acidification and its relation to the openingof potassium channels in the plasmalemma leads us to suggestthat a sudden change of pHc is a potent internal signal factorin Eremosphaera viridis. Key words: Cytoplasmic pH, transient potential, K+–channels, Eremosphaera viridis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号