首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure-that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method-that is, embryos were first pretreated in 10%E + 10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E + 10%D for 0.5 min, exposed to EDFS30for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

2.
This study was performed to pursue the optimal condition for the cryopreservation of mouse morulae by a two-step OPS method and to investigate the feasibility of the optimal condition for vitrification of embryos at other developmental stages. First, the mouse morulae were vitrified in OPS using one-step procedure—that is, embryos were vitrified after direct exposure to EDFS30 (15% ethylene glycol (EG), 15% dimethyl sulfoxide (DMSO), Ficoll and sucrose), or two-step method—that is, embryos were first pretreated in 10%E+10%D (10% EG and 10% DMSO in mPBS) for 30 sec, then exposed to EDFS30 for 15 to 60 sec, respectively. After vitrification and warming, the embryos were morphologically evaluated and assessed by their development to blastocysts, expanded/hatched blastocysts, or to term after transfer. The result showed that all the vitrified-warmed morulae had similar blastocyst rate compared to that of control (91.7% vs. 100%), and the highest developmental rate to expanded blastocysts (100%) or hatched blastocysts (62.3%) was observed when the morulae were pretreated with 10%E+10%D for 0.5 min, exposed to EDFS30 for 25 sec before vitrification and warming in 0.5 M sucrose for 5 min. After transfer, the survival rate (33.1%) in vivo of the vitrified morulae was higher (P > 0.05) than that of the fresh embryos (24.6%). Secondly, embryos at different stages were cryopreserved and thawed following the above program. Most (93.4 to 100%) of the embryos recovered after vitrification were morphologically normal at all the developmental stages. The blastocyst rates of the vitrified one-cell (52.5 to 66.7%) and the two-cell (63.3 to 68.9%) embryos were lower (P < 0.05) than those of the vitrified four-cell embryos (81.7 to 86.4%), the eight-cell embryos (90.0 to 93.3%), morulae (96.7 to 100%), and the expanded blastocysts rate (98.3 to 100.0%) of the vitrified early blastocysts. The highest survival rate in vivo of vitrified embryos were from the early blastocysts (40.4%), which was similar to that of fresh embryos (48.6%). The data demonstrate that the optimal protocol for the cryopreservation of morulae was suitable for the four-cell embryos to early blastocyst stages and that the early blastocyst stage is the most feasible stage for mouse embryo cryopreservation under our experimental conditions.  相似文献   

3.
The aim of this work was to investigate the possibilities of simplification, and to outline the limits of application, of a vitrification method for cow embryos. Morulae and blastocysts were produced by in vitro fertilization of slaughterhouse-derived, in vitro matured oocytes with frozen-thawed bull semen, and subsequent culture on a granulosa cell monolayer. Vitrification was performed by equilibration of embryos with 12.5% ethylene glycol and 12.5% dimethylsulphoxide at 20–22°C for 60 s, then with 25% ethylene glycol and 25% dimethylsulphoxide at 4°C for another 60 s. Embryos were then loaded in straws, placed in liquid nitrogen vapour for 2 min, and then plunged. Straws were thawed in a 22°C water-bath, the embryos were directly rehydrated and further incubated in straw, and were then expelled and cultured in vitro for 72 h. In the first experiment, embryos of different age and developmental stage (Day 5 compacted morulae, Day 6 early blastocysts, Days 6 and 7 blastocysts, Day 7 expanded blastocysts and Day 8 hatched blastocysts) as well as Days 7 and 5 blastocysts previously subjected to partial zona dissection were vitrified. After thawing, the re-expansion rates of blastocysts and zona-dissected embryos did not differ (67 and 87%, respectively), and hatching was more frequent for blastocysts frozen in advanced developmental stages (34, 47 and 63% for early blastocysts, blastocysts and expanded blastocysts, respectively). The re-expansion rate of morulae was lower (10%) and no hatching of these embryos was observed. In the second experiment, Day 7 expanded blastocysts were vitrified using PBS, PBS + albumin, TCM199 and TCM199 + calf serum as holding media. No differences in re-expansion and hatching rates were seen. However, when incubation with the concentrated cryoprotectant solution was performed at 20–22°C, the embryo survival rate decreased (PBS + albumin) or no embryo survived (TCM199 + calf serum) the vitrification procedure. In the third experiment, Day 7 expanded blastocysts were vitrified, thawed, cultured for 1 day, and then re-expanded embryos were again vitrified and thawed. Out of the 87% that survived the first cycle, 73% re-expanded and 47% hatched following the second vitrification and thawing. These observations prove that the vitrification procedure described is relatively harmless, that it can be used for blastocysts of different developmental stages and that an intact zona is not required to obtain high survival rates.  相似文献   

4.
This study was designed to examine the relationship between the speed at which bovine embryos reach the blastocyst stage, their cell number, and interferon-τ production. A total of 800 oocytes were fertilized by frozen-thawed semen. On day 2, 44 hr after exposure to sperm, 78, 320, and 296 embryos were at the two-, four-, and eight-cell stages, respectively, with an overall cleavage rate of 86.8%. Within these three groups 15 (19.2%), 106 (33.1%), and 158 (53.4%) embryos proceeded to the blastocyst stage. Of these 46.7%, 65.1%, and 63.3% hatched in the three groups, respectively. Blastocysts began to appear at day 7, but a few did not form until as late as day 13. Expanded blastocysts (n = 279) were cultured individually for 48 hr in 50-μl droplets of medium, fixed for cell counts, and the concentration of interferon-τ in the medium was determined. Blastocysts originating from two-cell embryos had significantly fewer cells (46.5 ± 23.3) than either four-cell- (97.2 ± 13.5) or eight-cell-derived embryos (113.8 ± 13.6; P < 0.05). Hatching was accompanied by an increase in cell number (129.8 ± 15.5 versus 41.9 ± 14.4; P < 0.01). Blastocysts derived from embryos that had reached the eight- or four-cell stage 44 hr after insemination produced significantly more interferon than embryos derived from two-cell embryos (941.7 ± 92.1, 930.1 ± 163.1, versus 232.8 ± 70.1 pM). In contrast, hatching, ovary batch, the speed of early cleavage, cell number, and quality grade had no effect on interferon-τ secretion. The embryo's age at blastocyst formation was not related to the number of its cells but did have a significant effect (P < 0.001) on interferon-τ production, with mean concentrations in the medium of 294.8 ± 57.9, 563.3 ± 82.0, 1126.3 ± 133.6, 1778.5 ± 297.2, 512.9 ± 82.0, 315.0 ± 157.5, and 157.5 pM among blastocysts appearing from days 7 to 13, respectively. These data suggest that blastocysts that form at days 7 and 8 produce less interferon-τ than those that form on days 9 or 10. Since early-forming blastocysts are generally considered more developmentally competent than those which form late, there may be a negative relationship between early interferon-τ production and competence. Mol. Reprod. Dev. 49:254–260, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Noninvasive measurements of bovine embryo quality, such as timing of cleavage, morula morphology, blastocyst formation, and hatching ability, were linked with the number of inner cell mass (ICM) cells and trophectoderm (TE) cells of the resulting embryos. First, it was confirmed that fast-cleaving embryos proved to have significantly higher chances to reach advanced developmental stages vs. intermediate and slow cleavers (P = 0.01). They also showed significantly less fragmentation at the morula stage, implying the presence of more excellent morulae among fast-cleaving embryos (P < 0.05). Second, the quality of hatched blastocysts, resulting from morulae of different morphological grades, was examined by differential staining. The total cell and ICM cell numbers were significantly lower for hatched blastocysts developed from poor morulae compared to hatched blastocysts developed from excellent, good, or fair morulae. However, hatched blastocysts with <10 ICM cells were seen in embryos belonging to all four morphological scores. Finally, it was found that timing of first cleavage was not significantly correlated with timing of blastocyst formation or with cell number of blastocysts. Timing of blastocyst formation, however, was significantly correlated with cell number: day 8 blastocysts had significantly lower total cell and ICM cell numbers than day 6 and day 7 blastocysts (P < 0.001). These results suggest that the quality of in vitro-produced bovine embryos is very variable and cannot be linked with a single criterion such as embryo morphology and/or hatching ability. Timing of blastocyst formation was the most valuable criterion with regard to embryonic differentiation. Mol. Reprod. Dev. 47:47–56, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
This study examined the effects of fetal calf serum (FCS) supplementation of culture medium on blastulation and hatching of bovine morulae cultured in vitro. The presumptive zygotes derived from in vitro maturation and fertilization (IVM/IVF) were cultured in the modified synthetic oviduct fluid medium containing 3 mg/ml BSA (mSOF-BSA). At 120 h post insemination, morulae were randomly assigned to culture with mSOF-BSA (control) or mSOF containing 5% FCS (mSOF-FCS) instead of BSA. The replacement of BSA with FCS in mSOF significantly increased the percentage of blastocyst formation from Day 6 to Day 10 (Day 0 = the day of in vitro insemination) and the hatching rate of embryos on Days 8 and 9. The total number of cells in morulae and blastocysts on Day 6, in blastocysts on Day 7, and in blastocysts and hatched blastocysts on Day 8 were similar among the treatments. However, the replacement of BSA with FCS in mSOF significantly increased the total number of cells in hatched blastocysts on Day 10. Although the time of blastulation of embryos was significantly accelerated by the replacement of BSA with FCS in mSOF, the total number of cells in embryos at blastulation was lowered. The total number of cells in embryos at blastulation showed a time-dependent decrease when the embryos were cultured in mSOF-BSA. In contrast, the total number of cells in embryos that were cultured in mSOF-FCS depended little on the time after in vitro insemination. The results indicate that FCS supplementation of culture medium increased the percentage of embryos developing to the blastocyst stage without an increase in the total number of cells. However, an acceleration in the hatching rate and an increase in the total number of cells in hatched blastocysts were observed, compared with that in BSA-supplemented medium. It is suggested that FCS in the culture medium initiates earlier blastulation with fewer total numbers of cells in the morulae than BSA during in vitro culture of bovine embryos.  相似文献   

7.
This study attempts to assess the developmental importance of cell surface glycoconjugates of preimplantation mouse embryos. This was done by incubating early embryos in various lectins and analyzing subsequent development. If specific cell surface glycoconjugates (lectin receptors) are linked to specific developmental processes, such as cell division, compaction, and blastocyst formation, then different lectins should block these different developmental processes. The results show that wheat-germ agglutinin (WGA; N-acetyl-D-glucosamine-specific) at 50 μg/ml prevents the cell division of four-cell embryos. However, this effect of WGA occurs only in embryos with intact zonae pellucidae. Concanavalin A (Con A; α-D-glucose and α-D-mannose-specific) treatment, 20 μg/ml, of four-cell or early eight-cell embryos prevents compaction, the first major change in cell shape in early mouse embryogenesis. Divalent succinly Con A does not affect development, suggesting that the Con A effect is due to crosslinking of cell surface glycoconjugates. Exposure of four-cell or early eight-cell embryos to 10 μg/ml Lotus Tetragonolobus puprureas agglutinin (LTA; α-L-fucose-specific) or 25 μg/ml Limulus polyphemus agglutinin (LPA; sialic acid-specific) allows compaction or development to the morula stage, but blocks blastocyst formation. All lectins tested retard cell division to some extent. Late morulae and early blastocysts are more resistant than earlier stages to all of the lectins studied. This study demonstrates that very low concentrations of these lectins affect different developmental processes, presumably based upon their sugar specificities.  相似文献   

8.
Herr CM  Wright R 《Theriogenology》1988,30(1):159-168
Mouse embryos of different stages of development were cultured to expanded blastocysts following storage (1 to 8 d) at 4 degrees C in the presence or absence of HCO(3)(-). The effect of oxygen tension on the cold storage of one- and two-cell mouse embryos at 4 degrees C was evaluated by 37 degrees C culture and transfer to pseudopregnant recipients. Survival at 4 degrees C of early, one- to four-cell mouse embryos was improved with HCO(3)(-) in the medium. The presence of HCO(3)(-) was not of benefit for morulae or blastocyst survival following cold storage. Reducing the oxygen atmosphere from 20 to 5% O(2) improved survival of one-cell mouse embryos stored at 4 degrees C. The survival of two- and four-cell embryos, morulae and blastocysts at 4 degrees C was similar in 90% N(2), 5% CO(2) and 5% CO(2) in air, but it was significantly poorer in air alone. The collapse of morulae and blastocysts during cold storage up to 5 d was reduced with HCO(3)(-) in the storage medium. Blastocysts stored for 6 d at 4 degrees C failed to survive following immediate transfer to pseudopregnant recipients. Blastocyst survival was improved compared to controls (direct transfer of unstored blastocysts to recipients) when cultured for 36 h at 37 degrees C following 6 d of cold storage. This result suggests that cold-stored mouse blastocysts may require a metabolic period of readjustment to survive following transfer to synchronized recipients.  相似文献   

9.
Summary The cleavage of fertilized mouse eggs was prevented during cytochalasin B incubation and consequently these eggs became tetraploid the following day during in vitro culture. When the eggs were cultured further in normal medium, they cleaved and gave rise to tetraploid blastocysts. Protein synthesis was analysed in these embryos at different developmental stages using two-dimensional polyacrylamide gel electrophoresis. The protein synthesis pattern of one-cell tetraploid eggs was intermediate between those of normal one- and two-cell embryos. Tetraploid two-cell embryos expressed protein sets equivalent to those of untreated four-cell embryos, and tetraploid four-cell embryos synthesized proteins similar to those of four- to eight-cell controls. At subsequent pre-implantation stages the asynchrony was no longer detectable. When fertilized eggs were cultured continuously in the presence of cytochalasin B, they became tetraploid, octoploid and more and more polyploid without cleavage occurring. The protein synthesis patterns expressed by these one-cell polyploid eggs did not resemble that of normal fertilized eggs, but were similar to those of cleaving control embryos and blastocysts of equivalent age and nuclear division. These results strongly suggest that in early mouse embryos stage-specific translation is temporally correlated with chromosome replication (karyokinesis) and independent of cell division (cytokinesis) or cell interaction.Some of these results were presented at the IX Congress of the International Society of Developmental Biologists in Basle, Switzerland, August 28–September 1, 1981  相似文献   

10.
To determine the best developmental stage of donor embryos for yielding the highest number of clones per embryo, we compared the efficiencies of nuclear transfer when using blastomeres from morulae or morulae at cavitation, or when using inner-cell-mass cells of blastocysts as nuclear donors. This comparison was done both on in vivo-derived and in vitro-produced donor embryos. In experiment 1, with in vivo-derived donor embryos, nuclei from morulae at cavitation supported the development of nuclear transfer embryos to the blastocyst stage (36%) at a rate similar to that of nuclei from morulae (27%), blastomeres from morulae at cavitation being superior (P < 0.05) to inner-cell-mass cells from blastocysts (21%). The number of blastocysts per donor embryo was significantly (P < 0.05) higher when using nuclei from morulae at cavitation (15.7 ± 4.1) rather than nuclei from morulae (9.8 ± 5.5) or blastocysts (6.3 ± 3.3). With in vitro-produced donor embryos (experiment 2), nuclei from morulae yielded slightly more blastocysts (32%) than nuclei from morulae at cavitation (29%), both stages being superior to nuclei from blastocysts (15% development to the blastocyst stage). Morulae at cavitation yielded a higher number of cloned blastocysts per donor embryo (11.5 ± 5.9) than did morulae (9.3 ± 3.2) and blastocysts (3.3 ± 1.4). Transfer of cloned embryos originating from in vivo-derived morulae, morulae at cavitation, and blastocysts resulted in four pregnancies (10%), three pregnancies (7%), and one (17%) pregnancy on day 45. The corresponding numbers of calves born were 3 (4%), 3 (7%), and 0, respectively. After transfer of blastocysts derived from in vitro nuclear donor morulae (n = 16) and morulae at cavitation (n = 7), two (20%) and two (50%) recipients, respectively, were pregnant on day 45. However, transfer of seven cloned embryos from in vitro donor blastocysts to three recipients did not result in a pregnancy. Using in vitro-produced donor embryos, calves were only obtained from morula-stage donors (13%). Our results indicate that the developmental stage of donor embryos affects the efficiency of nuclear transfer, with morulae at cavitation yielding a high number of cloned blastocysts. © 1996 Wiley-Liss, Inc.  相似文献   

11.
In this study, three different vitrification systems (open pulled straw: OPS; superfine open pulled straw: SOPS; and Vit-Master technology using SOPS: Vit-Master-SOPS) were compared in order to investigate the influence of cooling rate on in vitro development of vitrified/warmed porcine morulae, early blastocysts, or expanded blastocysts. Embryos were obtained surgically on Day 6 of the estrous cycle (D0 = onset of estrus) from weaned crossbred sows, classified and pooled according their developmental stage. A subset of embryos from each developmental stage was cultured to evaluate the in vitro development of fresh embryos; the remaining embryos were randomly allocated to each vitrification system. After vitrification and warming, embryos were cultured in vitro for 96 h in TCM199 with 10% fetal calf serum at 39 degrees C, in 5% CO(2) in humidified air. During the culture period, embryos were morphologically evaluated for their developmental progression. The developmental stage of embryos at collection affected the survival and hatching rates of vitrified/warmed embryos (P < 0.001). The vitrification system or the interaction of vitrification system and developmental stage had no effect on these parameters (P > 0.05). Vitrified expanded blastocysts showed the best development in vitro (P < 0.001), with survival and hatching rates similar to those of fresh expanded blastocysts. The hatching rate of fresh morula or early blastocyst stage embryos was higher than their vitrified counterparts. In conclusion, under our experimental conditions, cooling rates greater than 20,000 degrees C/min, as occurs when SOPS or Vit-Master-SOPS systems are used, do not enhance the efficiency of in vitro development of vitrified porcine embryos.  相似文献   

12.
The influence of bovine serum albumin (BSA) concentration on embryo hatching and the number of embryos cultured per drop of culture medium was examined in F1 (C57BL/6J × DBA/2J), C3HeB/FeJ strain and Line E mice. Embryos collected from F1 and Line E mice exhibited uniform hatching rates at BSA concentrations between 1 and 10 mg/ml, and embryo numbers ranging from 1 to 10 per 3 μ1 of culture medium. The hatching of C3HeB/FeJ blastocysts was greater at the higher concentrations of BSA and higher embryo densities. When the C3HeB/FeJ embryos were grown at high densities until morula and then cultured singly in fresh media they hatched at a low rate. However, when allowed to develop until the blastocyst stage before replotting, the embryos hatched at a high rate. C3HeB/FeJ embryos cultured singly until morula and then placed in groups of 10 hatched at a high rate. Single C3HeB/FeJ embryos, cultured in medium conditioned by the prior presence of embryos at high densities, hatched at a slightly higher frequency than those cultured in fresh medium. There was no tendency of embryos developing from the two-cell to the eight-cell stages to hatch when cultured in the presence of high densities of hatching blastocysts.  相似文献   

13.
Summary Bovine granulosa cell — conditioned medium (BGC-CM) was prepared in a serum-free medium consisting of TCM 199, 5μg/ml insulin, and 0.5μg/ml aprotinin (TCM 199 IAP). Granulosa cells surrounded with embryos were denuded 24 to 30 h after in vitro fertilization. The proportion of denuded granulosa cell-free embryos that developed to the blastocyst stage in BGC-CM (43/219; 20%) as well as in the co-culture system (43/178; 24%) was significantly greater (P<0.001) than in fresh TCM 199 IAP medium (FM: 10/191; 5%), whereas the proportion of embryos that developed to the eight-cell stage was similar (P>0.05) in all three culture systems (95/178; 53% in co-culture, 111/219; 51% in BGC-CM, and 86/191; 45% in FM, respectively). Higher rates of hatching and hatched blastocysts 8.5 days after in vitro fertilization were observed in co-culture (13/44; 29.5%) and in conditioned medium (8/39; 20.5%). On the other hand, no hatching or hatched blastocysts were obtained in the fresh medium (0.7; 0%). Cell numbers per blastocyst in BGC-CM (178.3 cells/blastocyst) were approximately two-fold higher than those in FM (97.1 cells/blastocyst). However, higher cell numbers (249.3 cells/blastocyst) were observed in co-culture with BGC than in BGC-CM. The embryotrophic activity in BGC-CM was stable upon freezing and thawing, lyophilization, and heating at 56° C whereas activity was reduced by dilution in fresh medium, dialysis, pronase digestion, and heating at 80° C. These results suggest that BGC cultured in a serum-free medium can synthesize and secrete an embryotrophic factor(s) that supports blastocyst formation in vitro beyond the 8- to 16-cell stage.  相似文献   

14.
Early embryonic development and in vitro culture of in vivo produced embryos in the farmed European polecat (Mustela putorius) was investigated as a part of an ex situ conservation program of the endangered European mink (Mustela lutreola), using the European polecat as a model species. The oestrus cycles of 34 yearling polecat females were monitored by visual examination of the vulval swelling and, to induce ovulation, the females were mated once daily on two consecutive days. Sixteen yearling males were used for mating. The females were humanely killed 3-14 days after the first mating and the uteri and oviducts were collected for embryo recovery. Uterine and oviductal flushings yielded a total number of 295 embryos, representing developmental stages from the 1-cell stage to large expanded and hatched blastocysts. On Day 3 after the first mating, only 1-16-cell stage embryos were recovered. Between Days 4 and 6 after the first mating, 1-16-cell stage embryos and morulae were found. The first blastocysts were recovered on Day 7 after the first mating. The first implanted blastocysts were detected on Day 11 after the first mating. A total number of 85 embryos were in vitro cultured after recovery. Blastocyst production rates for in vitro cultured 1-16-cell stage embryos and for morulae/compact morulae were 68 and 84%, respectively. For all cultured embryos, the hatching rate was 15%. The in vitro culture requirements for the preimplantation embryos of the farmed European polecat remain to be determined before further utilization of the technique.  相似文献   

15.
Two- to four-cell and eight-cell mouse embryos were incubated in various fucosylated and unfucosylated oligosaccharides, fucose binding protein, and fucosylated BSA. Compaction at the eight-cell stage was reversed by a mixture containing the oligosaccharides lacto-N-fucopentaose II (80-90%), in which fucose is linked alpha(1-4) to N-acetylglucosamine, and lacto-N-fucopentaose III (10-20%), in which fucose is linked alpha(1-3) to N-acetylglucosamine. Pure lacto-N-fucopentaose III (LNFP III) and 3-fucosyl lactose (containing fucose alpha(1-3)glucose) had a similar effect. All three molecules affected blastocyst formation. Various closely related fucosylated and unfucosylated oligosaccharides did not induce decompaction or inhibit blastocyst formation. The proportion of embryos incubated from the two- to four-cell stage in LNFP II/III which reached the eight-cell stage and formed blastocysts was reduced. Those which formed compact morulae subsequently decompacted. Precompact or early compacting eight-cell embryos incubated in LNFP II/III compacted normally but subsequently decompacted and failed to form blastocysts. Decompaction of eight-cell embryos in LNFP II/III occurred during a specific period of development (80-90 hr post-hCG) and was reversible up to 84-86 hr post-hCG, but not by 92 hr post-hCG. The period of sensitivity to LNFP II/III was associated with the decrease in the ability of calcium-free medium to cause decompaction. It appears that LNFP II/III interferes with a later calcium-independent phase of compaction and we propose that LNFP III and II inhibit an endogenous lectin-saccharide interaction between membranes involved in the stabilization of compaction.  相似文献   

16.
Koo DB  Kim NH  Lee HT  Chung KS 《Theriogenology》1997,48(5):791-802
The objective of this study was to determine the effects of fetal calf serum (FCS), non-essential MEM amino acids, MEM vitamins and insulin on blastocoel formation, expansion and hatching in porcine embryos developing in vitro. Addition of 20% FCS to the NCSU 23 medium significantly (P < 0.05) decreased by the compaction and blastocoel formation of 1- to 2-cell embryos developing in vitro. In contrast, more 1- to 2-cell embryos commenced hatching in the media containing amino acids than in control medium (25.7 vs 2.6%, P < 0.01). Amino acids and insulin synergistically enhanced the incidence of blastocoel formation and hatching of porcine embryos developing in vitro (P < 0.05). When early compacted embryos which developed in vitro in NCSU 23 medium were cultured in BSA-free NCSU 23 medium supplemented with 20% FCS, the incidence of hatching was significantly increased compared with that of the control groups (35.7 vs 4.1%, P < 0.01). However, addition of amino acids, vitamins or insulin to the NCSU 23 medium did not enhance the development of early morulae to the hatched embryos (P > 0.1). When either in vivo or IVM/IVF-derived 1- to 2-cell stage embryos were cultured 4 d in the modified NCSU 23 and an additional 4 days in the modified NCSU 23 supplemented in the FCS, the percentages (61.8 and 17.8%, in vivo- and IVM/TVF-derived, respectively) of hatched blastocysts were significantly higher (P < 0.01) than in the control groups (2.9 and 0%, in vivo and IVM/IVF-derived, respectively). These results suggested that dual culture conditions are required to optimize an in vitro culture system for the development of the porcine embryo in vitro.  相似文献   

17.
The aim of the present study was to isolate and characterize goat embryonic stem cell-like cells from in vitro produced goat embryos. Inner cell mass (ICM) cells were isolated either mechanically or by enzymatic digestion from 150 blastocysts and 35 hatched blastocysts whereas 100 morulae were used for blastomeres isolation mechanically. The ICM derived cells or blastomeres were cultured on a feeder layer. The primary colony formation was significantly higher (P < 0.01) for hatched blastocysts (77.14%) than early/expanded blastocysts (54%) or morula (14%). When ICMs were isolated mechanically the primary colony formation for hatched blastocysts (90%) as well as blastocysts (66%) were significantly more than when ICMs were isolated by enzymatic digestion (60% and 30%, respectively). The colonies were disaggregated either mechanically or by enzymatic digestion for further subculture. When mechanical method was followed, the colonies remained undifferentiated up to 15 passages and three ES cell-like cell lines were produced (gES-1, gES-2, and gES-3). However, enzymatic disaggregation resulted in differentiation. The undifferentiated cells showed stem cell like morphological features, normal karyotype, and expressed stem cell specific surface markers like alkaline phosphatase, TRA-1-61, TRA-1-81, and intracellular markers Oct4, Sox2, and Nanog. Following prolonged culture of the ES cell-like cells were differentiated into several types of cells including neuron like and epithelium-like cells. In conclusion, goat embryonic stem cell-like cells can be isolated from in vitro produced goat embryos and can be maintained for long periods in culture.  相似文献   

18.
Han YM  Lee ES  Mogoe T  Lee KK  Fukui Y 《Theriogenology》1995,44(4):507-516
This study was conducted to investigate whether human leukemia inhibitory factor (hLIF) improves the subsequent development of IVF-derived bovine morulae and blastocysts. To obtain IVF-derived bovine morulae, ova were matured and fertilized in vitro and cultured in 0.5 ml of synthetic oviduct fluid (SOF) medium supplemented with 10% human serum (HS) for 5 d at 39 degrees C under a gas atmosphere of 5% CO(2), 5% O(2), 90% N(2). Morulae and early blastocysts at Day 5 of culture were cultured in 0.5 ml of SOF medium with or without 5000 U/ml recombinant hLIF for 2 or 3 d (2 groups). To investigate the effect of addition of hLIF on the subsequent development of morulae, SOF medium was supplemented with 8 mg/ml BSA instead of HS. To test whether hLIF affects the subsequent development of IVF-derived bovine blastocysts, only good blastocysts that developed from SOF medium with or without hLIF at Days 7 and 8 of culture were frozen by a conventinal slow freezing method and again cultured in SOF medium with or without the addition of hLIF for 3 d after thawing (4 groups). Survival of frozen-thawed bovine embryos was evaluated for re-expansion and hatching of blastocysts during 3 d of culture. There was no significant difference in the developmental rate of Day 5 embryos to blastocysts between those cultured with (47.8%) and without (47.6%) addition of hLIF. However, the addition of hLIF before freezing significantly increased the hatching rate of IVF-derived bovine morulae (P < 0.05), whereas addition of hLIF after thawing did not increase the subsequent development of blastocysts. These results suggest that hLIF added at the Day 5 morula stage may contribute to bovine embryonic development through the hatching process.  相似文献   

19.
The total number of cells and the incidence of chromosomal anomalies in bovine blastocysts cultured in vitro or in vivo in rabbit oviducts were investigated from the four-cell stage after in-vitro fertilization of in-vitro matured follicular oocytes. The total number of cells (80 vs 179) in the oviduct-cultured blastocysts was nearly double that (43 vs 80) of blastocysts cultured in vitro at early and expanded blastocyst stages. In both culture systems, the total number of cells increased with the stage of development. Mitotic index (number of metaphase plates/total number of cells) of blastocysts decreased with development from early (11.5 vs 13.8%) to hatched blastocyst stages (4.8 vs 2.8%) in in-vitro and in-vivo culture systems, respectively. Overall, chromosomal anomalies were observed in 37.5% (27 27 ) of embryos cultured in vitro and in 28.0% (7 24 ) cultured in vivo, respectively. Incidence of chromosomal anomalies did not depend on such factors as culture system or stage of development. Most chromosomal anomalies were polyploid and mixoploid cells.  相似文献   

20.
Preimplantation mouse embryos were examined for intercellular permeability to molecules of different molecular weights. Using immunosurgery followed by immunofluorescence, none of the eight-cell embryos, approximately 10% of the early morulae, 50% of the late morulae, and 90% of the early blastocysts were found to block nonspecific anti-mouse thymocyte serum from diffusing into intercellular spaces. Diffusion of horseradish peroxidase and microperoxidase into intercellular spaces of viable embryos was also impeded by some morulae and by all early blastocysts maintained on ice. Peroxidase tracers found within the blastocoel cavity of some early blastocysts examined at 37°C appear to be a result of pinocytosis and transcellular movement. Intercellular diffusion of lanthanum into glutaraldehyde-fixed embryos was impeded only by early blastocysts. These results suggest that a permeability seal is established between external cells of the early mouse embryo prior to blastocoel formation. In addition, freeze-fracture electron microscopy revealed a correlated change in zonula occludens junction organization, indicating that formation of an intercellular permeability barrier and subsequent blastocoel formation may depend upon completion of assembly of these junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号