首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some members of the inhibitor of apoptosis (IAP) family suppress apoptosis by neutralizing caspases. The current model suggests that all caspase-regulatory IAPs function as direct enzyme inhibitors, blocking effector caspases by binding to their catalytically active pockets. Here we show that IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. Whereas XIAP binds directly to the active-site pockets of effector caspases, we find that regulation of effector caspases by Drosophila IAP1 (DIAP1) requires an evolutionarily conserved IAP-binding motif (IBM) at the neo-amino terminus of the large caspase subunit. Remarkably, unlike XIAP, DIAP1-sequestered effector caspases remain catalytically active, suggesting that DIAP1 does not function as a bona fide enzyme inhibitor. Moreover, we demonstrate that the mammalian IAP c-IAP1 interacts with caspase-7 in an exclusively IBM-dependent, but active site pocket-independent, manner that is mechanistically similar to DIAP1. The importance of IBM-mediated regulation of effector-caspases in vivo is substantiated by the enhanced apoptotic potency of IBM-mutant versions of drICE, DCP-1 and caspase-7.  相似文献   

2.
Caspases are essential proteases in programmed cell death and inflammation. Studies in murine and human cells have led to the characterization of 14 members of this enzyme family. Here we report the identification of caspase-15, a novel caspase that is expressed in various mammalian species including pig, dog, and cattle. The caspase-15 protein contains a catalytic domain with all amino acid residues critical for caspase activity and a prodomain that is predicted to fold into a pyrin domain structure, which is a unique feature among mammalian caspases. Recombinant porcine caspase-15 underwent autocatalytic processing into its subunits and cleaved both tetrapeptide caspase substrates and the apoptosis regulator protein Bid in vitro. Overexpression of caspase-15 in mammalian cells induced proenzyme maturation, cleavage of Bid, activation of caspase-3, and eventually cell death. Both the proteolytic and the pro-apoptotic activity of caspase-15 were abolished by mutation of the active site cysteine. Since a homolog of caspase-15 is absent in the human and the mouse genome, our results reveal an unexpected variability in the molecular apoptotic machinery of mammals.  相似文献   

3.
4.
During the resolution of inflammatory responses, neutrophils rapidly undergo apoptosis. A direct and fast activation of caspase-8 by cathepsin D was shown to be crucial in the initial steps of neutrophil apoptosis. Nevertheless, the activation mechanism of caspase-8 remains unclear. Here, by using site-specific mutants of caspase-8, we show that both cathepsin D-mediated proteolysis and homodimerization of caspase-8 are necessary to generate an active caspase-8. At acidic pH, cathepsin D specifically cleaved caspase-8 but not the initiator caspase-9 or -10 and significantly increased caspase-8 activity in dimerizing conditions. These events were completely abolished by pepstatin A, a pharmacological inhibitor of cathepsin D. The cathepsin D intra-chain proteolysis greatly stabilized the active site of caspase-8. Moreover, the main caspase-8 fragment generated by cathepsin D cleavage could be affinity-labeled with the active site probe biotin-VAD-fluoromethyl ketone, suggesting that this fragment is enzymatically active. Importantly, in an in vitro cell-free assay, the addition of recombinant human caspase-8 protein, pre-cleaved by cathepsin D, was followed by caspase-3 activation. Our data therefore indicate that cathepsin D is able to initiate the caspase cascade by direct activation of caspase-8. As cathepsin D is ubiquitously expressed, this may represent a general mechanism to induce apoptosis in a variety of immune and nonimmune cells.  相似文献   

5.
Activated caspase-3 is considered an important enzyme in the cell death pathway. To study the specific role of caspase-3 activation in neuronal cells, we generated a stable tetracycline-regulated SK-N-MC neuroblastoma cell line, which expressed a highly efficient self-activating chimeric caspase-3, consisting of the caspase-1 prodomain fused to the caspase-3 catalytic domain. Under expression-inducing conditions, we observed a time-dependent increase of processed caspase-3 by immunostaining for the active form of the enzyme, intracellular caspase-3 enzyme activity, as well as poly(ADP-ribose) polymerase (PARP) cleavage. Induced expression of the caspase fusion protein showed predominantly caspase-3 activity without any apoptotic morphological changes. In contrast, staurosporine treatment of the same cells resulted in activation of multiple caspases and profound apoptotic morphology. Our work provides evidence that auto-activation of caspase-3 can be efficiently achieved with a longer prodomain and that neuronal cell apoptosis may require another caspase or activation of multiple caspase enzymes.  相似文献   

6.
Caspases are cysteine proteases that are key effectors in apoptotic cell death. Currently, there is a lack of tools that can be used to monitor the regulation of specific caspases in the context of distinct apoptotic programs. We describe the development of highly selective inhibitors and active site probes and their applications to directly monitor executioner (caspase-3 and -7) and initiator (caspase-8 and -9) caspase activity. Specifically, these reagents were used to dissect the kinetics of caspase activation upon stimulation of apoptosis in cell-free extracts and intact cells. These studies identified a full-length caspase-7 intermediate that becomes catalytically activated early in the pathway and whose further processing is mediated by mature executioner caspases rather than initiator caspases. This form also shows distinct inhibitor sensitivity compared to processed caspase-7. Our data suggest that caspase-7 activation proceeds through a previously uncharacterized intermediate that is formed without cleavage of the intact zymogen.  相似文献   

7.
Apoptosis is an active process critical for the homeostasis oforganisms. Enzymes of the caspase family are responsible for executingthis process. We have previously shown that peroxynitrite (ONOO), a biologicalproduct generated from the interaction of nitric oxide and superoxide,induces apoptosis of HL-60 cells. The aim of this study was toelucidate the mechanisms involved in the execution process ofperoxynitrite-induced apoptosis. Proteolytic cleavage ofpoly(ADP-ribose) polymerase, an indication of caspase-3 family proteaseactivation and an early biochemical event accompanying apoptosis, wasobserved in a time-dependent manner during peroxynitrite-induced apoptosis of HL-60 cells. Activation of caspase-3 duringperoxynitrite-induced apoptosis was substantiated by monitoringproteolysis of the caspase-3 proenzyme and by measuring caspase-3activity with a fluorogenic substrate. Furthermore, pretreatment ofHL-60 cells withN-acetyl-Asp-Glu-Val-Asp-aldehyde, aspecific inhibitor of caspase-3, but notN-acetyl-Tyr-Val-Ala-Asp-aldehyde, aspecific inhibitor of caspase-1, decreased peroxynitrite-induced apoptosis. These results suggest that the activation of a caspase-3 family protease is essential for initiating the execution process ofperoxynitrite-induced apoptosis of HL-60 cells.

  相似文献   

8.
Erythropoietin (EP) is required by late stage erythroid progenitor cells to prevent apoptosis. In a previous study (Gregoli and Bondurant, 1997, Blood 90:630-640), it was shown that rapid proteolytic conversion of procaspase 3 to the fully activated enzyme occurred when erythroblasts were deprived of EP for as little as 2 h. In the present study, protein and mRNA analyses of erythroblasts indicated the presence of the proenzyme precursors of caspases 1, 2, 3, 5, 6, 7, 8, and 9. The effects of various caspase inhibitors on caspase 3 processing and on apoptosis were examined. These inhibitors were benzyloxycarbonyl (z-) and fluoromethyl-ketone (FMK) derivatives of peptides that serve as substrates for selected caspases. z-VAD-FMK, t-butoxycarbonyl-aspartate-FMK (Boc-D-FMK), and z-IETD-FMK blocked the initial cleavage of procaspase 3, while z-DEVD-FMK, z-VEID-FMK, and z-VDVAD-FMK did not block the initial cleavage but had some effect on blocking apoptosis. The peptide inhibitor z-FA-FMK, which inhibits cathepsins B and L but is not known to inhibit caspases, altered caspase 3 processing to a final 19 kDa large subunit that appeared to retain enzymatic activity. The action of z-FA-FMK in preventing the usual conversion to a 1 7 kDa subunit suggests the possibility that a noncaspase protease may be involved in caspase 3 processing. Studies with the peptide inhibitors and EP were done to determine the short- and long-term effectiveness of the caspase inhibitors in protecting EP-deprived cells from apoptosis. Although several of the inhibitors were effective, z-IETD-FMK was studied most extensively because of its specificity for enzymes which cleave procaspase 3 at aspartate 175 (IETD175). Large percentages of EP-deprived erythroblasts treated with z-IETD-FMK appeared morphologically normal and negative by a DNA strand breakage (TUNEL) assay at 24 h (75%) compared to EP-deprived controls (10%) which were not treated with inhibitor. However, inhibitor-treated erythroid progenitors deprived of EP for 24 h and then resupplied with EP showed only a modest improvement in long-term survival compared to cells which did not receive the caspase inhibitor during the 24 h EP deprivation. Thus, while the manifestations of apoptosis were delayed in most cells by inhibiting caspase activity, the processes initiating the loss of cell viability due to EP deprivation were irreparablein the majority of the cells and eventually led to their deaths.  相似文献   

9.
10.
Caspases are a family of cysteine proteases activated during apoptosis. Modification of caspases by nitric oxide and its relevance during apoptosis is currently a controversial subject. In this study we analyzed the S-nitrosated form of caspase-3 at a molecular level. By using electrospray ionization-mass spectrometry, we detected poly-S-nitrosation of caspase-3 with an average of about 2 molecules of NO bound per enzyme. Although NO treatment completely inhibited enzyme activity, S-nitrosation was not restricted to the active site cysteine. Rather, we detected multiple relative mass increases of 30 +/- 1 Da in both the p12 and p17 subunits of caspase-3, corresponding to single to triple S-nitrosation. The stability of these S-nitrosations differed in physiologically relevant concentrations of 5 mM glutathione. Whereas all S-nitroso bonds in the p12 subunit were cleaved with release of NO and partial formation of protein-mixed disulfides with glutathione, a single S-nitrosation in the p17 subunit remained stable. Since this S-nitrosation was not observed in a mutant form of caspase-3 lacking the active site cysteine, we conclude that NO nitrosates the active site cysteine of caspase-3 and that this modification is notably inert to fast trans-nitrosation with glutathione. Furthermore, we provide evidence that treatment of caspase-3 with NO can lead to mixed disulfide formation with glutathione, demonstrating the oxidative character of NO.  相似文献   

11.
Phosphorylase b kinase (PhK) is a key enzyme involved in the conversion of glycogen to glucose in skeletal muscle and ultimately an increase in intracellular ATP. Since apoptosis is an ATP-dependent event, we investigated the regulation of skeletal muscle PhK during apoptosis. Incubation of PhK with purified caspase-3 in vitro resulted in the highly selective cleavage of the regulatory α subunit and resulted in a 2-fold increase in PhK activity. Edman protein sequencing of a stable 72 kD amino-terminal fragment and a 66 kD carboxy-terminal fragment revealed a specific caspase-3 cleavage site within the α subunit at residue 646 (DWMD↓G). Treatment of differentiated C2C12 mouse muscle myoblasts with the inducers of apoptosis staurosporine, TPEN, doxorubicin, or UV irradiation resulted in the disappearance of the α subunit of PhK as determined by immunoblotting, as well as a concurrent increase in caspase-3 activity. Moreover, induction of apoptosis by TPEN resulted in increased phosphorylase activity and sustained ATP levels throughout a 7 h time course. However, induction of apoptosis with staurosporine, also a potent PhK inhibitor, led to a rapid loss in phosphorylase activity and intracellular ATP, suggesting that PhK inhibition by staurosporine impairs the ability of apoptotic muscle cells to generate ATP. Thus, these studies indicate that PhK may be a substrate for caspase regulation during apoptosis and suggest that activation of this enzyme may be important for the generation of ATP during programmed cell death.  相似文献   

12.
Sf‐caspase‐1 is the principal effector caspase in Spodoptera frugiperda cells. Like the caspases in other organisms, Sf‐caspase‐1 is processed by upstream caspases to form an active heterotetramer composed of the p19 and p12 subunits. The regulation of active caspases is crucial for cellular viability. In mammal cells, the subunits and the active form of caspase‐3 were rapidly degraded relative to its proenzyme form. In the present study, the S. frugiperda Sf9 cells were transiently transfected with plasmids encoding different fragments of Sf‐caspase‐1: the pro‐Sf‐caspase‐1 (p37), a prodomain deleted fragment (p31), a fragment containing the large subunit and the prodomain (p25), the large subunit (p19), and the small subunit (p12). Flow cytometry and Western blot analysis revealed that p12, p19, and p25 were unstable in the transfected cells, in contrast to p37 and p31. Lactacystin, a proteasome inhibitor, increased the accumulation of the p19 and p12 subunits, suggesting that the degradation is performed by the ubiquitin‐proteasome system. During the activation, the Sf‐caspase‐1 produces an intermediate form and then undergoes proteolytic processing to form active Sf‐caspase‐1. We found that both the active and the intermediate form were unstable, indicating that once activated or during its activation, the Sf‐caspase‐1 was unstable.  相似文献   

13.
Tripeptidyl-peptidase I (TPP I, CLN2 protein) is a lysosomal aminopeptidase that cleaves off tripeptides from the free N termini of oligopeptides and also shows minor endopeptidase activity. TPP I is synthesized as a preproenzyme. Its proenzyme autoactivates under acidic conditions in vitro, resulting in a rapid conversion into the mature form. In this study, we examined the process of maturation in vitro of recombinant latent human TPP I purified to homogeneity from secretions of Chinese hamster ovary cells overexpressing TPP I cDNA. Autoprocessing of TPP I proenzyme was carried out at a wide pH range, from approximately 2.0 to 6.0, albeit with different efficiencies depending on the pH and the type of buffer. However, the acquisition of enzymatic activity in the same buffer took place in a narrower pH "window," usually in the range of 3.6-4.2. N-terminal sequencing revealed that mature, inactive enzyme generated during autoactivation at higher pH contained N-terminal extensions (starting at 6 and 14 amino acid residues upstream of the prosegment/mature enzyme junction), which could contribute to the lack of activity of TPP I generated in this manner. Autoprocessing was not associated with any major changes of the secondary structure of the proenzyme, as revealed by CD spectroscopy. Both the activation and proteolytic processing of the recombinant TPP I precursor were primarily concentration-independent. The addition of the mature enzyme did not accelerate the processing of the proenzyme. In addition, the maturation of the proenzyme was not affected by the presence of glycerol. Finally, the proenzyme with the active site mutated (S475L) was not processed in the presence of the wild-type enzyme. All of these findings indicate a primarily intramolecular (unimolecular) mechanism of TPP I activation and autoprocessing and suggest that in vivo mature enzyme does not significantly participate in its own generation from the precursor.  相似文献   

14.
Caspase-6 is a cysteine protease implicated in neuronal survival and apoptosis. Deregulation of caspase-6 activity was linked to several neurodegenerative disorders including Alzheimer's and Huntington's Diseases. Several recent studies on the structure of caspase-6 feature the caspase-6 zymogen, mature apo-caspase-6 as well as the Ac-VEID-CHO peptide complex. All structures share the same typical dimeric caspase conformation. However, mature apo-caspase-6 crystallized at low pH revealed a novel, non-canonical inactive caspase conformation speculated to represent a latent state of the enzyme suitable for the design of allosteric inhibitors. In this treatise we present the structure of caspase-6 in the non-canonical inactive enzyme conformation bound to the irreversible inhibitor Z-VAD-FMK. The complex features a unique peptide binding mode not observed previously.  相似文献   

15.
Members of the IAP (inhibitor of apoptosis) family function as anti-apoptotic proteins by binding directly to caspase-3, -7, and -9 to inhibit their activities. During apoptosis, the activities of IAPs are relieved by a second mitochondria-derived caspase activator, named Smac/DIABLO. Some IAPs have a C-terminal RING finger domain that has been identified as the essential motif for the activity of ubiquitin ligase (E3). Here we show that X-linked IAP (XIAP) mediates the polyubiquitination of caspase-9 and Smac. The large subunit of mature caspase-9 was polyubiquitinated by XIAP in vitro, while procaspase-9 was not. Furthermore, the polyubiquitinated form of caspase-9 accumulated in an XIAP-dependent manner in intact cells. The ubiquitination of caspase-9 was significantly inhibited in the presence of mature Smac, whereas XIAP was also found to promote the polyubiquitination of cytosolic Smac both in vitro and in intact cells. These ubiquitination reactions require the RING finger domain of XIAP. These findings suggest that XIAP functions as ubiquitin ligase toward mature caspase-9 and Smac to inhibit apoptosis.  相似文献   

16.
The abundant nuclear enzyme poly(ADP-ribose) polymerase (PARP) synthesizes poly(ADP-ribose) in response to DNA strand breaks. During almost all forms of apoptosis, PARP is cleaved by caspases, suggesting the crucial role of its inactivation. A few studies have also reported a stimulation of PARP during apoptosis. However, the role of PARP stimulation and cleavage during this cell death process remains poorly understood. Here, we measured the stimulation of endogenous poly(ADP-ribose) synthesis during VP-16-induced apoptosis in HL60 cells and found that PARP was cleaved by caspases at the time of its poly(ADP-ribosyl)ation. In vitro experiments showed that PARP cleavage by caspase-7, but not by caspase-3, was stimulated by its automodification by long and branched poly(ADP-ribose). Consistently, caspase-7 exhibited an affinity for poly(ADP-ribose), whereas caspase-3 did not. In addition, caspase-7 was activated and accumulated in the nucleus of HL60 cells in response to the VP-16 treatment. Furthermore, caspase-7 activation was concommitant with PARP cleavage in the caspase-3-deficient cell line MCF-7 in response to staurosporine treatment. These results strongly suggest that, in vivo, it is caspase-7 that is responsible for PARP cleavage and that poly(ADP-ribosyl)ation of PARP accelerates its proteolysis. Cleavage of the active form of caspase substrates could be a general feature of the apoptotic process, ensuring the rapid inactivation of stress signaling proteins.  相似文献   

17.
The B cell lymphoma WEHI-231 has been used as a model to study immature B cell tolerance, based on its capacity to undergo growth arrest and programmed cell death on B cell receptor (BCR) cross-linking. Using this model to identify the molecular mechanisms underlying these processes, we found that BCR cross-linking results in the selective activation of caspase 7/Mch3, but not of the other two members of the CPP32 family, caspase 2/Nedd2 and caspase 3/CPP32. This was evidenced by the induction of proteolytic activity against the substrate for the CPP32 subfamily of caspases (z-DVED-AMC) in vitro, as well as PARP proteolysis in vivo and by the processing of the 35 kDa Mch3 into a 32 kDa species, which was later further proteolyzed. The general caspase inhibitor z-VAD-fmk, but not the CPP32 family inhibitor Ac-DEVD-CHO, blocked anti- micro-induced apoptosis, indicating that a caspase not belonging to the CPP32-like family is also implicated in anti- micro-triggered apoptosis. In contrast, z-VAD-fmk was not able to counteract growth arrest induced by anti- micro treatment, suggesting that caspase activation is not necessary for induction of growth arrest. Neither of the inhibitors prevented Mch3 processing; however, z-VAD-fmk prevented proteolysis of the p32 subunit, suggesting that further processing of this subunit is associated with apoptosis. Bcl-2 overexpression prevented anti- micro induction of CPP32-like activity and apoptosis, and blocked further processing of the Mch3 p32 subunit. In contrast, CD40 stimulation completely blocked the appearance of the p32 subunit in addition to blocking CPP32-like activity and apoptosis induced by BCR cross-linking. Moreover, only CD40 stimulation was able to prevent anti- micro-induced growth arrest, which was correlated with inhibition of retinoblastoma and of cyclin A down-regulation. In splenic B cells, Mch3 is also specifically proteolyzed ex vivo after induction of apoptosis by BCR cross-linking, demonstrating the specific involvement of caspase-7/Mch3 in apoptosis induced in B cell tolerance.  相似文献   

18.
Sialic acid binding immunoglobulin like lectin (Siglec)-8 crosslinking with specific antibodies causes human eosinophil apoptosis. Mechanisms by which Siglec-8 crosslinking induces apoptosis are not known. Peripheral blood eosinophils were examined for caspase, mitochondria and reactive oxygen species (ROS) involvement after incubating the cells with anti-Siglec-8 crosslinking Abs or control Abs, in the presence or absence of selective inhibitors. Siglec-8 crosslinking induced rapid cleavage of caspase-3, caspase-8, and caspase-9 in eosinophils. Selective caspase-8 and/or caspase-9 inhibitors inhibited this apoptosis. Siglec-8 crosslinking on eosinophils increased dissipation of mitochondrial membrane potential upstream of caspase activation. Rotenone and antimycin, inhibitors of mitochondrial respiratory chain components, completely inhibited apoptosis. Additional experiments with an inhibitor of ROS, diphenyleneiodonium, demonstrated that ROS was also essential for Siglec-8-mediated apoptosis and preceded Siglec-8-mediated mitochondrial dissipation. These experiments show that Siglec-8-induced apoptosis occurs through the sequential production of ROS, followed by induction of mitochondrial injury and caspase cleavage.  相似文献   

19.
Most proteases are expressed as inactive precursors, or zymogens, that become activated by limited proteolysis. We previously identified a small molecule, termed 1541, that dramatically promotes the maturation of the zymogen, procaspase-3, to its mature form, caspase-3. Surprisingly, compound 1541 self-assembles into nanofibrils, and localization of procaspase-3 to the fibrils promotes activation. Here, we interrogate the biochemical mechanism of procaspase-3 activation on 1541 fibrils in addition to proteogenic amyloid-β(1–40) fibrils. In contrast to previous reports, we find no evidence that procaspase-3 alone is capable of self-activation, consistent with its fate-determining role in executing apoptosis. In fact, mature caspase-3 is >107-fold more active than procaspase-3, making this proenzyme a remarkably inactive zymogen. However, we also show that fibril-induced colocalization of trace amounts of caspase-3 or other initiator proteases with procaspase-3 dramatically stimulates maturation of the proenzyme in vitro. Thus, similar to known cellular signaling complexes, these synthetic or natural fibrils can serve as platforms to concentrate procaspase-3 for trans-activation by upstream proteases.  相似文献   

20.
Mcl-1 is an antiapoptotic member of the Bcl-2 family of proteins that plays a central role in cell survival of neutrophils and other cells. The protein is unusual among family members in that it has a very short half-life of 2-3 h. In this report, we show that sodium salicylate (at 10 mM) greatly enhances the rate at which neutrophils undergo apoptosis and, in parallel, greatly accelerates the turnover rate of Mcl-1, decreasing its half-life to only 90 min. Whereas constitutive and GM-CSF-modified Mcl-1 turnover is regulated by the proteasome, the accelerated sodium salicylate-induced Mcl-1 turnover is mediated largely via caspases. Sodium salicylate resulted in rapid activation of caspase-3, -8, -9, and -10, and salicylate-accelerated Mcl-1 turnover was partly blocked by caspase inhibitors. Sodium salicylate also induced dramatic changes in the activities of members of the MAPK family implicated in Mcl-1 turnover and apoptosis. For example, sodium salicylate blocked GM-CSF-stimulated Erk and Akt activation, but resulted in rapid and sustained activation of p38-MAPK, an event mimicked by okadaic acid that also accelerates Mcl-1 turnover and neutrophil apoptosis. These data thus shed important new insights into the dynamic and highly regulated control of neutrophil apoptosis that is effected by modification in the rate of Mcl-1 turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号