首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
  • 1 Bark beetles are significant mortality agents of conifers. Four beetle species, the pine engraver Ips pini, the six‐spined pine engraver Ips calligraphus sub. ponderosae, the southern pine beetle Dendroctonus frontalis, and the western pine beetle Dendroctonus brevicomis, cohabitate pines in Arizona.
  • 2 A pheromone trapping study in ponderosa forests of Arizona determined the attraction of beetles to conspecific and heterospecific pheromone components in the presence and absence of host volatiles, and tested whether predators differ in their attraction to combinations of pheromone components and tree monoterpenes.
  • 3 All four bark beetle species differed in their responses to heterospecific lures and monoterpenes. Ips calligraphus was the only species that increased in trap catches when heterospecific lures were added. Heterospecific lures did not inhibit the attraction of either Dendroctonus or Ips species. The replacement of myrcene with α‐pinene increased the attraction of Dendroctonus, whereas the addition of α‐pinene had mixed results for Ips. The prominent predators Temnochila chlorodia and Enoclerus lecontei were more attracted to the I. pini lure than the D. brevicomis lure, and the combination of the two lures with α‐pinene was most attractive to both predator species.
  • 4 Cross attraction and limited inhibition of bark beetles to heterospecific pheromones suggest that some of these species might use heterospecific compounds to increase successful location and colonization of trees. Predator responses to treatments suggest that tree volatiles are used to locate potential prey and predators are more responsive to Ips than to Dendroctonus pheromone components in Arizona.
  相似文献   

2.
Abstract 1 One proposed approach to improving biological control of bark beetles (Coleoptera: Scolytidae; alt. Curculionidae: Scolytinae) is to manipulate predator movement using semiochemicals. However, selective manipulation is impeded by attraction of both predators and pests to bark beetle pheromones. 2 The primary bark beetle affecting pine plantations in Wisconsin, U.S.A., is the pine engraver, Ips pini (Say). Other herbivores include Ips grandicollis (Eichhoff) and Dryophthorus americanus Bedel (Curculionidae). The predominant predators are the beetles Thanasimus dubius (Cleridae) and Platysoma cylindrica (Histeridae). 3 We conducted field assays using two enantiomeric ratios of ipsdienol, and frontalin plus α‐pinene. Ipsdienol is the principal pheromone component of I. pini, and frontalin is produced by a number of Dendroctonus species. α‐Pinene is a host monoterpene commonly incorporated into commercial frontalin lures. 4 Thanasimus dubius was attracted to frontalin plus α‐pinene, and also to racemic ipsdienol. By contrast, I. pini was attracted to racemic ipsdienol, but showed no attraction to frontalin plus α‐pinene. Platysoma cylindrica was attracted to 97%‐(–)‐ipsdienol and, to a lesser extent, racemic ipsdienol, but not to frontalin plus α‐pinene. Ips grandicollis was attracted to frontalin plus α‐pinene but not to ipsdienol. Dryophthorus americanus was attracted to both ipsdienol and frontalin plus α‐pinene. 5 This ability to selectively attract the predator T. dubius without attracting the principal bark beetle in the system, I. pini, provides new opportunities for research into augmentative biological control and basic population dynamics. Moreover, the attraction of T. dubius, but not P. cylindrica, to frontalin plus α‐pinene creates opportunities for selective manipulation of just one predator. 6 Patterns of attraction by predators and bark beetles to these compounds appear to reflect various degrees of geographical and host tree overlap with several pheromone‐producing species.  相似文献   

3.
  1. Red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae), previously responded more strongly to (−)-β-pinene + ethanol than (+)-3-carene + ethanol lures at sites burned the prior year by wildfire in Oregon and northeastern California, whereas at a thinned-unburned Arizona site (+)-3-carene + ethanol was the stronger attractant. This discrepancy was further examined to tease apart whether D. valens attraction varies by region or previous forest disturbance types.
  2. Here, (−)-β-pinene + ethanol and (+)-3-carene + ethanol lures were tested in pine stands at two Oregon sites disturbed the previous year by a prescribed burn or thinning only. Both lures were tested also with or without trace amounts of the pheromone frontalin, as its presence enhanced attractions in China but had not been tested in North America.
  3. At both sites, regardless of prior forest disturbance, (−)-β-pinene + ethanol lures attracted the most beetles. Lures releasing trace frontalin attracted more beetles than their corresponding lures without it at both sites, except in one case.
  4. Overall, previous year disturbances from disparate management treatments had minimal influence on lure attraction to D. valens. For detection, monitoring or management (−)-β-pinene + ethanol + frontalin in trace amounts attracts the most beetles of lures tested to date in Pacific Northwest pine forests.
  相似文献   

4.
We developed microsatellite loci for the southern pine beetle (Dendroctonus frontalis). Twelve microsatellite loci were identified. Eight loci were polymorphic and sufficiently variable in 62 individuals (expected heterozygosity ranged from 0.707 to 0.880) to investigate population structure. All loci conformed to HWE except Dfr‐14, which showed heterozygote excess, and no two loci deviated from linkage equilibrium. The loci were tested for cross‐species amplification in four species of Dendroctonus (D. valens, D. terebrans, D. brevicomis, and D. ponderosae). Seven loci were polymorphic in at least one of the species tested.  相似文献   

5.
Olfactory deterrents have been proposed as tree protectants against attack by bark beetles, but their development has been hindered by a lack of knowledge of host selection behavior. Among the primary tree-killing (aggressive) Dendroctonus, vision appears to be an integral part of the host selection process. We evaluated the importance of vision in host finding by D. brevicomis LeConte, and our ability to affect it by modifying the visual stimulus provided by attractant-baited multiple-funnel traps. White-painted traps caught 42% fewer D. brevicomis than black traps in California, USA (P < 0.05). Visual treatments were less effective (P < 0.0001) than olfactory disruptants (verbenone with ipsdienol), which reduced catch by about 78%. When combined, olfactory and visual disruptants resulted in 89% fewer D. brevicomis being caught, but this combination was not more effective than olfactory disruptants alone (P > 0.05). Our results demonstrate that the visual component of D. brevicomis host finding behavior can be manipulated, but that D. brevicomis may be more affected by olfactory than visual disruptants. In contrast, visual disruption is more pronounced in the southern pine beetle, Dendroctonus frontalis Zimmermann, suggesting that non-insecticidal tree protection strategies for these related species should differ.  相似文献   

6.
7.
Pheromones of Dendroctonus brevicomis released variously during inter- and intra-sex response (including stridulation by both sexes) were the known pheromones exo-brevicomin, endo-brevicomin, frontalin and verbenone, and substances identified as pinocarvone, trans-pinocarveol, and myrtenol. These substances are present in emergent beetles and thus attack of a host tree is not essential for their initial production.  相似文献   

8.
Conifers respond to herbivore attack with defensive chemicals, which are toxic to both insects and their associated microorganisms. Microorganisms associated with insects have been widely reported to metabolize toxic chemicals, which may help both microorganisms and host insects overcome host conifer defense. Dendroctonus valens LeConte, an introduced exotic pest from North America to China, has killed millions of healthy pines. Alpha‐pinene is the most abundant defensive monoterpene in Chinese Pinus tabuliformis. Although microorganisms associated with D. valens have already been investigated, little is known about their bioactivities when encountering host defensive monoterpenes. In this study, we evaluated the influences of different concentrations of α‐pinene to D. valens and the three most frequently isolated yeasts and bacteria of D. valens, and further assayed microorganisms’ capabilities to degrade α‐pinene. Results showed that the gallery lengths and body weight changes of bark beetles were significantly affected by 6 mg/mL and 12 mg/mL of α‐pinene applied in media compared to controls. The tolerance of experimental microorganisms to α‐pinene varied depending on the microbial species. Two out of three yeast strains and all three bacterial strains degraded 20%–50% of α‐pinene compared to controls in 24 h in vitro. The microorganisms capable of α‐pinene degradation in vitro and their tolerance to high levels of α‐pinene suggested that D. valens‐associated microorganisms may help both microorganisms and the bark beetle overcome host α‐pinene defense.  相似文献   

9.
Our research used a combination of passive traps, funnel traps with lures, baited trees, and surveys of long-term thinning plots to assess the impacts of different levels of stand basal area (BA) on bark beetle tree attack and on trap captures of Ips spp., Dendroctonus spp., and their predators. The study occurred at two sites in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests, from 2004 to 2007 during low bark beetle populations. Residual stand BA ranged from 9.0 to 37.0 m2/ha. More predators and bark beetles were collected in passive traps in stands of lower BA than in stands of higher BA; however, significance varied by species and site, and total number of beetles collected was low. Height of the clear panel passive traps affected trap catches for some species at some sites and years. When pheromone lures were used with funnel traps [Ips pini (Say) lure: lanierone, +03/-97 ipsdienol], we found no significant difference in trap catches among basal area treatments for bark beetles and their predators. Similarly, when trees were baited (Dendroctonus brevicomis LeConte lure: myrcene, exo-brevicomin and frontalin), we found no significant difference for days to first bark beetle attack. Surveys of long-term thinning treatments found evidence of bark beetle attacks only in unthinned plots (approximately 37 m2/ha basal area). We discuss our results in terms of management implications for bark beetle trapping and control.  相似文献   

10.
Ecologically important microbes other than filamentous fungi can be housed within the fungal-transport structures (mycangia) of Dendroctonus bark beetles. The yeast Ogataea pini (Saccharomycetales: Saccharomycetaceae) was isolated from the mycangia of western pine beetle (Dendroctonus brevicomis) populations in northern Arizona (USA) with a frequency of 56%. We performed a series of in vitro assays to test whether volatile organic compounds produced by O. pini affected radial growth rates of mutualistic and antagonistic species of filamentous fungi that are commonly found in association with the beetle including Entomocorticium sp. B, Ophiostoma minus, Beauvaria bassiana, and an Aspergillus sp. We determined the compounds O. pini produced when grown on 2% malt extract agar using a gas chromatography/mass spectrometry (GC/MS) analysis of headspace volatiles. Volatiles produced by O. pini on artificial media significantly enhanced the growth of the mutualistic Entomocorticium sp. B, and inhibited growth of the entomopathogenic fungus B. bassiana. GC/MS revealed that O. pini produced ethanol, carbon disulfide (CS2), and Δ-3-carene in headspace. The results of these studies implicate O. pini as an important component in D. brevicomis community ecology, and we introduce multiple hypotheses for future tests of the effects of yeasts in the symbiont assemblages associated with Dendroctonus bark beetles.  相似文献   

11.
Abstract 1 The pine shoot beetle, Tomicus piniperda (L.) (Coleoptera: Scolytidae), is an exotic pest of pine, Pinus spp., and was first discovered in North America in 1992. 2 Although primary attraction to host volatiles has been clearly demonstrated for T. piniperda, the existence and role of secondary attraction to insect‐produced pheromones have been widely debated. 3 Currently, commercial lures for T. piniperda include only the host volatiles α‐pinene in North America and α‐pinene, terpinolene and (+)‐3‐carene in Europe. Several potential pheromone candidates have been identified for T. piniperda. 4 We tested various combinations of host volatiles and pheromone candidates in Michigan, U.S.A., and Ontario, Canada, to determine an optimal blend. 5 Attraction of T. piniperda was significantly increased when trans‐verbenol (95% pure, 3.2%cis‐verbenol content) was added with or without myrtenol to α‐pinene or to blends of α‐pinene and other kairomones and pheromone candidates. 6 Our results, together with other research demonstrating that trans‐verbenol is produced by T. piniperda, support the designation of trans‐verbenol as a pheromone for T. piniperda. A simple operational lure consisting of α‐pinene and trans‐verbenol is recommended for optimal attraction of T. piniperda.  相似文献   

12.
Partial age-specific life tables were constructed for Monochamus titillator(Fabricius) (Coleoptera: Cerambycidae) in Dendroctonus frontalisZimmermann (Coleoptera: Scolytidae) infested loblolly pine (Pinus taedaL.) trees. Successive life stages including egg, early larvae, mid-stage larvae, late larvae, and adult emergence were sampled within six sample trees. Generation mortality ranged from 60.94% to 98.61% in sample trees. Highest mortality typically occurred to eggs and mid-stage larvae. Possible mortality factors included resinosis, predaceous beetles, parasitoids, and woodpeckers. Dendroctonus frontalisbrood stages were determined for consecutive M. titillatorsampling. Monochamus titillatorand D. frontaliscoexisted and likely interacted in the phloem of host trees for at least 20 days.  相似文献   

13.
A blend of eight nonhost angiosperm volatiles (benzyl alcohol, benzaldehyde, guaiacol, nonanal, salicylaldehyde, (E)‐2‐hexenal, (E)‐2‐hexen‐1‐ol and (Z)‐2‐hexen‐1‐ol) without [NAV] and with [NAVV] (–)‐verbenone (4,6,6‐trimethylbicyclo[3.1.1]hept‐3‐en‐2‐one) were tested at low (L), medium (M) and high (H) release rates for their ability to reduce attraction of western pine beetle, Dendroctonus brevicomis LeConte, to attractant‐baited (exo‐brevicomin [racemic, 3 mg/d], frontalin [racemic, 3 mg/d] and myrcene [18 mg/d]) multiple funnel traps. NAV‐L (40 mg/d) had no significant effect. Verbenone alone (50 mg/d) and NAV‐M (240 mg/d) both significantly reduced attraction, but no significant difference was observed between the two treatment means. NAV‐H (430 mg/d) significantly reduced catches by ~60% and 78% compared to verbenone alone and the baited control, respectively. In a second experiment, combining (–)‐verbenone with NAV (NAVV) increased the effects observed in Experiment 1. NAVV‐M (240 mg/d) resulted in an ~69% and 83% reduction in trap catch compared to verbenone alone and the baited control, respectively. Significantly fewer D. brevicomis were captured in NAVV‐H (430 mg/d) than any other treatment resulting in an ~93% reduction in trap catch compared to the baited control. In a third experiment, NAVV was tested at three release rates for its ability to protect individual ponderosa pines, Pinus ponderosa Dougl. ex Laws., from attack by D. brevicomis. Cumulative release rates varied in direct proportion to tree diameter, but represented quarter, half and full NAVV rates. NAVV significantly reduced the density of D. brevicomis attacks, D. brevicomis successful attacks, and levels of tree mortality on attractant‐baited trees. Only three of 15 NAVV‐treated trees died from D. brevicomis attack while ~93% mortality (14/15) was observed in the untreated, baited control. Quarter and half rates were ineffective for reducing tree mortality.  相似文献   

14.
  1. Lure attraction strength for red turpentine beetle, Dendroctonus valens (Coleoptera: Curculionidae: Scolytinae) observed previously in US Pacific Northwest ponderosa pine forests is (−)-β-pinene+ethanol > (+)-3-carene+ethanol, but untested elsewhere in its western US range. Thus, both were tested with (−)-β-pinene, (+)-3-carene, ethanol, and a blank in Oregon and California sites burned by wildfire, whereas in Arizona the first four lures were tested in a thinned-unburned site.
  2. The D. valens responses in burned Oregon and California sites were similar, (−)-β-pinene+ethanol > (−)-β-pinene > 3-carene = 3-carene+ethanol > ethanol > blank, whereas in the cut-unburned Arizona site it was 3-carene+ethanol > 3-carene = (−)-β-pinene+ethanol > (−)-β-pinene. Whether this variation was influenced by beetle genetic differences, or chemical and physical parameters in the different environments and remaining stressed host resources 1-year post disturbance warrants additional study.
  3. Responses to (−)-β-pinene varied, from a stronger attractant than (+)-3-carene in Oregon and California, to a weaker lure than (+)-3-carene in Arizona. This (−)-β-pinene variability was minimized when released in combination with ethanol, making (−)-β-pinene+ethanol the most consistent attractant of those tested across the three states, and a reliable lure for detection, monitoring, and management projects for D. valens in western US pine forests.
  相似文献   

15.
Abstract 1 Synthetic blends of bole and foliage volatiles of four sympatric species of conifers were released from pheromone‐baited multiple‐funnel traps to determine if three species of tree‐killing bark beetles (Coleoptera: Scolytidae): (i) exhibited primary attraction to volatiles of their hosts and (ii) discriminated among volatiles of four sympatric species of host and nonhost conifers. 2 Bole and foliage volatiles from Douglas‐fir, Pseudotsuga menziesii (Mirb.) Franco, increased the attraction of coastal and interior Douglas‐fir beetles, Dendroctonus pseudotsugae Hopkins, to pheromone‐baited traps. Primary attraction to bole volatiles was observed in interior D. pseudotsugae. Beetles were significantly less attracted to the pheromone bait when it was combined with volatiles of lodgepole pine, Pinus contorta var. latifolia Engelm. or interior fir, Abies lasiocarpa × bifolia. 3 The monoterpene myrcene synergized attraction of mountain pine beetles, Dendroctonus ponderosae Hopkins, to their aggregation pheromones, but there was no evidence of primary attraction to host volatiles or discrimination among volatiles from the four conifers. 4 There was significant primary attraction of the spruce beetle, Dendroctonus rufipennis Kirby, to bole and foliage volatiles of interior spruce, Picea engelmannii × glauca, but beetles did not discriminate among volatiles of four sympatric conifers when they were combined with pheromone baits. 5 Our results indicate that host volatiles act as kairomones to aid pioneer Douglas‐fir beetles and spruce beetles in host location by primary attraction, and that their role as synergists to aggregation pheromones is significant. For the mountain pine beetle, we conclude that random landing and close range acceptance or rejection of potential hosts would occur in the absence of aggregation pheromones emanating from a tree under attack.  相似文献   

16.
Monochamus (Coleoptera: Cerambycidae) species are longhorn pine sawyers that serve as insect vectors of the pinewood nematode Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae), which are responsible for debilitating pine wilt disease. An aggregation pheromone, 2‐(1‐undecyloxy)‐1‐ethanol (hereafter referred to as monochamol), was shown to be effective at attracting Monochamus species. However, attraction of the pine sawyers to aggregation pheromones varied depending on semiochemicals, including host plant volatiles and kairomones. In this study, we investigated the abilities of monochamol and the host‐plant volatiles α‐pinene and ethanol to attract M. saltuarius in a pine forest in Cheongsong, Gyeongsangbuk‐do, Korea. A total of 91 M. saltuarius (28 males and 63 females) were captured. The combination of monochamol (700 mg) with α‐pinene and ethanol exhibited a synergistic effect on attracting M. saltuarius (11.0 beetles per trap), whereas monochamol alone and a mixture of α‐pinene and ethanol resulted in the capture of 3.2 beetles and 3.6 beetles per trap, respectively. Our results suggest that multi‐funnel traps baited with a blend of monochamol, α‐pinene and ethanol are highly effective for monitoring M. saltuarius and M. alternatus in pine forests.  相似文献   

17.
Abstract 1 Host plant terpenes can influence attraction of conifer bark beetles to their aggregation pheromones: both synergistic and inhibitory compounds have been reported. However, we know little about how varying concentrations of individual monoterpenes affect responses. 2 We tested a gradient of ratios of α‐pinene, the predominant monoterpene in host pines in the Great Lakes region of North America, to Ips pini's pheromone, racemic ipsdienol plus lanierone. 3 Ips pini demonstrated a parabolic response, in which low concentrations of α‐pinene had no effect on attraction to its pheromone, intermediate concentrations were synergistic and high concentrations were inhibitory. These results suggest optimal release rates for population monitoring and suppression programmes. 4 Inhibition of bark beetle attraction to pheromones may be an important component of conifer defences. At terpene to pheromone ratios emulating emissions from trees actively responding to a first attack, arrival of flying beetles was low. This may constitute an additional defensive role of terpenes, which are also toxic to bark beetles at high concentrations. 5 Reduced attraction to a low ratio of α‐pinene to pheromone, as occurs when colonization densities become high and the tree's resin is largely depleted, might reflect a mechanism for preventing excessive crowding. 6 Thanasimus dubius, the predominant predator of I. pini, was also attracted to ipsdienol plus lanierone, but its response differed from that of its prey. Attraction increased across all concentrations of α‐pinene. This indicates that separate lures are needed to sample both predators and bark beetles effectively. It also provides an opportunity for maximizing pest removal while reducing adverse effects on beneficial species. This disparity further illustrates the complexity confronting natural enemies that track chemical signals to locate herbivores.  相似文献   

18.
19.
Herbivorous insects exploit multiple plant cues to detect and orient toward suitable hosts and, accordingly, hosts have evolved complex constitutive and inducible defenses in response. In China, the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae), an invasive bark beetle from North America, attacks mainly Pinus tabuliformis Carrière (Pinaceae), which contains many monoterpenes. In this study, we explored how the monoterpene α‐pinene affects the feeding performance and pheromone production of D. valens. First, the composition and quantities of monoterpenes of both P. tabuliformis healthy trees and fresh stumps were determined and the infestation of D. valens in healthy trees and fresh stumps was investigated, linking the amount of monoterpenes and D. valens infestation. Gas chromatography–mass spectrometry (GC‐MS) analysis showed that P. tabuliformis mainly contained α‐pinene, with concentrations of 0.1 and 0.5 mg g?1 in healthy pine phloem and stump phloem, respectively. Second, the monoterpene's influence on feeding performance was tested using phloem media with α‐pinene concentrations ranging from 0 to 30 mg g?1. The results showed that the percentages of beetles boring and the gallery lengths of both adult females and larvae were negatively correlated with the α‐pinene concentration although body weight changes did not correlate with α‐pinene concentration. Finally, pheromone analysis showed that the production of all pheromones increased with increasing α‐pinene concentrations. This study showed the dual effects of α‐pinene on D. valens: α‐pinene inhibited the bark beetle's feeding activities and in turn the bark beetle made use of it to produce pheromones. Our study indicated the importance of promptly removing fresh stumps in the field for the management of the bark beetle.  相似文献   

20.
Exposure of adult males and females of Dendroctonus brevicomis and D. frontalis to camphene vapor resulted in oxidation of the terpene to a prominent product, which was identified as 6-hydroxy-camphene (camphenol). Exposure of D. brevicomis adults to myrcene vapor resulted in sex-specific oxidation of the hydrocarbon. A major product in both sexes was identified as 2-methyl-6-methylene-2,7-octadien-1-ol (myrcenol), whereas ipsdienol, a major product in males, was not detected in females. A compound detected in hindguts of feeding males of Ips pini and I. paraconfusus was attributed to the presence of 3-carene in the host (Pinus spp.) and subsequently identified as 1-methyl-5-(α-hydroxy-isopropyl)-cyclohexa-1,3-diene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号