首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent evidence suggests that cells with the properties of human mesenchymal stem cells (hMSCs) can be derived from adult peripheral tissues, including adipose tissue, muscle and dermis. We isolated hMSCs from the stromal-vascular portion of subcutaneous adipose tissue from seven adult subjects. These cells could be readily differentiated into cells of the chondrocyte, osteocyte and adipocyte lineage demonstrating their multipotency. We studied the functional properties of hMSCs-derived adipocytes and compared them with adipocytes differentiated from hMSCs obtained from bone marrow (BM-hMSC). The two cell types displayed similar lipolytic capacity upon stimulation with catecholamines, including a pronounced antilipolytic effect mediated through alpha2A-adrenoceptors, a typical trait in human but not rodent fat cells. Furthermore, both cell types secreted the fat cell-specific factors leptin and adiponectin in comparable amounts per time unit. The fat tissue-derived hMSCs retained their differentiation capacity up to at least fifteen passages. We conclude that hMSCs derived from adult human adipose tissue can be differentiated into fully functional adipocytes with a similar, if not identical, phenotype as that observed in cells derived from BM-hMSCs. Human adipose-tissue-derived MSCs could therefore constitute an efficient and easily obtainable renewable cellular source for studies of adipocyte biology.  相似文献   

2.
The regeneration potential of mesenchymal stem cells (MSCs) diminishes with advanced age and this diminished potential is associated with changes in cellular functions. This study compared MSCs isolated from the bone marrow of rhesus monkeys (rBMSCs) in three age groups: young (< 5 years), middle (8-10 years), and old (> 12 years). The effects of aging on stem cell properties and indicators of stem cell fitness such as proliferation, differentiation, circadian rhythms, stress response proteins, miRNA expression, and global histone modifications in rBMSCs were analyzed. rBMSCs demonstrated decreased capacities for proliferation and differentiation as a function of age. The production of heat shock protein 70 (HSP70) and heat shock factor 1 (HSF1) were also reduced with increasing age. The level of a core circadian protein, Rev-erb α, was significantly increased in rBMSCs from old animals. Furthermore, analysis of miRNA expression profiles revealed an up-regulation of mir-766 and mir-558 and a down-regulation of mir-let-7f, mir-125b, mir-222, mir-199-3p, mir-23a, and mir-221 in old rBMSCs compare to young rBMSCs. However, there were no significant age-related changes in the global histone modification profiles of the four histone core proteins: H2A, H2B, H3, and H4 on rBMSCs. These changes represent novel insights into the aging process and could have implications regarding the potential for autologous stem cells therapy in older patients.  相似文献   

3.
The objective of the study is to evaluate efficiency of in vitro isolation and myogenic differentiation of mesenchymal stem cells (MSCs) derived from adipose connective tissue (AD-MSCs), bone marrow (BM-MSCs), and skeletal muscle tissue (MC-MSCs). MSCs were isolated from adipose connective tissue, bone marrow, and skeletal muscle tissue of two adult 6-wk-old rats. Cultured MSCs were treated with 5-azacytidine (AZA) to induce myogenic differentiation. Isolated MSCs and differentiated cells were evaluated by immunocytochemistry (ICC), fluorescence-activated cell sorting (FACS), PCR, and RT-PCR. AD-MSCs showed the highest proliferation rate while BM-MSCs had the lowest one. In ICC, isolated MSCs had strong CD90- and CD44-positive expression and negative expression of CD45, CD31, and CD34, while AZA-treated MSCs had strong positive desmin expression. In FACS analysis, AD-MSCs had the highest percentage of CD90- and CD44-positive-expressing cells (99% and 96%) followed by BM-MSCs (97% and 94%) and MC-MSCs (92% and 91%).At 1 wk after incubation with AZA treatment, the peak of myogenin expression reached 93% in differentiated MC-MSCs, 83.3% in BM-MSCs, and 77% in AD-MSCs. MSCs isolated from adipose connective tissue, bone marrow, and skeletal muscle tissue have the same morphology and phenotype, but AD-MSCs were the most easily accessible and had the highest rate of growth on cultivation and the highest percentage of stem cell marker expression. Moreover, although MC-MSCs showed the highest rate of myogenic differentiation potential and expression of myoblast markers, AD-MSCs and BM-MSCs still can be valuable alternatives. The differentiated myoblastic cells could be an available new choice for myoblastic auto-transplantation in regeneration medicine.  相似文献   

4.
5.
6.
Background information. Although MSCs (mesenchymal stem cells) and fibroblasts have been well studied, differences between these two cell types are not fully understood. We therefore comparatively analysed antigen and gene profiles, colony‐forming ability and differentiation potential of four human cell types in vitro: commercially available skin‐derived fibroblasts [hSDFs (human skin‐derived fibroblasts)], adipose tissue‐derived stem cells [hASCs (human adipose tissue‐derived stem cells)], embryonic lung fibroblasts (WI38) and dermal microvascular endothelial cells [hECs (human dermal microvascular endothelial cells)]. Results. hSDFs, hASCs and WI38 exhibited a similar spindle‐like morphology and expressed same antigen profiles: positive for MSC markers (CD44, CD73 and CD105) and fibroblastic markers [collagen I, HSP47 (heat shock protein 47), vimentin, FSP (fibroblast surface protein) and αSMA (α smooth muscle actin)], and negative for endothelial cell marker CD31 and haemopoietic lineage markers (CD14 and CD45). We further analysed 90 stem cell‐associated gene expressions by performing real‐time PCR and found a more similar gene expression pattern between hASCs and hSDFs than between hSDFs and WI38. The expression of embryonic stem cell markers [OCT4, KLF4, NANOG, LIN28, FGF4 (fibroblast growth factor 4) and REST] in hASCs and hSDFs was observed to differ more than 2.5‐fold as compared with WI38. In addition, hSDFs and hASCs were able to form colonies and differentiate into adipocytes, osteoblasts and chondrocytes in vitro, but not WI38. Moreover, single cell‐derived hSDFs and hASCs obtained by clonal expansion were able to differentiate into adipocytes and osteoblasts. However, CD31 positive hECs did not show differentiation potential. Conclusions. These findings suggest that (i) so‐called commercially available fibroblast preparations from skin (hSDFs) consist of a significant number of cells with differentiation potential apart from terminally differentiated fibroblasts; (ii) colony‐forming capacity and differentiation potential are specific important properties that discriminate MSCs from fibroblasts (WI38), while conventional stem cell properties such as plastic adherence and the expression of CD44, CD90 and CD105 are unspecific for stem cells.  相似文献   

7.
8.
Mesenchymal stem cells (MSCs) have been investigated as promising candidates for use in new cell-based therapeutic strategies such as mesenchyme-derived tissue repair. MSCs are easily isolated from adult tissues and are not ethically restricted. MSC-related literature, however, is conflicting in relation to MSC differentiation potential and molecular markers. Here we compared MSCs isolated from bone marrow (BM), umbilical cord blood (UCB), and adipose tissue (AT). The isolation efficiency for both BM and AT was 100%, but that from UCB was only 30%. MSCs from these tissues are morphologically and immunophenotypically similar although their differentiation diverges. Differentiation to osteoblasts and chondroblasts was similar among MSCs from all sources, as analyzed by cytochemistry. Adipogenic differentiation showed that UCB-derived MSCs produced few and small lipid vacuoles in contrast to those of BM-derived MSCs and AT-derived stem cells (ADSCs) (arbitrary differentiation values of 245.57 +/- 943 and 243.89 +/- 145.52 mum(2) per nucleus, respectively). The mean area occupied by individual lipid droplets was 7.37 mum(2) for BM-derived MSCs and 2.36 mum(2) for ADSCs, a finding indicating more mature adipocytes in BM-derived MSCs than in treated cultures of ADSCs. We analyzed FAPB4, ALP, and type II collagen gene expression by quantitative polymerase chain reaction to confirm adipogenic, osteogenic, and chondrogenic differentiation, respectively. Results showed that all three sources presented a similar capacity for chondrogenic and osteogenic differentiation and they differed in their adipogenic potential. Therefore, it may be crucial to predetermine the most appropriate MSC source for future clinical applications.  相似文献   

9.
With the continuous discovery of new alternative sources containing mesenchymal stem cells (MSCs), regenerative medicine therapies may find tailored applications in the clinics. Although these cells have been demonstrated to express specific mesenchymal markers and are able to differentiate into mesenchymal lineages in ad hoc culture conditions, it is still critical to determine the yield and differentiation potential of these cells in comparative studies under the same standardized culture environment. Moreover, the opportunity to use MSCs from bone marrow (BM) of multiorgan donors for cell banking is of relevant importance. In the attempt to establish the relative potential of alternative MSCs sources, we analyzed and compared the yield and differentiation potential of human MSCs from adipose and BM tissues of cadaveric origins, and from fetal annexes (placenta and umbilical cord) after delivery using standardized isolation and culture protocols. BM contained a significantly higher amount of mononuclear cells (MNCs) compared to the other tissue sources. Nonetheless, a higher cell seeding density was needed for these cells to successfully isolate MSCs. The MNCs populations were highly heterogeneous and expressed variable MSCs markers with a large variation from donor to donor. After MSCs selection through tissue culture plastic adhesion, cells displayed a comparable proliferation capacity with distinct colony morphologies and were positive for a pool of typical MSCs markers. In vitro differentiation assays showed a higher osteogenic differentiation capacity of adipose tissue and BM MSCs, and a higher chondrogenic differentiation capacity of BM MSCs.  相似文献   

10.
Recent studies have shown that liposuction aspirates from rat, rabbit, mouse, and human sources contain pluripotent adipose tissue-derived stromal cells (ASCs) that can differentiate into various mesodermal cell types, including osteoblasts, myoblasts, chondroblasts, and preadipocytes. To develop a research model for autologous bone tissue engineering, we isolated ASCs from human liposuction aspirates (hASCs) and induced their osteogenic differentiation in three-dimensional poly(dl-lactic-co-glycolic acid) (PLGA) scaffolds. Human liposuction aspirates were proteolytically digested and centrifuged to obtain hASCs. After primary culture in control media and expansion to three passages, the cells were seeded in two-dimensional plates or three-dimensional PLGA scaffolds and cultured in osteogenic media for 4 weeks. In two-dimensional culture, osteogenesis was assessed by RT-PCR analysis of the osteogenic-specific bone sialoprotein mRNA, by alkaline phosphatase staining, and by von Kossa staining. In three-dimensional culture, osteogenesis was assessed by von Kossa and alizarine red S staining at 1, 2, and 4 weeks following osteogenic induction. hASCs incubated in two-dimensional osteogenic media stained positively for alkaline phosphatase and with von Kossa stain after 2 weeks of differentiation. Expression of the osteogenesis-specific bone sialoprotein gene was detected by RT-PCR after 2 weeks of differentiation. PLGA scaffolds seeded with hASCs showed multiple calcified extracellular matrix nodules by von Kossa and alizarine red S staining after 2 weeks of differentiation. In conclusion, the authors identified an osteogenic potential of hASCs and demonstrated osteogenic differentiation of hASCs into an osteogenic lineage in three-dimensional PLGA scaffolds.  相似文献   

11.
Mesenchymal stem cells (MSCs) hold promise for cell-based therapy in regenerative medicine. To date, MSCs have been obtained from conventional bone marrow via a highly invasive procedure. Therefore, MSCs are now also isolated from sources such as adipose tissue, cord blood and cord stroma, a subject of growing interest. As the characterization and differentiation potential of adipose-derived MSCs (AD-MSCs) and bone-marrow-derived MSCs (BM-MSCs) have not been documented, we have evaluated and compared the characteristics of both MSC types by qualitative and quantitative analyses. Both cell types show similar morphology and surface protein expression, being positive for stromal-associated markers and negative for hematopoietic and endothelial markers. The colony-forming potential of AD-MSCs is distinctly higher than that of BM-MSCs. Nonetheless, similar adipogenic and osteogenic differentiation is observed in both groups of MSCs. Cytochemical qualitative analysis and calcium mineralization demonstrate higher levels toward osteogenic differentiation in BM-MSCs than in AD-MSCs. On the contrary, the percentage of Nile red oil staining for differentiated adipocytes is higher in AD-MSCs than in BM-MSCs. Quantitative real-time polymerase chain reaction shows similar patterns of osteogenic- and adipogenic-associated gene expression in both cell types. Each of the MSCs respond in functional analysis by exhibiting unique properties at the differentiation level according to their micro-environmental niche. Thus, quantitative analysis might be a valuable means of describing stem cell multipotency, in addition to qualitative investigation.  相似文献   

12.
13.
Mesenchymal stem/stromal cells (MSCs) are promising cell sources for regenerative therapies due to their multipotency and ready availability, but their application can be complicated by patient-specific factors like age or illness. MSCs have been investigated for the treatment of many musculoskeletal disorders, including osteoarthritis and osteoporosis. Due to the prevalence of these diseases in older populations, researchers have studied how aging affects MSC properties and have found that proliferation and differentiation potential are impaired. However, these effects have never been compared among MSCs isolated from multiple tissue sources in the same, healthy donor. Revealing differences in how MSCs are affected by age could help identify an optimal cell source for musculoskeletal therapies targeting older patients. MSCs were isolated from young and old rabbit bone marrow, muscle, and adipose tissue. Cell yield and viability were quantified after isolation procedures, and expansion properties were assessed using assays for proliferation, senescence, and colony formation. Multipotency was also examined using lineage-specific stains and spectrophotometry of metabolites. Results were compared between age groups and among MSC sources. Results showed that MSCs are differentially influenced by aging, with bone marrow-derived stem cells having impaired proliferation, senescence, and chondrogenic response, whereas muscle-derived stem cells and adipose-derived stem cells exhibited no negative effects. While age reduced overall cell yield and adipogenic potential of all MSC populations, osteogenesis and clonogenicity remained unchanged. These findings indicate the importance of age as a factor when designing cell-based therapies for older patients.  相似文献   

14.
This article presents the stem and progenitor cells from subcutaneous adipose tissue,briefly comparing them with their bone marrow counterparts,and discussing their potential for use in regenerative medicine.Subcutaneous adipose tissue differs from other mesenchymal stromal/stem cells(MSCs) sources in that it contains a pre-adipocyte population that dwells in the adventitia of robust blood vessels.Pre-adipocytes are present both in the stromal-vascular fraction(SVF;freshly isolated cells) and in the adherent fraction of adipose stromal/stem cells(ASCs;in vitro expanded cells),and have an active role on the chronic inflammation environment established in obesity,likely due their monocyticmacrophage lineage identity.The SVF and ASCs have been explored in cell therapy protocols with relative success,given their paracrine and immunomodulatory effects.Importantly,the widely explored multipotentiality of ASCs has direct application in bone,cartilage and adipose tissue engineering.The aim of this editorial is to reinforce the peculiarities of the stem and progenitor cells from subcutaneous adipose tissue,revealing the spheroids as a recently described biotechnological tool for cell therapy and tissue engineering.Innovative cell culture techniques,in particular 3 D scaffold-free cultures such as spheroids,are now available to increase the potential for regeneration and differentiation of mesenchymal lineages.Spheroids are being explored not only as a model for cell differentiation,but also as powerful 3 D cell culture tools to maintain the stemness and expand the regenerative and differentiation capacities of mesenchymal cell lineages.  相似文献   

15.
The secretome of stem cells strongly determines the outcome of tissue engineering strategies. We investigated how the secretome of human adipose stem cells (hASCs) can be affected by substrate, BMP-2 treatment, and degree of differentiation. We hypothesized that as differentiation progresses, hASCs produce increasingly more gene products associated with processes such as angiogenesis and bone remodeling.  相似文献   

16.
In this study, we compared the ability of human mesenchymal stem cells (eMSCs) derived from menstrual blood and mesenchymal stem cells (MSCs) from other tissues to differentiate into decidual cells in vitro. It was demonstrated that, during differentiation, secretion of prolactin and insulin-like growth factor binding protein-1 (key decidualization markers) markedly increased in eMSCs slightly augmented in bone marrow MSC (BM-MSCs) and did not change in MSCs from adipose tissue (AT-MSCs). Thus, eMSCs exhibited higher capacity for differentiation into decidual cells than BM-MSCs or AT-MSCs. This makes eMSCs promising for application in cellular therapy of infertility associated with insufficient decidualization of endometrium.  相似文献   

17.
Telomerase deficiency impairs differentiation of mesenchymal stem cells   总被引:8,自引:0,他引:8  
Expression of telomerase activity presumably is involved in maintaining self-replication and the undifferentiated state of stem cells. Adult mouse bone marrow mesenchymal stem cells (mMSCs) are multipotential cells capable of differentiating into a variety of lineage cell types, including adipocytes and chondrocytes. Here we show that the lacking telomerase of mMSC lose multipotency and the capacity to differentiate. Primary cultures of mMSCs were obtained from both telomerase knockout (mTR(-/-)) and wild-type (WT) mice. The MSCs isolated from mTR(-/-) mice failed to differentiate into adipocytes and chondrocytes, even at early passages, whereas WT MSCs were capable of differentiation. Consistent with other cell types, late passages mTR(-/-)MSCs underwent senescence and were accompanied by telomere loss and chromosomal end-to-end fusions. These results suggest that in addition to its known role in cell replication, telomerase is required for differentiation of mMSCs in vitro. This work may be significant for further potentiating adult stem cells for use in tissue engineering and gene therapy and for understanding the significance of telomerase expression in the process of cell differentiation.  相似文献   

18.
Human adipose tissue is a source of multipotent stem cells   总被引:209,自引:0,他引:209       下载免费PDF全文
Much of the work conducted on adult stem cells has focused on mesenchymal stem cells (MSCs) found within the bone marrow stroma. Adipose tissue, like bone marrow, is derived from the embryonic mesenchyme and contains a stroma that is easily isolated. Preliminary studies have recently identified a putative stem cell population within the adipose stromal compartment. This cell population, termed processed lipoaspirate (PLA) cells, can be isolated from human lipoaspirates and, like MSCs, differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches. PLA cells expressed multiple CD marker antigens similar to those observed on MSCs. Mesodermal lineage induction of PLA cells and clones resulted in the expression of multiple lineage-specific genes and proteins. Furthermore, biochemical analysis also confirmed lineage-specific activity. In addition to mesodermal capacity, PLA cells and clones differentiated into putative neurogenic cells, exhibiting a neuronal-like morphology and expressing several proteins consistent with the neuronal phenotype. Finally, PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.  相似文献   

19.
Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Wharton''s jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials.  相似文献   

20.
Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号