首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Interleukin-17 family and IL-17 receptors   总被引:26,自引:0,他引:26  
Interleukin-17 (IL-17) is a pro-inflammatory cytokine secreted by activated T-cells. Recently discovered related molecules are forming a family of cytokines, the IL-17 family. The prototype member of the family has been designated IL-17A. Due to recent advances in the human genome sequencing and proteomics five additional members have been identified and cloned: IL-17B, IL-17C, IL-17D, IL-17E and IL-17F. The cognate receptors for the IL-17 family identified thus far are: IL-17R, IL-17RH1, IL-17RL (receptor like), IL-17RD and IL-17RE. However, the ligand specificities of many of these receptors have not been established. The IL-17 signaling system is operative in disparate tissues such as articular cartilage, bone, meniscus, brain, hematopoietic tissue, kidney, lung, skin and intestine. Thus, the evolving IL-17 family of ligands and receptors may play an important role in the homeostasis of tissues in health and disease beyond the immune system. This survey reviews the biological actions of IL-17 signaling in cancers, musculoskeletal tissues, the immune system and other tissues.  相似文献   

3.
4.
IL23/IL17 pathway plays an important role in the development of inflammatory bowel diseases (IBD). In general, the genes encoding the cytokines are genetically polymorphic and polymorphisms in genes IL23R and IL17 have been proved to be associated with its susceptibility to inflammatory diseases as well as cancer including colorectal cancer. Moreover, it has been shown that these interleukins are involved in anti-tumor or pro-tumor effects of various cancers. Previously, we showed that there is a significant association between IL17A, IL17F and IL23R polymorphisms as well as the occurrence of colorectal cancer and the clinical features of the disease. The purpose of the present work is to investigate an association between IL17A, IL17F and IL23R polymorphisms in 102 Tunisian patients with colorectal cancer treatment. The association was analyzed by statistical tools. We found that patients with mutated genotypes of IL17A G197A SNP could be a risk factor for the inefficiency of chemotherapy and radiotherapy. Unlike IL17F variant, patients with wild type genotypes require surgery and adjuvant chemotherapy. On the one hand, we found no evidence that supports a significant association between IL23R polymorphism and the combined genotypes of these three genes and the colorectal cancer treatment. On the other hand, we showed that there is an important interaction between IL17A/IL17F polymorphisms and the stage of the disease as well as its treatment. Finally, patients with IL17F wild type genotype highlighted that there is a valid longer OS without all treatments and with radiotherapy and a neoadjuvant chemotherapy. In contrast, we observed that there are no relationships between IL17A, IL23R and the survival of these patients neither with nor without the treatment. Our results suggest that polymorphisms in IL17A and IL17F genes may be a predictive source of colorectal cancer therapy type. Therefore, IL17F may serve as an independent prognostic factor for overall survival in patients with colorectal cancer.  相似文献   

5.
The widely accepted notion that two whole-genome duplications occurred during early vertebrate evolution (the 2R hypothesis) stems from the fact that vertebrates often possess several genes corresponding to a single invertebrate homolog. However the number of genes predicted by the Human Genome Project is less than twice as many as in the Drosophila melanogaster or Caenorhabditis elegans genomes. This ratio could be explained by two rounds of genome duplication followed by extensive gene loss, by a single genome duplication, by sequential local duplications, or by a combination of any of the above. The traditional method used to distinguish between these possibilities is to reconstruct the phylogenetic relationships of vertebrate genes to their invertebrate orthologs; ratios of invertebrate-to-vertebrate counterparts are then used to infer the number of gene duplication events. The lancelet, amphioxus, is the closest living invertebrate relative of the vertebrates, and unlike protostomes such as flies or nematodes, is therefore the most appropriate outgroup for understanding the genomic composition of the last common ancestor of all vertebrates. We analyzed the relationships of all available amphioxus genes to their vertebrate homologs. In most cases, one to three vertebrate genes are orthologous to each amphioxus gene (median number=2). Clearly this result, and those of previous studies using this approach, cannot distinguish between alternative scenarios of chordate genome expansion. We conclude that phylogenetic analyses alone will never be sufficient to determine whether genome duplication(s) occurred during early chordate evolution, and argue that a "phylogenomic" approach, which compares paralogous clusters of linked genes from complete amphioxus and human genome sequences, will be required if the pattern and process of early chordate genome evolution is ever to be reconstructed.  相似文献   

6.
Genomics of fish IL-17 ligand and receptors: a review   总被引:2,自引:0,他引:2  
Interleukin-17 (IL-17) is a cytokine family composed of six ligands (A–F). Especially, the IL-17A and IL-17F are best characterized cytokines of IL-17 family cytokine. These are produced by Th17 cells and induce the expression of many mediators of inflammation properties. In addition, the five member of IL-17 receptor family (RA-RE) have been identified in mammals. Although the research on fish IL-17 is a little to date, this review discusses some of the recent advances in research on IL-17 ligand and receptor genes in fish. IL-17 family member was chosen from the fish genome database, and its structure and phylogeny is analyzed in detail. Moreover, invertebrate IL-17 genes are also discussed, and the isolation and current status of fish IL-17 receptor genes are summarized. Comparative genomic analysis of the IL-17 family among mammals, teleost and invertebrates provided new insights. Novel IL-17 ligand (IL-17N) was identified from teleost, moreover it was suggested that IL-17N may be a teleost specific ligand by synteny and phylogenetic analysis. On the other hand, IL-17 receptors are well conserved between mammal and teleost, the five member of IL-17 receptor family: IL-17RA-RE were found on the teleost genome. In addition, the IL-17RA gene was duplicated in tandem on the stickleback and medaka genome. Knowledge about the IL-17 ligand/receptor in fish is very limited. Therefore this review will hopefully encourage future studies of IL-17 in fish.  相似文献   

7.
IL-17, the hallmark cytokine of the Th17 population, mediates immunity to extracellular pathogens and promotes autoimmune immunopathology. The signaling mechanisms triggered by the IL-17 receptor (IL-17RA) and related receptors are strikingly different from other cytokine subclasses. Namely, IL-17Rs contain a conserved SEF/IL-17R (SEFIR) subdomain that engages Act1, leading to activation of TRAF6, NF-κB, and other events. Although the SEFIR is critical for signaling, the molecular details of the functional subdomains within IL-17RA remain poorly characterized. Here, we provide a detailed structure-function analysis delineating the C-terminal boundary of the SEFIR-containing region of IL-17RA. We show that functionality of this domain requires a large extension to the previously identified SEFIR motif. In contrast to the SEFIR, this extension is not conserved among IL-17R family members. Surprisingly, Act1 recruitment is not sufficient for downstream signaling activation, whereas ubiquitination of TRAF6 correlates tightly with functional receptors. We further demonstrate that IL-17RA exhibits signaling properties that are nonredundant with other IL-17R family members. Finally, we report that IL-17 signals synergistically with lymphotoxin-α3, using the same signaling motifs within IL-17RA. These studies provide new insight into the structure-function relationships of IL-17RA and reveal distinct signaling differences among IL-17R family members.  相似文献   

8.
Developmental signaling by retinoic acid (RA) is thought to be an innovation essential for the origin of the chordate body plan. The larvacean urochordate Oikopleura dioica maintains a chordate body plan throughout life, and yet its genome appears to lack genes for RA synthesis, degradation, and reception. This suggests the hypothesis that the RA-machinery was lost during larvacean evolution, and predicts that Oikopleura development has become independent of RA-signaling. This prediction raises the problem that the anterior-posterior organization of a chordate body plan can be developed without the classical morphogenetic role of RA. To address this problem, we performed pharmacological treatments and analyses of developmental molecular markers to investigate whether RA acts in anterior-posterior axial patterning in Oikopleura embryos. Results revealed that RA does not cause homeotic posteriorization in Oikopleura as it does in vertebrates and cephalochordates, and showed that a chordate can develop the phylotypic body plan in the absence of the classical morphogenetic role of RA. A comparison of Oikopleura and ascidian evidence suggests that the lack of RA-induced homeotic posteriorization is a shared derived feature of urochordates. We discuss possible relationships of altered roles of RA in urochordate development to genomic events, such as rupture of the Hox-cluster, in the context of a new understanding of chordate phylogeny.  相似文献   

9.
Cytokines are one of the major signaling molecules involved in immunity. Many of these cytokines have been isolated in vertebrates and found to play a significant role in host defense mechanism. Interleukin-17 (IL-17) family of genes are known to have pro-inflammatory actions and associated with specific disease conditions, these genes are conserved across vertebrate evolution. In this study, computational screening for the zebrafish (Danio rerio) genome resulted in identification of five contigs harboring IL-17 genes. Zebrafish cDNA encoding five IL-17 genes exhibited percentage identities of 19.3%-61.9% with that of human homologs. The molecules show conservation of cysteines, important for disulphide bonds for IL-17 molecules. The structural composition of these genes shows two introns and three exons except for IL-17D gene that has only one intron and two exons. Phylogenetic analysis using maximum parsimony algorithm showed that zebrafish IL-17 genes clustered well with other IL-17 homologs further proving the structural similarity with IL-17 genes from other organisms. Expression analysis by RT-PCR revealed expression of IL-17 genes in normal and stimulated tissues of kidney, spleen, gills and intestine. The expression of IL-17 in un-stimulated tissues indicates that these genes may play important roles in normal conditions as well.  相似文献   

10.
Interleukin (IL)-17, a proinflammatory cytokine, is produced primarily by activated Th17 cells. IL-17 consists of six ligands that signal through five receptors (IL-17Rs); IL-17A and IL-17F share the highest homology in the family. Matrix metalloproteinases (MMPs) degrade the extracellular matrix during cartilage remodeling whereas tissue inhibitor of metalloproteinases (TIMPs) inhibit the action of MMPs. In the present study, we examined the effect of IL-17F on the degradation and synthesis of the extracellular matrix in cartilage using human articular chondrocytes. We examined the effect of IL-17F on the expression of IL-17Rs, MMPs, TIMPs, type II collagen, aggrecan, link protein, and cyclooxygenases (COXs), as well as on prostaglandin E2 (PGE2) production. We also examined the indirect effect of PGE2 on the above IL-17F-induced/reduced components using NS-398, a specific inhibitor of COX-2. Cells were cultured with or without IL-17F in the presence or absence of either an IL-17R antibody or NS-398 for up to 28 days. Expression of IL-17Rs, MMPs, TIMPs, type II collagen, aggrecan, link protein, and COXs at mRNA and protein levels was determined using real-time polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA), respectively. PGE2 production was determined by ELISA. The expression of all types of IL-17Rs was detected in chondrocytes. However, IL-17RE expression was extremely low, compared with other IL-17Rs. The expression of MMP-1, MMP-3, MMP-13, and COX-2 as well as PGE2 production were increased by addition of IL-17F, whereas the expression of IL-17RD, TIMP-2, TIMP-4, type II collagen, aggrecan, link protein, and COX-1 was decreased. The expression of IL-17RA, IL-17RB, IL-17RC, MMP-2, MMP-14, TIMP-1, and TIMP-3 was unaffected by addition of IL-17F. The IL-17R antibody blocked the stimulating/reducing effect of IL-17F on the expression of MMP-1, MMP-3, MMP-13, TIMP-2, TIMP-4, type II collagen, aggrecan, and link protein. NS-398 blocked the reducing effect of IL-17F on aggrecan expression, whereas it did not completely block the stimulating/reducing effects of IL-17F on the expression of MMP-1, MMP-3, MMP-13, TIMP-2, TIMP-4, type II collagen, and link protein. Our results suggest that IL-17F stimulates cartilage degradation by increasing the expression of collagenases (MMP-1 and -13) and stromelysin-1 (MMP-3) and by decreasing expression of their inhibitors (TIMP-2 and -4), type II collagen, aggrecan, and link protein in chondrocytes. Furthermore, our results suggest that the expression of aggrecan, link protein, and TIMP-4 decrease through the autocrine action of PGE2 in chondrocytes.  相似文献   

11.
In the present study, genes involved in the pathways that establish cell polarity and cascades regulating actin dynamics were identified in the completely sequenced genome of Ciona intestinalis, a basal chordate. It was revealed that the Ciona genome contains orthologous genes of each component of aPKC-Par and PCP pathways and WASP/WAVE/SCAR and ADF/cofilin cascades, with less redundancy than the vertebrate genomes, suggesting that the conserved pathways/cascades function in Ciona development. In addition, the present study found that the orthologous proteins of five gene groups (Tc10, WRCH, RhoD, PLC-L, and PSKH) are conserved in humans and Ciona but not in Drosophila melanogaster, suggesting a similarity in the gene composition of Ciona to that of vertebrates. Ciona intestinalis, therefore, may provide refined clues for the study of vertebrate development and evolution.  相似文献   

12.

Background

Previous studies implicated that IL23R and IL17 genes play an important role in autoimmune inflammation. Genome-wide association studies have also identified multiple single nucleotide polymorphisms (SNPs) in the IL23R gene region associated with inflammatory bowel diseases. This study examined the association of IL23R and IL17A gene SNPs with ulcerative colitis susceptibility in a population in China.

Methodology

A total of 270 ulcerative colitis and 268 healthy controls were recruited for the analyses of 23 SNPs in the IL23R and IL17A regions. Genomic DNA was extracted and analysis of these 23 SNPs using ligase detection reaction allelic (LDR) technology. Genotype and allele associations were calculated using SPSS 13.0 software package.

Principal Findings

Compared to the healthy controls, the variant alleles IL23R rs7530511, and rs11805303 showed a statistically significant difference for ulcerative colitis susceptibility (0.7% vs 3.3%, P = 0.002; 60.4% vs 53.2%, P = 0.0017, respectively). The linkage disequilibrium (LD) patterns of these SNPs were measured and three LD blocks from the SNPs of IL23R and one block from those of IL17A were identified. A novel association with ulcerative colitis susceptibility occurred in haplotypes of IL23R (Block1 H3 P = 0.02; Block2 H2 P = 0.019; Block3 H4 P = 0.029) and IL17A (H4 P = 0.034). Pair-wise analyses showed an interaction between the risk haplotypes in IL23R and IL17A (P = 0.014).

Conclusions

Our study demonstrated that rs7530511, and rs11805303 of IL23R were significantly associated with ulcerative colitis susceptibility in the Chinese population. The most noticeable finding was the linkage of IL23R and IL17A gene region to ulcerative colitis risk due to the gene-gene interaction.  相似文献   

13.
Taste reception is fundamental to diet selection in many animals. The genetic basis underlying the evolution and diversity of taste reception, however, is not well understood. Recent discoveries of T1R sweet/umami receptor genes and T2R bitter receptor genes in humans and mice provided an opportunity to address this question. Here, we report the identification of 20 putatively functional T1R genes and 167 T2R genes from the genome sequences of nine vertebrates, including three fishes, one amphibian, one bird, and four mammals. Our comparative genomic analysis shows that orthologous T1R sequences are relatively conserved in evolution and that the T1R gene repertoire remains virtually constant in size across most vertebrates, except for the loss of the T1R2 sweet receptor gene in the sweet-insensitive chicken and the absence of all T1R genes in the tongueless western clawed frog. In contrast, orthologous T2R sequences are more variable, and the T2R repertoire diverges tremendously among species, from only three functional genes in the chicken to 49 in the frog. These evolutionary patterns suggest the relative constancy in the number and type of sweet and umami tastants encountered by various vertebrates or low binding specificities of T1Rs but a large variation in the number and type of bitter compounds detected by different species. Although the rate of gene duplication is much lower in T1Rs than in T2Rs, signals of positive selection are detected during the functional divergences of paralogous T1Rs, as was previously found among paralogous T2Rs. Thus, functional divergence and specialization of taste receptors generally occurred via adaptive evolution.  相似文献   

14.
Asthma is a common respiratory disease that is characterized by variable airways obstruction caused by acute and chronic bronchial inflammation; associated phenotypes include bronchial hyperresponsiveness (BHR), elevated total serum immunoglobulin E (IgE) levels, and skin tests positive to common allergens. Binding of interleukin-13 (IL13) or interleukin-4 (IL4) to the IL4 receptor (IL4R) induces the initial response for Th2 lymphocyte polarization. Both IL13 and IL4 are produced by Th2 cells and are capable of inducing isotype class-switching of B-cells to produce IgE after allergen exposure. These cytokines also share a common receptor component, IL4R alpha. We have investigated five IL4RA single-nucleotide polymorphisms in a population of Dutch families ascertained through a proband with asthma. By considering the probands and their spouses as an unrelated sample, we observed significant associations of atopy and asthma-related phenotypes with several IL4RA polymorphisms, including S478P and total serum IgE levels (P=.0007). A significant gene-gene interaction between S478P in IL4RA and the -1111 promoter variation in IL13, previously shown to be associated with BHR (P=.003), was detected. Individuals with the risk genotype for both genes were at almost five times greater risk for the development of asthma compared to individuals with both non-risk genotypes (P=.0004). These data suggest that variations in IL4RA contribute to elevated total serum IgE levels, and interaction between IL4RA and IL13 markedly increases an individual's susceptibility to asthma.  相似文献   

15.
16.
With the acquisition of complete genome sequences from several animals, there is renewed interest in the pattern of genome evolution on our own lineage. One key question is whether gene number increased during chordate or vertebrate evolution. It is argued here that comparing the total number of genes between a fly, a nematode and human is not appropriate to address this question. Extensive gene loss after duplication is one complication; another is the problem of comparing taxa that are phylogenetically very distant. Amphioxus and tunicates are more appropriate animals for comparison to vertebrates. Comparisons of clustered homeobox genes, where gene loss can be identified, reveals a one to four mode of evolution for Hox and ParaHox genes. Analyses of other gene families in amphioxus and vertebrates confirm that gene duplication was very widespread on the vertebrate lineage. These data confirm that vertebrates have more genes than their closest invertebrate relatives, acquired through gene duplication. abbreviations IHGSC, International Human Genome Sequencing Consortium; TCESC, The C. elegans Sequencing Consortium.  相似文献   

17.
Bitter taste perception is mediated by a family of G protein-coupled receptors (T2Rs) in vertebrates. Common carp (Cyprinus carpio), which has experienced an additional round of whole genome duplication during the course of evolution, has a small number of T2R genes similar to zebrafish, a closely related cyprinid fish species, and their expression pattern at the cellular level or their cognate ligands have not been elucidated yet. Here, we showed through in situ hybridization experiments, that three common carp T2R (ccT2R) genes encoding ccT2R200-1, ccT2R202-1, and ccT2R202-2, were specifically expressed in the subsets of taste receptor cells in the lips and gill rakers. ccT2R200-1 was co-expressed with genes encoding downstream signal transduction molecules, such as PLC-β2 and Gαia. Heterologous expression system revealed that each ccT2R showed narrowly, intermediately, or broadly tuned ligand specificity, as in the case of zebrafish T2Rs. However, ccT2Rs showed different ligand profiles from their orthologous zebrafish T2Rs previously reported. Finally, we identified three ccT2Rs, namely ccT2R200-1, ccT2R200-2, and ccT2R203-1, to be activated by natural bitter compounds, andrographolide and/or picrotoxinin, which elicited no response to zebrafish T2Rs, in a dose-dependent manner. These results suggest that some ccT2Rs may have evolved to function in the oral cavity as taste receptors for natural bitter compounds found in the habitats in a species-specific manner.  相似文献   

18.
Changes or innovations in gene regulatory networks for the developmental program in the ancestral chordate genome appear to be a major component in the evolutionary process in which tadpole-type larvae, a unique characteristic of chordates, arose. These alterations may include new genetic interactions as well as the acquisition of new regulatory genes. Previous analyses of the Ciona genome revealed that many genes may have emerged after the divergence of the tunicate and vertebrate lineages. In this paper, we examined this possibility by examining a second non-vertebrate chordate genome. We conclude from this analysis that the ancient chordate included almost the same repertory of regulatory genes, but less redundancy than extant vertebrates, and that approximately 10% of vertebrate regulatory genes were innovated after the emergence of vertebrates. Thus, refined regulatory networks arose during vertebrate evolution mainly as preexisting regulatory genes multiplied rather than by generating new regulatory genes. The inferred regulatory gene sets of the ancestral chordate would be an important foundation for understanding how tadpole-type larvae, a unique characteristic of chordates, evolved.  相似文献   

19.
The T cell coreceptor CD4 is a transmembrane glycoprotein belonging to the Ig superfamily and is essential for cell-mediated immunity. Two different genes were identified in rainbow trout that resemble mammalian CD4. One (trout CD4) encodes four extracellular Ig domains reminiscent of mammalian CD4, whereas the other (CD4REL) codes for two Ig domains. Structural motifs within the amino acid sequences suggest that the two Ig domains of CD4REL duplicated to generate the four-domain molecule of CD4 and the related gene, lymphocyte activation gene-3. Here we present evidence that both of these molecules in trout are homologous to mammalian CD4 and that teleosts encode an additional CD4 family member, lymphocyte activation gene-3, which is a marker for activated T cells. The syntenic relationships of similar genes in other teleost and non-fish genomes provide evidence for the likely evolution of CD4-related molecules in vertebrates, with CD4REL likely representing the primordial form in fish. Expression of both CD4 genes is highest in the thymus and spleen, and mRNA expression of these genes is limited to surface IgM- lymphocytes. consistent with a role for T cell functionality. Finally, the intracellular regions of both CD4 and CD4REL possess the canonical CXC motif involved in the interaction of CD4 with p56LCK, implying that similar mechanisms for CD4+ T cell activation are present in all vertebrates. Our results therefore raise new questions about T cell development and functionality in lower vertebrates that cannot be answered by current mammalian models and, thus, is of fundamental importance for understanding the evolution of cell-mediated immunity in gnathosomes.  相似文献   

20.
In the past year, studies on protochordates have provided evidence that many features that we take to be indicative of the vertebrates were evident early in chordate evolution. Furthermore, many of the important developmental regulatory genes have also been identified in these invertebrates. Finally, we are also gaining a better insight into how the vertebrate genome itself evolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号