首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
To study the roles of intracellular factors in neuronal morphogenesis, we used the mosaic analysis with a repressible cell marker (MARCM) technique to visualize identifiable single multiple dendritic (MD) neurons in living Drosophila larvae. We found that individual neurons in the peripheral nervous system (PNS) developed clear morphological polarity and diverse dendritic branching patterns in larval stages. Each MD neuron in the same dorsal cluster developed a unique dendritic field, suggesting that they have specific physiological functions. Single-neuron analysis revealed that Flamingo did not affect the general dendritic branching patterns in postmitotic neurons. Instead, Flamingo limited the extension of one or more dorsal dendrites without grossly affecting lateral branches. The dendritic overextension phenotype was partially conferred by the precocious initiation of dorsal dendrites in flamingo mutant embryos. In addition, Flamingo is required cell autonomously to promote axonal growth and to prevent premature axonal branching of PNS neurons. Our molecular analysis also indicated that the amino acid sequence near the first EGF motif is important for the proper localization and function of Flamingo. These results demonstrate that Flamingo plays a role in early neuronal differentiation and exerts specific effects on dendrites and axons.  相似文献   

3.
Han C  Wang D  Soba P  Zhu S  Lin X  Jan LY  Jan YN 《Neuron》2012,73(1):64-78
Dendrites of the same neuron usually avoid each other. Some neurons also repel similar neurons through dendrite-dendrite interaction to tile the receptive field. Nonoverlapping coverage based on such contact-dependent repulsion requires dendrites to compete for limited space. Here we show that Drosophila class IV dendritic arborization (da) neurons, which tile the larval body wall, grow their dendrites mainly in a 2D space on the extracellular matrix (ECM) secreted by the epidermis. Removing neuronal integrins or blocking epidermal laminin production causes dendrites to grow into the epidermis, suggesting that integrin-laminin interaction attaches dendrites to the ECM. We further show that some of the previously identified tiling mutants fail to confine dendrites in a 2D plane. Expansion of these mutant dendrites in three dimensions results in overlap of dendritic fields. Moreover, overexpression of integrins in these mutant neurons effectively reduces dendritic crossing and restores tiling, revealing an additional mechanism for tiling.  相似文献   

4.
Summary Nerve cells of the human striatum were investigated with the use of a newly developed technique that reveals the pattern of pigmentation of individual nerve cells by means of transparent Golgi impregnations of their cell bodies and processes. Five types of neurons are distinguished:Type I is a medium-sized spine-laden neuron with an axon giving off a great number of collateral branches. The vast majority of the cells in the striatum belong to this type. Numerous intensely stained lipofuscin granules are contained in one pole of the cell body and may also extend into adjacent portions of a dendrite.Type II is a medium-sized to large neuron with long intertwining dendrites decorated with spines of uncommon shape. A distinguishing feature of this cell type is the presence of somal spines. This cell type is devoid of pigment or contains only a few tiny lipofuscin granules.Type III is a large multipolar neuron. The cell body generates a few rather extended dendrites that are very sparsely spined. The finely granulated pigment is evenly dispersed within a large portion of the cytoplasm.Type IV is a large aspiny neuron with rounded cell body and richly branching tortuous dendrites. The axon branches frequently in the vicinity of the parent soma. Large pigment granules are concentrated within a circumscribed part of the cell body close to the cell membrane.Type V is a small to medium-sized aspiny neuron. The dendrites break up into a swirling mass of thin branches. More than one axon may be given off from the soma. The axons branch close to the soma into terminal twigs. Cells of this type contain numerous large and well-stained lipofuscin granules.Each of the cell types has a characteristic pattern of pigmentation. The different varieties of nerve cells in the striatum can therefore be distinguished not only in Golgi impregnations but also in pigment-Nissl preparations.  相似文献   

5.
Neurons in the anterior ventral (AV) thalamic nucleus of human adults were impregnated by Golgi-Kopsch impregnation method. Results showed that at least three morphological types of neurons could be recognized in the human AV thalamic nucleus. Type I neurons were medium to large with rich dendritic arborization. Both tufted and radiating dendritic branching patterns were seen in almost every neuron of this type. Only the initial axonal segments of these cells were impregnated suggesting that these axons were heavily myelinated. Type II neurons were medium in size with poor to moderate dendritic arborization. Many of these cells possess a few dendritic grape-like appendages. Long segments (up to 300 μm) of their axons were impregnated suggesting that these axons were either unmyelinated or thinly myelinated. These axons change their direction and form loops very often. No local branches were seen for these axons suggesting that they could be projection axons. Type III neurons were small with only one or two dendrites with poor arborization. No axons for these cells were seen in this study. The three neuronal types in the human AV thalamic nucleus were compared with neuronal types already described in other thalamic nuclei of human and non-human species. The results of this study might provide a morphological basis for further electrophysiological and / or pathological studies.  相似文献   

6.
An electron-microscopic study was made of 4520 synapses in different layers of the cat auditory cortex. Of the total number of synapses 53% were located on dendritic spines, 37% on dendrites, and 10% on neuron bodies; 91% of the synapses belonged to Gray's type I, 9% to type II. Most of the type I synapses were located on dendrites and dendritic spines, whereas the type II synapses were distributed on neuron bodies, axon hillocks, and large dendrites. Signs of degeneration were discovered 60 h after complete neuronal isolation of an area of the auditory cortex in 22.8% of synapses. No degenerating type II synapses were found. This indicates that they are formed by axons of intracortical neurons. The quantitative and qualitative composition of the synapses were shown to differ in different layers of the auditory cortex.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 2, pp. 131–137, March–April, 1980.  相似文献   

7.
Tau is a microtubule‐associated neuronal protein found mainly in axons. However, its presence in dendrites and dendritic spines is particularly relevant due to its involvement in synaptic plasticity and neurodegeneration. Here, we show that Tau plays a novel in vivo role in the morphological and synaptic maturation of newborn hippocampal granule neurons under basal conditions. Furthermore, we reveal that Tau is involved in the selective cell death of immature granule neurons caused by acute stress. Also, Tau deficiency protects newborn neurons from the stress‐induced dendritic atrophy and loss of postsynaptic densities (PSDs). Strikingly, we also demonstrate that Tau regulates the increase in newborn neuron survival triggered by environmental enrichment (EE). Moreover, newborn granule neurons from Tau?/? mice did not show any stimulatory effect of EE on dendritic development or on PSD generation. Thus, our data demonstrate that Tau?/? mice show impairments in the maturation of newborn granule neurons under basal conditions and that they are insensitive to the modulation of adult hippocampal neurogenesis exerted by both stimulatory and detrimental stimuli.  相似文献   

8.
Dendritic spines are assumed to constitute the locus of neuronal plasticity, and considerable effort has been focused on attempts to demonstrate that new memories are associated with the formation of new spines. However, few studies that have documented the appearance of spines after exposure to plasticity-producing paradigms could demonstrate that a new spine is touched by a bona fida presynaptic terminal. Thus, the functional significance of plastic dendritic spine changes is not clearly understood. We have used quantitative time lapse confocal imaging of cultured hippocampal neurons before and after their exposure to a conditioning medium which activates synaptic NMDA receptors. Following the experiment the cultures were prepared for 3D electron microscopic reconstruction of visually identified dendritic spines. We found that a majority of new, 1- to 2-h-old spines was touched by presynaptic terminals. Furthermore, when spines disappeared, the parent dendrites were sometime touched by a presynaptic bouton at the site where the previously identified spine had been located. We conclude that new spines are most likely to be functional and that pruned spines can be transformed into shaft synapses and thus maintain their functionality within the neuronal network.  相似文献   

9.
In vivo simultaneous tracing and Ca(2+) imaging of local neuronal circuits   总被引:4,自引:0,他引:4  
A central question about the brain is how information is processed by large populations of neurons embedded in intricate local networks. Answering this question requires not only monitoring functional dynamics of many neurons simultaneously, but also interpreting such activity patterns in the context of neuronal circuitry. Here, we introduce a versatile approach for loading Ca(2+) indicators in vivo by local electroporation. With this method, Ca(2+) imaging can be performed both at neuron population level and with exquisite subcellular resolution down to dendritic spines and axon boutons. This enabled mitral cell odor-evoked ensemble activity to be analyzed simultaneously with revealing their specific connectivity to different glomeruli. Colabeling of Purkinje cell dendrites and intersecting parallel fibers allowed Ca(2+) imaging of both presynaptic boutons and postsynaptic dendrites. This approach thus provides an unprecedented capability for in vivo visualizing active cell ensembles and tracing their underlying local neuronal circuits.  相似文献   

10.
11.
The cytoarchitecture and neuromorphology of the torus semicircularis in the tokay gecko, Gekko gecko, were examined in Nissl-stained, fiber-stained, and Golgi-impregnated tissues. From a superficial position, the torus semicircularis extends rostrally under the caudal half of the optic tectum. Caudally, the two tori abut upon one another; rostrally, they diverge. The torus semicircularis consists of central, laminar, and superficial nuclei. The central nucleus consists of fusiform, spherical and triangular neurons. Their dendrites are highly branched, with numerous dendritic spines, and are oriented mediolaterally, dorsoventrally, and rostrocaudally. Fusiform and spherical neurons display two dendritic patterns: “single axis,” ramifying in one axis, and “dual axis,” exhibiting higher-order branches perpendicular to the primary dendrites. Triangular neurons exhibit a “radiate” dendritic pattern. In the rostral half of the torus semicircularis, the laminar nucleus caps the central nucleus. The laminar nucleus encircles the central nucleus in the caudal torus semicircularis. The neurons of the laminar nucleus have dendritic arrays oriented parallel to the border of the central nucleus. These dendrites exhibit a paucity of dendritic spines and higher-order branches. Fusiform and spherical neurons exhibit “single axis” and “dual axis” dendritic patterns. Triangular neurons display “radiate” patterns. The caudal superficial nucleus lies dorsal and dorsolateral to the central nucleus. The superficial nucleus is sparsely populated by small fusiform and spherical neurons with moderately branched dendrites and moderate numbers of dendritic spines. These neurons display “single axis” (fusiform neurons) as well as “dual axis” and “radiate” (spherical neurons) dendritic patterns. They are oriented either parallel to or perpendicular to the boundary of the laminar nucleus.  相似文献   

12.
Summary 1. The morphology of neurons in the dentate gyrus of the adult human brain was analyzed with two variants of Golgi technique.2. About 20 neuronal types and subtypes were observed in the dentate gyrus of the adult human, several of which had not previously been described in the human. The human dentate gyrus harbors 4 types of neurons in the molecular layer, 3 types within the granule cell layer, and at least 10 types in the hilus.3. Compared to the granule neurons in the rat brain, human granule neurons show a much greater variability. Many of these human neurons have basal dendrites and/or axonal spines. Also, there are significant differences among these neurons regarding the density of their dendritic trees and dendritic spines. In contrast to the rat, human hilar neurons with complex spines have complex spines not only on their dendrites but also on their cell bodies.4. This study opens the door for further morphological studies involving specific diseases such as Alzheimer's disease and epilepsy.  相似文献   

13.
1. Golgi-Kopsch preparations of the oral ventral nuclei of human thalamus were analyzed in an attempt to classify the neuronal types. 2. Three types of neurons are described for the first time in humans. Type I neurons are large or medium in size and bear dendrites with protrusions, spines, and short hair-like appendages. Some have a radiate dendritic arbor and others have dendrites grouped in tufts. The dendritic trees of these neurons are dense. 3. Type II neurons are medium or small in size with less dense dendritic trees. These cells have somatic as well as dendritic appendages of different forms. 4. Relatively rare is a type of very small neurons, type III, with few and sparsely branching dendrites.  相似文献   

14.
The majority of excitatory synapses in the mammalian brain form on filopodia and spines, actin-rich membrane protrusions present on neuronal dendrites. The biochemical events that induce filopodia and remodel these structures into dendritic spines remain poorly understood. Here, we show that the neuronal actin- and protein phosphatase-1-binding protein, neurabin-I, promotes filopodia in neurons and nonneuronal cells. Neurabin-I actin-binding domain bundled F-actin, promoted filopodia, and delayed the maturation of dendritic spines in cultured hippocampal neurons. In contrast, dimerization of neurabin-I via C-terminal coiled-coil domains and association of protein phosphatase-1 (PP1) with neurabin-I through a canonical KIXF motif inhibited filopodia. Furthermore, the expression of a neurabin-I polypeptide unable to bind PP1 delayed the maturation of neuronal filopodia into spines, reduced the synaptic targeting of AMPA-type glutamate (GluR1) receptors, and decreased AMPA receptor-mediated synaptic transmission. Reduction of endogenous neurabin levels by interference RNA (RNAi)-mediated knockdown also inhibited the surface expression of GluR1 receptors. Together, our studies suggested that disrupting the functions of a cytoskeletal neurabin/PP1 complex enhanced filopodia and impaired surface GluR1 expression in hippocampal neurons, thereby hindering the morphological and functional maturation of dendritic spines.  相似文献   

15.
16.
The anterior dorsal ventricular ridge was examined in the American alligator, Alligator mississippiensis, with cresyl violet and Golgi-Kopsch preparations. Four cytoarchitectonic areas (lateral dorsolateral, medial dorsolateral, intermediolateral, and lateral) can be distinguished by variations in the density of neurons and their tendency to form clusters of neurons with apposed somata. Three distinct types of neurons are distributed throughout these areas. Juxtaependymal neurons lie near the ventricular surface and have dendritic fields paralleling the ependymal layer. Their dendrites bear a moderate density of spines. Spiny neurons all have stellate shaped dendritic fields and dendrites that bear dendritic spines, but they vary greatly in the density of spines and the thickness of their dendrites. A very spiny variety has a high spine density and relatively thick dendrites. A moderately spiny variety has a moderate spine density and thin dendrites. A sparsely spiny variety has a low spine density and thick dendrites. Aspiny neurons have a relatively large number of dendrites that form a gnarled dendritic field and lack spines.  相似文献   

17.
Neurogenesis in the adult hippocampus is an important form of structural plasticity in the brain. Here we report a line of BAC transgenic mice (GAD67-GFP mice) that selectively and transitorily express GFP in newborn dentate granule cells of the adult hippocampus. These GFP+ cells show a high degree of colocalization with BrdU-labeled nuclei one week after BrdU injection and express the newborn neuron marker doublecortin and PSA-NCAM. Compared to mature dentate granule cells, these newborn neurons show immature morphological features: dendritic beading, fewer dendritic branches and spines. These GFP+ newborn neurons also show immature electrophysiological properties: higher input resistance, more depolarized resting membrane potentials, small and non-typical action potentials. The bright labeling of newborn neurons with GFP makes it possible to visualize the details of dendrites, which reach the outer edge of the molecular layer, and their axon (mossy fiber) terminals, which project to the CA3 region where they form synaptic boutons. GFP expression covers the whole developmental stage of newborn neurons, beginning within the first week of cell division and disappearing as newborn neurons mature, about 4 weeks postmitotic. Thus, the GAD67-GFP transgenic mice provide a useful genetic tool for studying the development and regulation of newborn dentate granule cells.  相似文献   

18.
Using Golgi techniques we have studied neuronal cell types in the anterior dorsal ventricular ridge (ADVR) of the adult lizard Gallotia galloti. Multipolar, bitufted, and juxtaependymal neuronal forms were found. The multipolar and bitufted neurons are present in both the periventricular and central ADVR zones. Multipolar neurons can be subdivided into multipolar neurons with polygonal somata and four to six main dendritic trunks and multipolar neurons with pyramidal somata and three or more dendritic trunks. The former are the cells most frequently impregnated in the ADVR. In the population of bitufted neurons, we distinguish subtypes I, II, and III according to the number of dendritic trunks that emerge from the somata. Juxtaependymal neurons are restricted to a cell-poor zone, adjacent to ependymal cells. Their dendrites either are orientated parallel to the ventricular surface or extend into the periventricular zone. The dendrites of ADVR neurons have pedunculated spines with knob-like tips. However, such spines do not appear on the somata or on the primary dendritic trunks. The number of spines is scarce or moderate. The periventricular neuronal clusters contain two to five cells. The morphology of these neurons is mainly multipolar, but we also found some bitufted neurons.  相似文献   

19.
Dendritic spines are protrusions emerging from the dendrite of a neuron and represent the primary postsynaptic targets of excitatory inputs in the brain. Technological advances have identified these structures as key elements in neuron connectivity and synaptic plasticity. The quantitative analysis of spine morphology using light microscopy remains an essential problem due to technical limitations associated with light''s intrinsic refraction limit. Dendritic spines can be readily identified by confocal laser-scanning fluorescence microscopy. However, measuring subtle changes in the shape and size of spines is difficult because spine dimensions other than length are usually smaller than conventional optical resolution fixed by light microscopy''s theoretical resolution limit of 200 nm.Several recently developed super resolution techniques have been used to image cellular structures smaller than the 200 nm, including dendritic spines. These techniques are based on classical far-field operations and therefore allow the use of existing sample preparation methods and to image beyond the surface of a specimen. Described here is a working protocol to apply super resolution structured illumination microscopy (SIM) to the imaging of dendritic spines in primary hippocampal neuron cultures. Possible applications of SIM overlap with those of confocal microscopy. However, the two techniques present different applicability. SIM offers higher effective lateral resolution, while confocal microscopy, due to the usage of a physical pinhole, achieves resolution improvement at the expense of removal of out of focus light. In this protocol, primary neurons are cultured on glass coverslips using a standard protocol, transfected with DNA plasmids encoding fluorescent proteins and imaged using SIM. The whole protocol described herein takes approximately 2 weeks, because dendritic spines are imaged after 16-17 days in vitro, when dendritic development is optimal. After completion of the protocol, dendritic spines can be reconstructed in 3D from series of SIM image stacks using specialized software.  相似文献   

20.
Regressive events that refine exuberant or inaccurate connections are critical in neuronal development. We used multi-photon, time-lapse imaging to examine how dendrites of Drosophila dendritic arborizing (da) sensory neurons are eliminated during early metamorphosis, and how intrinsic and extrinsic cellular mechanisms control this deconstruction. Removal of the larval dendritic arbor involves two mechanisms: local degeneration and branch retraction. In local degeneration, major branch severing events entail focal disruption of the microtubule cytoskeleton, followed by thinning of the disrupted region, severing and fragmentation. Retraction was observed at distal tips of branches and in proximal stumps after severing events. The pruning program of da neuron dendrites is steroid induced; cell-autonomous dominant-negative inhibition of steroid action blocks local degeneration, although retraction events still occur. Our data suggest that steroid-induced changes in the epidermis may contribute to dendritic retraction. Finally, we find that phagocytic blood cells not only engulf neuronal debris but also attack and sever intact branches that show signs of destabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号