首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The mitochondrial genomes of trypanosomatids lack tRNA genes. Instead, mitochondrial tRNAs are encoded and synthesized in the nucleus and are then imported into mitochondria. This also applies for tRNATyr, which in trypanosomatids contains an 11 nt intron. Previous work has defined an exon mutation which leads to accumulation of unspliced precursor tRNATyr. In this study we have used the splicing-deficient tRNATyr as a vehicle to introduce foreign sequences into the mitochondrion of Leishmania tarentolae. The naturally occurring intron was replaced by synthetic sequences of increasing length and the resulting tRNATyr precursors were expressed in transgenic cell lines. Whereas stable expression of precursor tRNAsTyr was obtained for introns up to a length of 76 nt, only precursors having introns up to 38 nt were imported into mitochondria. These results demonstrate that splicing-deficient tRNATyr can be used to introduce short synthetic sequences into mitochondria in vivo. In addition, our results show that one factor which limits the efficiency of import is the length of the molecule.  相似文献   

3.
4.
Specific substitution into the anticodon loop of yeast tyrosine transfer RNA   总被引:11,自引:0,他引:11  
L A Bare  O C Uhlenbeck 《Biochemistry》1986,25(19):5825-5830
The aminoacylation kinetics of 19 different variants of yeast tRNATyr with nucleotide substitutions in positions 33-35 were determined. Substitution of the conserved uridine-33 does not alter the rate of aminoacylation. However, substitution of the anticodon position 34 or position 35 reduces Km from 2- to 10-fold and Vmax as much as 2-fold, depending on the nucleotide inserted. The ochre and amber suppressor tRNAsTyr both showed about a 7-fold reduction in Vmax/Km. Data from tRNATyr with different modified nucleotides at position 35 suggest that specific hydrogen bonds form between the synthetase and both the N1 and N3 hydrogens of psi-35. The effect of simultaneous substitutions at positions 34 and 35 can be predicted reasonably well by combining the effects of single substitutions. These data suggest that yeast tyrosyl-tRNA synthetase interacts with positions 34 and 35 of the anticodon of tRNATyr and opens the possibility that nonsense suppressor efficiency may be mediated by the level of aminoacylation.  相似文献   

5.
6.
The N1 imino units in Escherichia coli tRNAfMet, tRNAGlu, tRNAPhe, and tRNATyr were studied by 1H-15N NMR using three different techniques to suppress signals of protons not attached to 15N. Two of the procedures, Fourier internuclear difference spectroscopy and two-dimensional forbidden echo spectroscopy permitted 1H and 15N chemical shifts to be measured simultaneously at 1H sensitivity. The tRNAs were labeled by fermentation of the uracil auxotroph S phi 187 on a minimal medium containing [1-15N]uracil. 1H and 15N resonances were detected for all of the N1 psi imino units except psi 13 at the end of the dihydrouridine stem in tRNAGlu. Chemical shifts for imino units in the tRNAs were compared with "intrinsic" values in model systems. The comparisons show that the A X psi pairs at the base of the anticodon stem in E. coli tRNAPhe and tRNATyr have psi in an anti conformation. The N1 protons of psi in other locations, including psi 32 in the anticodon loop of tRNAPhe, form internal hydrogen bonds to bridging water molecules or 2'-hydroxyl groups in nearby ribose units. These interactions permit psi to stabilize the tertiary structure of a tRNA beyond what is provided by the U it replaces.  相似文献   

7.
The eukaryotic tRNA-guanine transglycosylases (queuine insertases) catalyse an exchange of guanine for queuine in position 34, the wobble nucleoside, of tRNAs having a GUN anticodon where N (position 36) stands for A, U, C or G. In tRNAAsp (anticodon QUC) and tRNATyr (anticodon Q psi A) from certain eukaryotic cells, the nucleoside Q-34 is further hypermodified into a glycosylated derivative by tRNA-queuine glycosyltransferase. In order to gain insight into the influence of the nucleosides in position 36, 37 and 38 of an anticodon loop on the potential of a tRNA to become a substrate for the two modifying enzymes, we have constructed several variants of yeast tRNAs in which the normal anticodon has been replaced by one of the synthetic anticodons GUA, GUC, GUG or GUU. In yeast tRNAAsp, the nucleosides 37 (m1G) and 38(C) have also been replaced by an adenosine. These reconstructed chimerical tRNAs were microinjected into the cytoplasm of Xenopus laevis oocytes and tested for their ability to react with the oocyte maturation enzymes. Our results indicate that the nucleosides in positions 36, 37 and 38 influence the efficiencies of conversion of G-34 to Q-34 and of Q-34 to glycosyl Q-34; the importance of their effects are much more pronounced on the glycosylation of Q-34 than on the insertion of queuine. The effect of the nucleoside in position 37 is of particular importance in the case of yeast tRNAAsp: the replacement of the naturally occurring m1G-37 by an unmodified adenosine (as it is in X. laevis tRNAAsp), considerably increases the yield of the glycosylation reaction catalysed by the X. laevis tRNA-queuine glycosyltransferase.  相似文献   

8.
All eukaryotic cytoplasmic tRNAs(Tyr) contain pseudouridine in the centre of the anticodon (psi 35). Recently, it has been shown that the formation of psi 35 is dependent on the presence of introns in tRNA(Tyr) genes. Furthermore, we have investigated the structural and sequence requirements for the biosynthesis of psi 35. A number of mutant genes were constructed by oligonucleotide-directed mutagenesis of a cloned Arabidopsis tRNA(Tyr) gene. Nucleotide exchanges were produced in the first and third positions of the anticodon and at positions adjacent to the anticodon. Moreover, insertion and deletion mutations were made in the anticodon stem and in the intron. The mutant genes were transcribed in HeLa cell extract and the pre-tRNAs(Tyr) were used for studying psi 35 biosynthesis in HeLa cell and wheat germ extracts. We have made the following observations about the specificity of plant and vertebrate psi 35 syntheses: (i) insertion or deletion of one base pair in the anticodon stem does not influence the efficiency and accuracy of the psi 35 synthase; (ii) the presence of U35 in a stable double-stranded region prevents its modification to psi 35; and (iii) the consensus sequence U33N34U35A36Pu37 in the anticodon loop is an absolute requirement for psi 35 synthesis. Thus, psi 35 synthases recognize both tRNA tertiary structure and specific sequences surrounding the nucleotide to be modified.  相似文献   

9.
We have isolated and sequenced the minor species of tRNA(Ile) from Saccharomyces cerevisiae. This tRNA contains two unusual pseudouridines (psi s) in the first and third positions of the anticodon. As shown earlier by others, this tRNA derives from two genes having an identical 60 nt intron. We used in vitro procedures to study the structural requirements for the conversion of the anticodon uridines to psi 34 and psi 36. We show here that psi 34/psi 36 modifications require the presence of the pre-tRNA(Ile) intron but are not dependent upon the particular base at any single position of the anticodon. The conversion of U34 to psi 34 occurs independently from psi 36 synthesis and vice versa. However, psi 34 is not formed when the middle and the third anticodon bases of pre-tRNA(Ile) are both substituted to yield ochre anticodon UUA. This ochre pre-tRNA(Ile) mutant has the central anticodon uridine modified to psi 35 as is the case for S.cerevisiae SUP6 tyrosine-inserting ochre suppressor tRNA. In contrast, neither the first nor the third anticodon pseudouridine is formed, when the ochre (UUA) anticodon in the pre-tRNA(Tyr) is substituted with the isoleucine UAU anticodon. A synthetic mini-substrate consisting of the anticodon stem and loop and the wild-type intron of pre-tRNA(Ile) is sufficient to fully modify the anticodon U34 and U36 into psi s. This is the first example of the tRNA intron sequence, rather than the whole tRNA or pre-tRNA domain, being the main determinant of nucleoside modification.  相似文献   

10.
The removal of noncoding sequences (introns) from eukaryotic precursor mRNA is catalyzed by the spliceosome, a dynamic assembly involving specific and sequential RNA-RNA and RNA-protein interactions. An essential RNA-RNA pairing between the U2 small nuclear (sn)RNA and a complementary consensus sequence of the intron, called the branch site, results in positioning of the 2'OH of an unpaired intron adenosine residue to initiate nucleophilic attack in the first step of splicing. To understand the structural features that facilitate recognition and chemical activity of the branch site, duplexes representing the paired U2 snRNA and intron sequences from Saccharomyces cerevisiae were examined by solution NMR spectroscopy. Oligomers were synthesized with pseudouridine (psi) at a conserved site on the U2 snRNA strand (opposite an A-A dinucleotide on the intron strand, one of which forms the branch site) and with uridine, the unmodified analog. Data from NMR spectra of nonexchangeable protons demonstrated A-form helical backbone geometry and continuous base stacking throughout the unmodified molecule. Incorporation of psi at the conserved position, however, was accompanied by marked deviation from helical parameters and an extrahelical orientation for the unpaired adenosine. Incorporation of psi also stabilized the branch-site interaction, contributing -0.7 kcal/mol to duplex deltaG degrees 37. These findings suggest that the presence of this conserved U2 snRNA pseudouridine induces a change in the structure and stability of the branch-site sequence, and imply that the extrahelical orientation of the branch-site adenosine may facilitate recognition of this base during splicing.  相似文献   

11.
Dolichyl monophosphate (Dol-P) is involved in the attachment of carbohydrate chains to proteins in the formation of N-linked glycoprotein. We found that this compound induces apoptosis in human leukemia U937 cells. During this apoptotic execution, the increase of plasma membrane fluidity (5-20 min), reduction in mitochondrial transmembrane potential (delta psi m) and translocation of apoptosis-inducing factor (1-3 hr), caspase-3-like protease activation (2-4 hr), chromatin condensation and DNA ladder formation (3-4 hr) were observed successively. In this study, we examined mitochondrial morphological changes by electron microscopy and delta psi m by JC-1 from immediately after treatment of Dol-P. After 5 min of treatment, we observed clearly that mitochondrial cristae began to be disrupted ultrastructurally and almost all the cristae were disintegrated after 1 hr of treatment. The delta psi m of Dol-P treated cells was reduced to 34% as compared with that of control cells immediately after treatment and was quartered within 1 hr. The reduction in delta psi m was not inhibited by cyclosporin A, N-acetyl-L-cysteine and vitamin E. These results indicate that mitochondrial disruption is one of the first triggering events of Dol-P-induced apoptosis.  相似文献   

12.
The relationship between the steady-state level of membrane potential (delta psi) and the rates of energy production and consumption has been studied in mitochondria and submitochondrial particles. The energy-linked reactions investigated were oxidative phosphorylation (with NADH, succinate, and beta-hydroxybutyrate as respiratory substrates) and nucleoside triphosphate-driven transhydrogenation from NADH to NADP and uphill electron transfer from succinate to NAD. Results have shown the following. 1) Attenuation of the rates of the energy-producing reactions results in a parallel change in the rates of the energy-consuming reactions with little or no change in the magnitude of steady-state delta psi. 2) At low rates of energy production and consumption, steady-state delta psi decreases. However, this is due largely to the energy leak of the system which lowers static-head delta psi when the rate of energy production is slow. 3) When the rate of energy production and static-head delta psi are held constant, and the rate of energy consumption is diminished by partial inhibition or the use of suboptimal conditions (e.g. subsaturating substrate concentrations), then even a small decrease in the rate of energy consumption results in an upward adjustment of the level of steady-state delta psi. The lower the rate of energy input, the greater the upward adjustment of steady-state delta psi upon suppression of the rate of energy consumption. 4) The above results have been discussed with regard to the role of bulk-phase delta mu H+ or delta psi in the mitochondrial energy transfer reactions.  相似文献   

13.
14.
The delta globin gene in simian primates is either weakly expressed (in hominoids and New World monkeys) or silent (in Old World monkeys). In prosimian primates, however, an unequal homologous crossover between the psi eta and delta loci of lemurs produced a hybrid psi eta delta pseudogene locus, whereas in tarsier the delta locus encodes a beta-type chain found in 18% of adult tarsier hemoglobin molecules. In the present study, the nucleotide and amino acid sequences of the galago delta and beta globin genes and their encoded peptides were determined, and evidence is provided showing that the galago delta locus encodes a beta-type chain (beta 2) found in 40% of the galago fetal and postnatal hemoglobin molecules, whereas the beta locus encodes the remaining 60% of the beta-type chain (beta 1). Galago beta 1 and beta 2 chains differ from each other by only one amino acid residue. The homology between the galago delta and beta loci extends from 800 base pairs 5' of the proximal CCAAT element to near the end of exon 3 as a result of a recombination event in which beta sequence replaced delta sequence. After this initial recombination event, concerted evolution between the loci continued over their conserved coding, intron 1, and promoter regions but failed to occur between the two loci in their intron 2 and distal 5'-flanking sequences where the two loci have now diverged by 20%. Calculations based on this divergence value and on a rate of noncoding sequence evolution of 4.2 x 10(-9) to 5.5 x 10(-9) substitutions/site/year for the lorisiform lineage to galago yielded a date of 18-24 million years ago for the initial recombination event. The fact that the promoter sequences of the galago delta locus are the same as that of the galago beta locus may account for the high level of expression of the galago delta gene.  相似文献   

15.
The nucleotide sequence of T. utilis tRNATyr has been modified to have a deletion or substitution of the "conserved" nucleotide sequence Gm18-G19 in the D-loop by enzymatic procedures in vitro. Conformations of the variant tRNAs were analyzed by measuring melting profiles and electrophoretic mobilities in "native" polyacrylamide gels, and by examining the RNase T1 digestion patterns in sequencing gels. The results obtained shed light on the importance of the interaction between the sequence Gm18-G19 and nucleotides in the T psi C-loop (probably psi 57-C58) for the maintenance of the total conformation of tRNATyr in solution. The association of D-loop and T psi C-loop regions in the variant tRNATyrs is slightly relaxed even at room temperature and melting occurred at temperatures higher than 40 degrees C. The relationship between the tertiary structure of the variant tRNA and its aminoacylation capacity was assayed at various temperatures. The results indicate that highly ordered tertiary structure is needed for tRNATyr to be fully aminoacylated.  相似文献   

16.
We characterized the hyperpolarization of the electrical potential profile of flounder intestinal cells that accompanies inhibition of NaCl cotransport. Several observations indicate that hyperpolarization of psi a and psi b (delta psi a,b) results from inhibition of NaCl entry across the apical membrane: (a) the response was elicited by replacement of mucosal solution Cl or Na by nontransported ions, and (b) mucosal bumetanide or serosal cGMP, inhibitors of NaCl influx, elicited delta psi a,b and decreased the transepithelial potential (psi t) in parallel. Regardless of initial values, psi a and psi b approached the equilibrium potential for K (EK) so that in the steady state following inhibition of NaCl entry, psi a approximately equal to psi b approximately equal to ECl approximately equal to EK. Bumetanide decreased cell Cl activity (aClc) toward equilibrium levels. Bumetanide and cGMP decreased the fractional apical membrane resistance (fRa), increased the slope of the relation of psi a to [K]m, and decreased cellular conductance (Gc) by approximately 85%, which indicates a marked increase in basolateral membrane conductance (Gb). Since the basolateral membrane normally shows a high conductance to Cl, a direct relation between apical salt entry and GClb is suggested by these findings. As judged by the response to bumetanide or ion replacement in the presence of mucosal Ba, inhibition of Na/K/Cl co-transport alone is not sufficient to elicit delta psi a,b. This suggests the presence of a parallel NaCl co-transport mechanism that may be activated when Na/K/Cl co-transport is compromised. The delta psi a,b response to reduced apical NaCl entry would assist in maintaining the driving force for Na-coupled amino acid uptake across the apical membrane as luminal [NaCl] falls during absorption.  相似文献   

17.
Charette M  Gray MW 《IUBMB life》2000,49(5):341-351
Pseudouridine (5-ribosyluracil) is a ubiquitous yet enigmatic constituent of structural RNAs (transfer, ribosomal, small nuclear, and small nucleolar). Although pseudouridine (psi) was the first modified nucleoside to be discovered in RNA, and is the most abundant, its biosynthesis and biological roles have remained poorly understood since its identification as a "fifth nucleoside" in RNA. Recently, a combination of biochemical, biophysical, and genetic approaches has helped to illuminate the structural consequences of psi in polyribonucleotides, the biochemical mechanism of U-->psi isomerization in RNA, and the role of modification enzymes (psi synthases) and box H/ACA snoRNAs, a class of eukaryotic small nucleolar RNAs, in the site-specific biosynthesis of psi. Through its unique ability to coordinate a structural water molecule via its free N1-H, psi exerts a subtle but significant "rigidifying" influence on the nearby sugar-phosphate backbone and also enhances base stacking. These effects may underlie the biological role of most (but perhaps not all) of the psi residues in RNA. Certain genetic mutants lacking specific psi residues in tRNA or rRNA exhibit difficulties in translation, display slow growth rates, and fail to compete effectively with wild-type strains in mixed culture. In particular, normal growth is severely compromised in an Escherichia coli mutant deficient in a pseudouridine synthase responsible for the formation of three closely spaced psi residues in the mRNA decoding region of the 23S rRNA. Such studies demonstrate that pseudouridylation of RNA confers an important selective advantage in a natural biological context.  相似文献   

18.
At optimal growth pH (3.0) Thiobacillus acidophilus maintained an internal pH of 5.6 (delta pH of 2.6 units) and a membrane potential (delta psi) of some +73 mV, corresponding to a proton motive force (delta p) of -83 mV. The internal pH remained poised at this value through external pH values of 1 to 5, so that the delta pH increased with decreasing external pH. The positive delta psi increased linearly with delta pH: above a delta pH of 0.6 units, some 60% of the increase in delta pH was compensated for by an opposing increase in delta psi. The highest magnitude of delta pH occurred at an external pH of 1.0, where the cells could not respire. Inhibiting respiration by CN- or azide in cells at optimal pH decreased delta pH by only 0.4 to 0.5 units and caused a corresponding opposite increase in delta psi. Thus, a sizable delta pH could be maintained in the complete absence of respiration. Treatment of cells with thiocyanate to abolish the delta psi resulted in a time-dependent collapse of delta pH, which was augmented by protonophores. We postulate that T. acidophilus possesses unusual resistance to ionic movements. In the presence of a large delta pH (greater than 0.6 pH units), limited diffusion of H+ into the cell is permitted, which generates a positive delta psi because of resistance to compensatory ionic movements. This delta psi, by undergoing fluctuations, regulates the further entry of H+ into the cell in accordance with the metabolic state of the organism. The effect of protonophores was anomalous: the delta p was only partially collapsed, and respiration was strongly inhibited. Possible reasons for this are discussed.  相似文献   

19.
An instrument is described that enables the simultaneous monitoring of proton motive force (PMF), membrane potential (delta psi), the delta pH across a membrane, oxidase activity, proton movements, and H+/O ratios. We have studied the relationship existing among these parameters of energy transduction as a critical condition is changed during an experiment. The major findings are: (a) In the pH range of 4.5 to 7.5, increasing the external pH causes an increase in delta psi, internal pH, and oxidase activity, a decrease in H+/O ratio, and a peak-plateau in PMF from pH 5.5 to 6.6 where delta pH is converted to delta psi. (b) An increase in [K+] from 1 to 100 mM, in the presence of 0.5 microM valinomycin, causes the conversion of delta psi to delta pH, a gradual decline in PMF and an increase in H+/O ratio, internal pH, and oxidase activity. (c) Increasing valinomycin concentration from 0 to 2.5 microM, in the presence of 50 mM [K+], causes a decline in delta psi from 125 to 0 mV, and an increase in delta pH from 35 to 70 mV. From 2.5 to 10 microM, the delta pH and the PMF (which it solely represents), stay constant, H+/O ratio increases mainly from 0 to 0.5 microM and much more slowly from 2.5 to 10 microM. (d) Oxygen at only 10% of its concentration in air-saturated buffer can support the generation of 90% or more of the delta psi, delta pH, and PMF generated in an air-saturated solution. (e) The return of extruded protons to the cell (referred to here as "suck-back") represents a complicated process driven by delta psi and influenced by a variety of factors. (f) H+/O ratios measured by the kinetic technique used here are much higher than those measured by standard oxygen pulse techniques.  相似文献   

20.
Mitochondrial membrane potential (delta psi(m)) was determined in intact isolated nerve terminals using the membrane potential-sensitive probe JC-1. Oxidative stress induced by H2O2 (0.1-1 mM) caused only a minor decrease in delta psi(m). When complex I of the respiratory chain was inhibited by rotenone (2 microM), delta psi(m) was unaltered, but on subsequent addition of H2O2, delta psi(m) started to decrease and collapsed during incubation with 0.5 mM H2O2 for 12 min. The ATP level and [ATP]/[ADP] ratio were greatly reduced in the simultaneous presence of rotenone and H2O2. H2O2 also induced a marked reduction in delta psi(m) when added after oligomycin (10 microM), an inhibitor of F0F1-ATPase. H2O2 (0.1 or 0.5 mM) inhibited alpha-ketoglutarate dehydrogenase and decreased the steady-state NAD(P)H level in nerve terminals. It is concluded that there are at least two factors that determine delta psi(m) in the presence of H2O2: (a) The NADH level reduced owing to inhibition of alpha-ketoglutarate dehydrogenase is insufficient to ensure an optimal rate of respiration, which is reflected in a fall of delta psi(m) when the F0F1-ATPase is not functional. (b) The greatly reduced ATP level in the presence of rotenone and H2O2 prevents maintenance of delta psi(m) by F0F1-ATPase. The results indicate that to maintain delta psi(m) in the nerve terminal during H2O2-induced oxidative stress, both complex I and F0F1-ATPase must be functional. Collapse of delta psi(m) could be a critical event in neuronal injury in ischemia or Parkinson's disease when H2O2 is generated in excess and complex I of the respiratory chain is simultaneously impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号