首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alu element-mediated polymerase chain reaction is a strategy for rapidly cloning and mapping human DNA markers from mixed DNA sources. A novel primer homologous to the 3′ end of the human Alu repeat element provides the basis for preferential synthesis of human DNA fragments from human/rodent somatic cell hybrid DNA template. This approach has been used to isolate a series of new markers from chromosome 10. The Alu element-mediated PCR probes were regionally assigned on chromosome 10 by hybridization to Southern blots of Alu PCR-synthesized DNA derived from somatic cell hybrid template DNA. Alu element-mediated PCR is generally applicable and makes possible the analysis of complex genomes with a speed and sensitivity that has not been previously possible.  相似文献   

2.
Repeat element-mediated PCR can facilitate rapid cloning and mapping of human chromosomal region-specific DNA markers from somatic cell hybrid DNA. PCR primers directed to human repeat elements result in human-specific DNA synthesis; template DNA derived from a somatic cell hybrid containing the human chromosomal region of interest provides region specificity. We have generated a series of repeat element-mediated PCR clones from a reduced complexity somatic cell hybrid containing a portion of human chromosome 10. The cloning source retains the centromere and tightly linked flanking markers, plus additional chromosome 10 sequences. Twelve new inter-Alu, two inter-L1, and four inter-Alu/L1 repeat element-mediated PCR clones were mapped by hybridization to Southern blots of repeat element-mediated PCR products amplified from somatic cell hybrid DNA templates. Two inter-Alu clones mapped to the pericentromeric region. We propose that a scarcity of Alu elements in the pericentromeric region of chromosome 10 contributed to the low number of clones obtained from this region. One inter-Alu clone, pC11/A1S-6-c23, defines the D10S94 locus, which is tightly linked to MEN2A and D10Z1.  相似文献   

3.
Thirty-one new RFLP systems corresponding to 24 loci have been identified from a chromosome 10-specific cosmid library. Twelve of the markers on the proximal long arm (cen-q11.2) of this chromosome, including four RFLP systems for the RET locus, will be especially useful in efforts to identify the gene responsible for multiple endocrine neoplasia type 2A (MEN2A). The new panel of markers also may contribute to fine-scale mapping of tumor suppressor genes associated with glioblastoma multiforme or renal cell carcinoma, because allelic deletions in these tumors have implied the presence of a tumor suppressor gene(s) on chromosome 10.  相似文献   

4.
A novel approach to the identification of human chromosomes has been developed. Chromosomal in situ hybridization (or "chromosome painting") has been performed using Alu element-mediated PCR products from small quantities (250-500) of flow-sorted normal and abnormal chromosomes. Chromosome paints for various normal chromosomes, including 5, 6, 7, 14, 18, 19, 21, and 22, were generated and shown to be effective in the identification of the appropriate chromosomes. In addition, certain abnormal chromosomes, including a mental retardation-associated deletion chromosome 11 (q22-q23), the products of the constitutional translocation t(11;22), and the CML-associated t(9;22), were used to generate region-specific paints. In each case, the appropriate regions of the chromosomes were highlighted and this strategy is, therefore, well suited to the identification of previously unidentified marker chromosomes. A further direct consequence of this work is that chromosome paints specific for the common aberrant chromosomes, such as the Philadelphia chromosome, can be generated and made widely available. These may find particular use in the analysis of complex or masked chromosomal translocations.  相似文献   

5.
The gene responsible for multiple endocrine neoplasia type 2A (MEN 2A) has been localized to the pericentromeric region of chromosome 10. Several markers that fail to recombine with MEN2A have been identified, including D10Z1, D10S94, D10S97, and D10S102. Meiotic mapping in the MEN2A region is limited by the paucity of critical crossovers identified and by the dramatically reduced rates of recombination in males. Additional approaches to mapping loci in the pericentromeric region of chromosome 10 are required. We have undertaken the generation of a detailed physical map by radiation hybrid mapping. Here we report the development of a radiation hybrid panel and its use in the mapping of new DNA markers in pericentromeric chromosome 10. The radiation-reduced hybrids used for mapping studies all retain small subchromosomal fragments that include both D10S94 and D10Z1. One hybrid was selected as the source of DNA for cloning. One hundred five human recombinant clones were isolated from a lambda library made with pp11A DNA. We have completed regional mapping of 22 of those clones using our radiation hybrid mapping panel. Seven markers have been identified and, when taken together with previously meiotically mapped markers, define eight radiation hybrid map intervals between D10S34 and RBP3. The identical order is found for a number of these using either the radiation hybrid mapping panel or the meiotic mapping panel. We believe that this combination cloning and mapping approach will facilitate the precise positioning of new markers in pericentromeric chromosome 10 and will help in refining further the localization of MEN2A.  相似文献   

6.
We demonstrate that the digestion of template DNAs with restriction endonucleases prior to Alu polymerase chain reaction ("restricted Alu-PCR") reduces the complexity of the Alu-primed amplification patterns of human DNA in somatic cell hybrids and allows a direct informative comparison of these patterns. A comparison of restricted Alu-PCR patterns of a monochromosomal hybrid retaining a human chromosome 17 (MH22-6) and a hybrid retaining a human chromosome 17 deleted for band p11.2 (DH110-D1) revealed four Alu-PCR products that were present in the former but absent in the latter hybrid. Hybridization of these fragments to the total Alu-PCR amplification products of the two hybrids confirmed their absence in DH110-D1 amplification products. Hybridization to a panel of somatic cell hybrids indicated that two of these fragments were deleted in the hybrid DH110-D1 and mapped to 17p11.2, as expected. However, two additional fragments were not deleted in the hybrid DH110-D1 and mapped to other regions of chromosome 17. An insertion-deletion polymorphism was associated with one of the latter fragments, which may be the mechanism for the lack of its amplification in the hybrid DH110-D1. Restricted Alu-PCR should enhance the applications of Alu-PCR and provides a new method for the identification of chromosome-specific polymorphic markers.  相似文献   

7.
A linkage group of five DNA markers on human chromosome 10   总被引:3,自引:0,他引:3  
Five chromosome 10 DNA markers (D10S1, D10S3, D10S4, D10S5, and RBP3) were typed in five large pedigrees with multiple endocrine neoplasia type 2A (MEN-2A) and in five non-MEN-2A pedigrees. Linkage analyses showed that these loci and the locus for MEN-2A (MEN2A) are in one linkage group spanning at least 70 cM. The order of the marker loci is RBP3-D10S5-D10S3-D10S1-D10S4, with interlocus recombination frequencies of 7, 13-19, 19, and 19%, respectively, all on the same side of MEN2A. Analyses of sex-specific recombination frequencies indicated no significant differences between males and females for any of the map intervals studied. Previous localization of D10S5 and RBP3 to the proximal region of the long arm and the pericentric region, respectively, comparison of results with other studies, and our preliminary results with other chromosome 10 markers suggest that the D10S4 end of the map extends into the long arm. Our linkage map has been constructed using only two- and three-locus analyses. It will be possible to combine our results with those of other groups to construct a more detailed and accurate genetic map of chromosome 10.  相似文献   

8.
Molecular cloning and mapping of 10 new probes on the human Y chromosome   总被引:5,自引:0,他引:5  
We have developed a novel positive cloning vector whose use precludes the cloning of any fragments less than 0.8 kb as well as 3.4-kb EcoRI fragments of DYZ1, the largest repeating-DNA family on the long arm of the human Y chromosome. Using this vector, we subcloned inserts of a Y-chromosome-specific phage library constructed from EcoRI-digested flow-sorted Y-chromosome DNA. Ten novel Y-specific fragments were obtained. Their localization on the Y chromosome was determined by deletion mapping using clinical samples with structurally abnormal Y chromosomes. The long arm of the Y chromosome was divided into 12 segments by the novel probes in combination with established probes. The amelogenin-like sequence, mapped on the long arm in Human Gene Mapping 10, has been mapped on the short arm.  相似文献   

9.
A simple approach is described to efficiently amplify DNA sequences flanking transposon Tn5 insertions. The method involves: (i) digestion with a restriction enzyme that cuts within Tn5; (ii) self-ligation under conditions favouring the production of monomeric circles; (iii) four parallel PCR reactions using primers designed to amplify left or right flanking sequences, and to distinguish target amplicons from non-specific products. This reveals the number of Tn5 insertions and the size of flanking genomic restriction fragments, without Southern blot analysis. The amplified product contains restriction sites that facilitate cohesive-end cloning. This rapid method is demonstrated using Tn5 and Tn5-Mob tagged DNA sequences involved in albicidin biosynthesis in Xanthomonas albilineans. It is generally applicable for efficient recovery of DNA sequences flanking transposon Tn5 derivatives in insertional mutagenesis studies.  相似文献   

10.
A strategy for the isolation of DNA probes from small numbers of flow-sorted human chromosomes has been developed. A lymphoblastoid cell line carrying the 22q- derivative chromosome product of the constitutional t(11;22) translocation was used as the source of chromosomes. Synthetic oligonucleotide primers, based on the consensus Alu sequence, were used to amplify inter-Alu sequence from 500 flow-sorted 22q- derivative chromosomes. The amplified sequences were cloned into a plasmid vector by blunt-end ligation, yielding clones with inserts in the range of 400 to 1000 bp. Approximately 70% of these clones hybridized to human DNA as single-copy probes. To identify clones derived from chromosome 11, the library was screened with a heterogeneous probe prepared by Alu-PCR amplification from the DNA of a somatic cell hybrid containing one homology of chromosome 11. All the positive clones found were mapped to within the q23-q25 region of chromosome 11 known to be translocated onto the 22q- derivative chromosome. Further mapping studies showed that most of these probes (7/8) lay between the breakpoints for the t(4;11) translocation of acute lymphocytic leukemia and the t(11;22) of Ewing sarcoma. Thus, the use of Alu-PCR on the small derivative chromosome 22q- has provided a greatly enriched source of probes to region 11q23, a part of the genome that is currently of great interest. This approach will be particularly appropriate to small numbers of chromosomes when high specificity rather than total representation is required.  相似文献   

11.
Kuang H  Zhao S  Chen W  Ma W  Yong Q  Xu L  Wang L  Xu C 《Biosensors & bioelectronics》2011,26(5):2495-2499
A novel, rapid DNA detection method based on fluorescence quenching of quantum dots (QDs) by gold nanoparticles (GNPs) through polymerase chain reaction (PCR) was developed. In proof-of-concept experiments, the length of the amplicon DNA ranging from 152 to 1003 base pairs (bp) could be determined based on quenched fluorescence intensity with 136 bp as the lower limit of effective range. And the real sample detections were also achieved successfully by this developed method. Therefore, this DNA detection method has the potential to be the powerful gene diagnostic tool.  相似文献   

12.
The recent advent of Alu element-mediated PCR (Alu PCR) allows the rapid isolation of human-specific fragments from mixed DNA sources. This technique greatly facilitates the isolation of DNA fragments from specific regions of the human genome. We report a novel technique utilizing Alu PCR products as differential hybridization probes to isolate human DNA fragments from a chromosomal subregion. We used the Alu PCR products from a pair of somatic cell hybrids in which the human DNA content differs only in the 5q11.2-q13.3 region as differential hybridization probes. One hybrid (GM10114) retains an intact chromosome 5, while the other (HHW1064) contains a chromosome 5 deleted for the q11.2-q13.3 region. Phage from a flow-sorted chromosome 5 library were hybridized with the Alu PCR synthesis product from the chromosome 5 hybrid. Positively hybridizing phage were then screened with the Alu PCR product from the deletion 5 hybrid. Phage that hybridized to the Alu PCR product of the chromosome 5 hybrid but did not hybridize to the Alu PCR product of the deletion 5 hybrid were further characterized. We isolated five phage from 5q11.2-q13.3 using this differential hybridization procedure. Only one of these phage corresponded to a detectable difference between the ethidium bromide-stained Alu PCR products of the two somatic cell hybrids. This technique should be applicable to any somatic cell hybrid-deletion hybrid pair.  相似文献   

13.
The Alu-polymerase chain reaction (Alu-PCR) was applied to selectively amplify DNA sequences from human chromosome 6 using a single primer (A1) directed to the human Alu consensus sequence. A specific amplification pattern was demonstrated for a panel of eight somatic cell hybrids containing different portions of chromosome 6. This PCR pattern permits the identification of submicroscopic DNA alterations and can be utilized as a reference for additional chromosome 6-specific hybrids. To obtain new chromosome 6-specific markers we established two libraries from PCR-amplified sequences using two somatic cell hybrids (MCH381.2D and 640-5A). Out of a total of 109 clones that were found to be chromosome 6 specific, 13 clones were regionally assigned. We also included a procedure that allows the isolation of chromosome 6-specific markers from hybrids that contain human chromosomes other than 6. Our results will contribute to the molecular characterization of chromosome 6 by fostering characterization of somatic cell hybrids and by the generation of new regionally assigned DNA markers.  相似文献   

14.
Isolation and mapping of 75 new DNA markers on human chromosome 3.   总被引:6,自引:0,他引:6  
We have isolated and mapped 75 new DNA markers including 52 restriction fragment length polymorphism (RFLP) markers on human chromosome 3. Clones were mapped by nonisotopic in situ hybridization, in which discrete fluorescent signals can be detected on prometaphase R-banded chromosomes. Thirty-seven markers were mapped to each arm of chromosome 3, and one was localized to the centromere. Five markers defined variable number of tandem repeat (VNTR) loci. Although the 75 clones were scattered throughout the chromosome, they were concentrated in the R-positive bands. This physical map of chromosome 3 will contribute to the characterization of the chromosomal and molecular aberrations involved in renal cell carcinoma, small-cell lung cancer, and other malignancies and in single-gene disorders such as von Hippel-Lindau disease and autosomal dominant retinitis pigmentosa.  相似文献   

15.
Using PCR analysis of pig-mink and pig-Chinese hamster hybrid cell lines and heterologous and homologous primers of various types, chromosomal and subchromosomal mapping of genes TOP2A, THRA, BRCA1, GAS, HLR1, MYL4, LIS1, MCP1, ENO3, CRYB1, P4HB, STAT5B, and H3F3B to pig chromosome 12 was carried out. The efficiency of using different types of heterologous primers for pig chromosome mapping was compared.  相似文献   

16.
To facilitate mapping of the cystic fibrosis locus (CF) and to isolate the corresponding gene, we have screened a flow-sorted chromosome 7-specific library for additional DNA markers in the 7q31-q32 region. Unique ("single-copy") DNA segments were selected from the library and used in hybridization analysis with a panel of somatic cell hybrids containing various portions of human chromosome 7 and patient cell lines with deletion of this chromosome. A total of 258 chromosome 7-specific single-copy DNA segments were identified, and most of them localized to subregions. Fifty three of these corresponded to DNA sequences in the 7q31-q32 region. Family and physical mapping studies showed that two of the DNA markers, D7S122 and D7S340, are in close linkage with CF. The data also showed that D7S122 and D7S340 map between MET and D7S8, the two genetic markers known to be on opposite sides of CF. The study thus reaffirms the general strategy in approaching a disease locus on the basis of chromosome location.  相似文献   

17.
A refined genetic linkage map for the pericentromeric region of human chromosome 10 has been constructed from data on 12 distinct polymorphic DNA loci as well as the locus for multiple endocrine neoplasia type 2A (MEN 2A), a dominantly inherited cancer syndrome. The map extends from D10S24 (at 10p13-p12.2) to D10S3 (at 10q21-q23) and is about 70 cM long. Overall, higher female than male recombination frequencies were observed for this region, with the most remarkable female excess in the immediate vicinity of the centromere, as previously reported. Most of the DNA markers in this map are highly informative for linkage and the majority of the interlocus intervals are no more than 6 cM apart. Thus this map should provide a fine framework for future efforts in more detailed mapping studies around the centromeric area. A set of ordered cross-overs identified in this work is a valuable resource for rapidly and accurately localizing new DNA clones isolated from the pericentromeric region.  相似文献   

18.
Linkage map of mouse chromosome 17: localization of 27 new DNA markers   总被引:4,自引:0,他引:4  
Chromosome 17 of the laboratory variant of the house mouse (Mus musculus L.), MMU17, has been studied extensively, largely because of its involvement in the control of immune response and embryonic as well as male germ cell differentiation. A detailed linkage map of this chromosome is therefore a highly desired goal. As the first step toward achieving this goal, we have isolated, using a LINE 1 repetitive sequence as a probe, 52 anonymous DNA clones from MMU17. Twenty-seven repetitive sequence-free probes isolated from these clones displayed restriction fragment length variation among common inbred strains and could be mapped with the help of recombinant inbred strains, congenic strains, F2 segregants, or intra-t recombinants. Together with markers identified previously, the new markers can be used to construct a map of MMU17 that contains 125 DNA loci. The markers are distributed over a length of approximately 71 cM, which probably represents the entire length of MMU17. Most of the markers reside in the proximal portion of the chromosome, which contains the t and H-2 complexes; this chromosomal region is now fairly well mapped. The distal region of MMU17, on the other hand, is populated by only a few, rather imprecisely mapped markers. Molecular maps are available for most of the H-2 complex and for parts of the t complex.  相似文献   

19.
20.
T Mizuno 《Nucleic acids research》1987,15(17):6827-6841
A simple method for the selective detection of DNA segments containing a sequence-directed static bend was developed. Two-dimensional polyacrylamide gel electrophoresis performed at two different temperatures (60 degrees C and 10 degrees C) can effectively separate a bent DNA from a mixture of normal DNA. Using this method, a bank of plasmids carrying bent DNA inserts from the E. coli total chromosome was constructed. The primary characterization of a set of bent DNA segments randomly cloned from E. coli was presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号