首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Heme formation in the erythron is subject to end product regulation by negative feedback, but the exact point of metabolic control in human erythroid cells is unknown. To investigate the mode of action of heme on its own formation, the effects of micromolar concentrations of hemin on de novo synthesis of protoporphyrin IX and delta-aminolevulinate (delta-ALA) by intact human reticulocytes were examined in the presence of 1 mM alpha,alpha'-bipyridyl and 200 microM 4,6-dioxoheptanoate to block their further conversion by ferrochelatase or delta-ALA dehydrase, respectively. At final concentrations (25-40 microM), hemin, which is known to reduce incorporation of [2-14C]glycine into cellular heme, significantly inhibited formation of protoporphyrin IX and total delta-aminolevulinate in situ by these cells. Since synthesis of the first committed precursor, delta-aminolevulinate, as well as protoporphyrin (which is derived from it) were diminished, the effects of hemin on delta-aminolevulinate synthase (EC 2.3.1.37) were studied. Hemin, at concentrations up to 40 microM, had no direct effect on enzymatic activity, as measured with [5-14C] alpha-ketoglutarate (in hypotonically lysed cells) or [1,4-14C]succinyl coenzyme A (in deoxycholate lysates), even after preincubation. However, when intact human reticulocytes were incubated with hemin before assay for delta-ALA synthase, there was a rapid, concentration-dependent reduction in enzymatic activity (mean 42 and 23% inhibition after 60 min for these two substrates, respectively). Hemin had no effect on steady-state levels of delta-ALA synthase mRNA, as determined by Northern blot hybridization using an erythroid-specific human cDNA probe. Thus, a mechanism for inducing feedback inhibition of the tetrapyrrole pathway exists in human erythroid cells. It controls formation of the first committed precursor of protoporphyrin IX, delta-aminolevulinate, and hence regulates heme biosynthesis by limiting the availability of the porphyrin, rather than the metal substrate for the ferrochelatase reaction. Hemin interacts with constituents of the intact reticulocyte significantly to reduce delta-aminolevulinic acid synthase activity by an indirect cellular process that does not influence the abundance of erythroid-specific synthase mRNA but may either inhibit its ribosomal translation in an unknown manner or promote degradation of the enzyme itself by specific proteolysis.  相似文献   

4.
Cyclic AMP-dependent protein kinases I and II, partially purified from rat liver cytosol, were inhibited 50% by 40 microM hemin and 100 microM hemin, respectively. With the purified catalytic subunit of cyclic AMP-dependent protein kinase, hemin caused non-competitive inhibition with respect to the peptide substrate and mixed inhibition with respect to ATP. Hemin also inhibited purified phosphorylase b kinase, indicating that hemin concentrations above 10 microM markedly inhibit multiple protein kinases. In isolated intact hepatocytes, hemin inhibited the glucagon-dependent activation of cyclic AMP-dependent protein kinases and the activation of glycogen phosphorylase. For both effects, high heme concentrations (40-60 microM) were required for 50% inhibition. Similar high levels of exogenous hemin inhibited total hepatocyte protein synthesis. By contrast, 5 microM hemin or less was sufficient to raise intracellular heme levels, as indicated by the relative heme-saturation of tryptophan oxygenase in hepatocytes. Hemin, 5 microM, completely repressed induction of 5-aminolevulinate synthase by dexamethasone in hepatocyte primary cultures. Such repression is unlikely to be mediated by inhibition of protein kinases.  相似文献   

5.
Erythroid colonies were generated in response to erythropoietin in plasma clot cultures of sheep and goat bone marrow cells. At low concentration erythropoietin only hemoglobin A (betaA globin) was synthesized in goat cultures, but at high concentrations 50% of the hemoglobin synthesized was hemoglobin C (betaC globin). This effect of erythropoietin on the expression of a specific beta globin gene was manifested only after 72 h in vitro and followed the development of erythroid colonies. Sheep colonies behaved differently from those of goat in that little or no betaC globin synthesis occurred even at high erythropoietin concentration. To investigate this difference, sheep marrow cells were fractionated by unit gravity sedimentation. The erythroid colony-forming cells sedimented more rapidly (3.5-6mm/h) than the hemoglobinized eththroid precursors (1-3.5 mm/h), suggesting that the colonies were formed from an early erythroid precursor, However, the colonies formed from the sheep marrow fractions synthesized only betaA globin even at concentrations of erythropoietin sufficient to stimulate betaC globin synthesis in goat colonies. Morphologically, the goat colonies were larger and more mature than those of the sheep. By 96 h in vitro three-fourths of the goat colonies contained enucleated red cells compared to only 3% of the sheep colonies. Thus, erythropoietin had an equivalent effect in stimulating erythroid colony growth from the marrow of both species although there were both biochemical and morphological differences between the colonies. Hemoglobin switching appeared to require exposure of an early precursor to high erythropoietin concentration, but the results with sheep marrow suggested that the rate of colony growth and cellular maturation might also be important.  相似文献   

6.
Hemin, at concentrations optimal for globin synthesis, produces inhibition of a specific cytoplasmic protein kinase and a ribosome-associated protein kinase isolated from rabbit reticulocytes. Both enzymes are cyclic AMP-dependent. This inhibition is noncompetitive and greater when ribosomal proteins are used as the phosphate acceptors. The inhibition of these protein kinases by hemin and its partial reversal by globin suggests that hemin regulates protein kinase activity in reticulocytes.  相似文献   

7.
The role of heme in erythroid development is investigated in erythroleukemic (Friend) cells. Exogenous hemin induces the accumulation of globin mRNA and globin protein in T3-Cl2 erythroleukemia cells to levels comparable to those induced by polar solvents, such as dimethylsulfoxide (DMSO). The hemin concentration required for maximal induction (10?4 M) is the same as that which stimulates globin message translation in reticulocytes or cell-free reticulocyte lysates. Hemin and DMSO together cause T3-Cl2 cells to accumulate 8–9 fold more globin mRNA than either inducer individually. The kinetics of globin mRNA induction in hemin as compared to DMSO are very different: globin message accumulation begins 4 hr after hemin addition, but not until 30–40 hr after DMSO addition. Biliverdin induces 20–40 fold less hemoglobin than hemin; delta-aminolevulinic acid and porphobilinogen do not induce.  相似文献   

8.
In eukaryotes, a major route for ATP-dependent protein breakdown proceeds through covalent intermediates of target proteins destined for degradation and the highly conserved, 76 amino acid protein ubiquitin. In rabbit reticulocytes, it has been shown that hemin effectively inhibits this pathway by blocking the catabolism of ubiquitin-protein conjugates [KI = 25 microM (Haas, A. L., & Rose, I. A. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 6845-6848)]. Here, we demonstrate that hemin is also an effective inhibitor of the ubiquitin-dependent proteolytic pathway in both a higher plant, oats (Avena sativa), and yeast (Saccharomyces cerevisiae). Hemin inhibits all stages of the pathway in vitro, including ATP-dependent formation of ubiquitin-protein conjugates, disassembly of conjugates by ubiquitin-protein lyase(s) (or isopeptidases), and degradation of ubiquitin-protein conjugates by ATP-dependent protease(s). Using ubiquitin-125I-lysozyme conjugates synthesized in vitro as substrates, we determined the specific effects of hemin on the rates of disassembly and degradation separately. The concentration of hemin required for half-maximal inhibition of both processes was identical in each species, approximately 60 microM in oats and approximately 50 microM in yeast. Similar inhibitory effects were observed when two hemin analogues, mesoheme or protoporphyrin IX, were employed. These results demonstrate that the effect of hemin on ubiquitin-dependent proteolysis is not restricted to erythroid cells and as a result hemin may be a useful tool in studies of this pathway in all eukaryotic cells. These results also question models where hemin serves as a specific negative modulator of proteolysis in erythroid cells.  相似文献   

9.
10.
Increased fetal hemoglobin (HbF) in erythroid precursors of patients with beta-hemoglobinopathies (sickle cell anemia and beta-thalassemia), in which adult hemoglobin synthesis is defective, ameliorates the clinical symptoms of the underlying diseases. The production of erythroid precursors depends on the action of erythropoietin (EPO), which prevents their apoptosis and stimulates their proliferation. EPO binds to its surface receptor, induces its homodimerization, and initiates a cascade of phosphorylation and dephosphorylation of a series of proteins by kinases and phosphatases, respectively. Vanadate inhibits various phosphatases, including those that are involved in the EPO pathway, thereby intensifying the signal. In this study, we investigated the effect of vanadate on the proliferation and maturation of human erythroid precursors in culture. When vanadate was added to cells derived from normal donors, cell maturation was delayed, as indicated by cell morphology, cell growth kinetics, the rate of appearance of hemoglobin-containing cells, and the expression of surface antigens (CD117, CD71, and glycophorin A). Analysis by high-performance liquid chromatography and flow cytometry of the hemoglobin profile of vanadate-treated normal cells revealed a higher proportion of HbF than was found in untreated cells. When vanadate was added to cells derived from patients with beta-thalassemia, a significant increase in HbF was observed. The results suggest that intensification of the EPO signal by vanadate results in maturation arrest and increased HbF production. Thus, inhibitors that are more specific and less toxic than vanadate may present a novel option for elevating HbF in patients with beta-hemoglobinopathies, as well as for intensifying the EPO response in other forms of anemia.  相似文献   

11.
Summary Northern blot analysis using probes specific for each of the human embryonic (), fetal (), and adult () globin genes indicates that the human lymphoblastoid F-265 cells express the embryonic and fetal globin genes. Unlike: the erythroid cell line K562, in which globin RNA levels increase during treatment with hemin in culture, globin RNA levels decrease in F-265 cells in the presence of hemin. This effect is reversible after passage of F-265 cells in fresh medium without hemin. Both the rates of globin RNA synthesis and the presence of DNase I-hypersensitive sites in hemin treated and untreated F-265 cells were investigated to identify the levels at which globin gene expression is controlled.  相似文献   

12.
13.
Epidemiological findings have indicated that red meat increases the likelihood of colorectal cancer. Aim of this study was to investigate whether hemoglobin, or its prosthetic group heme, in red meat, is a genotoxic risk factor for cancer. Human colon tumor cells (HT29 clone 19A) and primary colonocytes were incubated with hemoglobin/hemin and DNA damage was investigated using the comet assay. Cell number, membrane damage, and metabolic activity were measured as parameters of cytotoxicity in both cell types. Effects on cell growth were determined using HT29 clone 19A cells. HT29 clone 19A cells were also used to explore possible pro-oxidative effects of hydrogen peroxide (H2O2) and antigenotoxic effects of the radical scavenger dimethyl sulfoxide (DMSO). Additionally we determined in HT29 clone 19A cells intracellular iron levels after incubation with hemoglobin/hemin. We found that hemoglobin increased DNA damage in primary cells (> or =10 microM) and in HT29 clone 19A cells (> or =250 microM). Hemin was genotoxic in both cell types (500-1000 microM) with concomitant cytotoxicity, detected as membrane damage. In both cell types, hemoglobin and hemin (> or =100 microM) impaired metabolic activity. The growth of HT29 clone 19A cells was reduced by 50 microM hemoglobin and 10 microM hemin, indicating cytotoxicity at genotoxic concentrations. Hemoglobin or hemin did not enhance the genotoxic activity of H2O2 in HT29 clone 19A cells. On the contrary, DMSO reduced the genotoxicity of hemoglobin, which indicated that free radicals were scavenged by DMSO. Intracellular iron increased in hemoglobin/hemin treated HT29 clone 19A cells, reflecting a 40-50% iron uptake for each compound. In conclusion, our studies show that hemoglobin is genotoxic in human colon cells, and that this is associated with free radical mechanisms and with cytotoxicity, especially for hemin. Thus, hemoglobin/hemin, whether available from red meat or from bowel bleeding, may pose genotoxic and cytotoxic risks to human colon cells, both of which contribute to initiation and progression of colorectal carcinogenesis.  相似文献   

14.
Hemin at greater than 1 microM concentrations inhibits the interaction of the iron responsive element (IRE) and the iron responsive element binding protein (IRE-BP) as measured by gel retardation and UV cross-linking. Heme has recently been proposed to inhibit the repression of translation of an IRE-containing mRNA (Lin, J. J., Daniels-McQueen, S., Patino, M. M., Gaffield, L., Walden, W. E., and Thach, R. E., (1990) Science 247, 74-76). Our binding inhibition provides structural support for these observations. The action of hemin, however, does not mimic the physiologically demonstrated inhibition of high affinity binding of the IRE to IRE-BP by the oxidation of a sulfhydryl of the IRE-BP. In addition to this effect, hemin also inhibits a wide variety of RNA and DNA binding proteins, restriction endonucleases, and nucleases. Therefore, in vitro, the inhibitory effects of hemin are not limited to the interaction of the IRE-BP and the IRE, but are nonspecific and affect a wide variety of nucleic acid-protein interactions. Any hypothesis on the effects on protein-nucleic acid interactions employing greater than 1 microM concentrations of hemin should be interpreted with caution.  相似文献   

15.
以氯高铁血红素 (hemin)诱导K5 6 2分化作为体外红细胞分化模型 ,结合cDNA大规模测序、生物信息学分析、基因芯片杂交和NorthernBlot分析等技术 ,筛选红细胞分化相关的新基因 .首先利用大规模测序技术从人胚肾cDNA文库中随机挑选克隆测得 192个EST(expressedsequencetags)片段 ,经在线生物信息学分析 ,得到 79个代表新基因的未知EST片段 ,并在NCBI(NationalCenterofBiotechnologyInformation)dbEST库中登录 .利用 79个ESTcDNA片段制备了基因芯片 .提取分化前后的K5 6 2细胞的mRNA作为荧光标记反转录的模板 ,反转录后的探针用于DNA芯片杂交 .分析杂交后的结果 ,得到了 2个差异表达较明显的基因 ,GenBank登录号分别为AF147772 (187bp)和AF4 776 2(6 30bp) ,并分别命名为EDRG1和EDRG2 (erythroiddifferentiationrelatedgene 1and 2 ) ,相似性检索表明它们属全新基因 ,基因组草图测序数据库检索表明了两个基因的染色体定位 .随后的Northern印迹用于验证了在分化前后的K5 6 2细胞中差异表达 .提示这两个基因参与了红细胞分化过程 .RT PCR检测了EDRG1和EDRG2在人胚胎多组织中的表达 .结果提示 ,EDRG1可能与多种胚组织的正常发育相关 ,尤其在胚脑中高丰度表达 ,而EDRG2则可能参与了胚心和胚肾的组织生成 .生物  相似文献   

16.
17.
The ratio of total globin alpha to beta chain synthesis was determined in reticulocytes isolated from the blood of the members of a black family, some of whom had sickle cell trait with low blood HbS concentrations (25-30%). The results support the hypothesis that sickle cell trait individuals with low HbS concentrations also carry a gene for alpha-thalassemia.  相似文献   

18.
Cultured mouse erythroleukemia (MEL) cells can be induced to erythroid differentiation by a variety of chemical agents. This differentiation process is marked by the onset of globin mRNA and hemoglobin synthesis. In rabbit reticulocytes, globin synthesis is regulated by a hemin-controlled translational inhibitor (HCI) which acts via phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2). From both uninduced and induced MEL cells, hemin-controlled eIF-2 alpha kinases have been partially purified. They resemble HCI with respect to their chromatographic behaviour and their sensitivity towards physiological concentrations of hemin (5-10 microM). Further purification on phosphocellulose, however, reveals that the eIF-2 alpha kinase from uninduced MEL cells is chromatographically distinct from HCI, whilst the eIF-2 alpha kinase activity from induced MEL cells represents a mixture of the former and the HCI-type eIF-2 alpha kinase. The latter inhibits protein synthesis in a fractionated system from rabbit reticulocytes which is free of, but sensitive to, HCI, whereas the eIF-2 alpha kinase from uninduced MEL cells does not show any inhibitory activity. This observation is supported by the finding that induced MEL cells respond in vivo to iron depletion with a shut-off of protein synthesis (as do rabbit reticulocytes), whilst uninduced MEL cells do not.  相似文献   

19.
Mg2+-dependent activity of intestinal brush border guanylate cyclase was stimulated 4-5-fold by 50-100 microM hemin. Higher concentrations were inhibitory. In the presence of 25% dimethyl sulfoxide, which stimulated activity 9-times, 50 microM hemin further increased activity 1.7-fold. However, when activity was stimulated 32-fold by the Escherichia coli heat-stable enterotoxin, or 26-fold by Lubrol PX, hemin produced only concentration-dependent inhibition. The first type of activation was more sensitive to hemin than the second. Reduction of hemin by dithiothreitol eliminated stimulation of basal activity, while inhibition of Lubrol PX-stimulated activity remained. Protoporphyrin IX also had no effect on basal activity, however, it inhibited enterotoxin- and Lubrol PX-stimulated activities similarly, but only to half the extent of hemin. Substitution of Mn2+ for Mg2+ elevated basal activity 15-fold, and this Mn2+-dependent activity was inhibited by hemin. Mn2+-dependent activity was stimulated (43%) by enterotoxin, however, the stimulated activity was more sensitive to hemin inhibition than the basal Mn2+-dependent activity and both inhibition curves were congruent above 50 microM hemin. Hemin inhibition of Lubrol PX-stimulated activity was much less with Mn2+ than with Mg2+. These results were interpreted as suggesting two sites of hemin inhibition; on an inhibitory regulator and on the enzyme. We also found that the secretory effect of enterotoxin in the suckling mouse bioassay was reduced 56% by the oral administration of hemin.  相似文献   

20.
The effect of long-term incubation of residual globin-free hemin on whole red blood cell and isolated cytoskeletal proteins was studied. Hemin at concentrations found in pathological red cells was inserted to fresh erythrocytes. Increased hemolysis developed in the hemin-containing cells after a few days at 37 degrees C and after about four weeks at 4 degrees C. Since lipid and hemoglobin peroxidation did not depend on the presence of hemin, time-dependent effects on the cytoskeleton proteins were studied. Observations were: (1) spectrin and protein 4.1 exhibited a time-dependent increasing tendency to undergo hemin-induced peroxidative crosslinking. (2) The ability of the serum proteins, albumin and hemopexin, to draw hemin from spectrin, actin and protein 4.1 decreased with time of incubation with hemin. These results were attributed to time-dependent hemin-induced denaturation of the cytoskeletal proteins. Albumin taken as a control for physiological hemin trap was unaffected by hemin. Small amounts of hemo-spectrin (2-5%) were analyzed in circulating normal cells, and this in vivo hemo-spectrin also failed to release hemin. It was concluded that slow accumulation of hemin, a phenomenon increased in pathological cells, is a toxic event causing erythrocyte destruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号