首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular phylogenetic trees are constructed in three dimensions relative to the distribution of MW and pl classes and immunocrossreactivity against polyclonal antibodies to lens crystallins, as well as multiple sequence alignment between amino acid sequences, coding nucleotide sequences and the gene nucleotide sequences for beta-globin. Euclidian distances are estimated to position species in x, y, z space by multidimensional scaling and merged with bootstrap-tested branching pattern of Fitch & Margoliash plots to obtain 3-D phylogenetic tree. Compared to single attributes, phylogenetic trees based on multiple parameters allow significant repositioning of rodents, chiroptera and primates.  相似文献   

2.
In a previous paper (Klotz et a1., 1979) we described a method for determining evolutionary trees from sequence data when rates of evolution of the sequences might differ greatly. It was shown theoretically that the method always gave the correct topology and root when the exact number of mutation differences between sequences and from their common ancestor was known. However, the method is impractical to use in most situations because it requires some knowledge of the ancestor. In this present paper we describe another method, related to the previous one, in which a present-day sequence can serve temporarily as an ancestor for purposes of determining the evolutionary tree regardless of the rates of evolution of the sequences involved. This new method can be carried out with high precision without the aid of a computer, and it does not increase in difficulty rapidly as the number of sequences involved in the study increases, unlike other methods.  相似文献   

3.
Summary The methods of Fitch and Margoliash and of Farris for the construction of phylogenetic trees were compared. A phenetic clustering technique - the UPGMA method — was also considered.The three methods were applied to difference matrices obtained from comparison of macromolecules by immunological, DNA hybridization, electrophoretic, and amino acid sequencing techniques. To evaluate the results, we used the goodness-of-fit criterion. In some instances, the F-M and Farris methods gave a comparably good fit of the output to the input data, though in most cases the F-M procedure gave a much better fit. By the fit criterion, the UPGMA procedure was on the average better than the Farris method but not as good as the F-M procedure.On the basis of the results given in this report and the goodness-of-fit criterion, it is suggested that where input data are likely to include overestimates as well as true estimates and underestimates of the actual distances between taxonomic units, the F-M method is the most reasonable to use for constructing phylogenies from distance matrices. Immunological, DNA hybridization, and electrophoretic data fall into this category. By contrast, where it is known that each input datum is indeed either a true estimate or an underestimate of the actual distance between 2 taxonomic units, the Farris procedure appears, on theoretical grounds, to be the matrix method of choice. Amino acid and nucleotide sequence data are in this category.The following abbreviations are used in this work F-M Fitch-Margoliash - UPGMA unweighted pair-group method using arithmetic averages - SD percent standard deviation  相似文献   

4.
Summary The sequence of the large subunit ribosomal RNA (LsuRNA) gene of the dinoflagellateProrocentrum micans has been determined. The inferred rRNA sequence [3408 nucleotides (nt)] is presented in its most probable secondary structure based on compensatory mutations, energy, and conservation criteria. No introns have been found but a hidden break is present in the second variable domain, 690 nt from the 5 end, as judged by agarose gel electrophoresis and primer extension experiments.Prorocentrum micans LsuRNA length and G+C content are close to those of ciliates and yeast. The conserved portions of the molecule (1900 nt) have been aligned with corresponding sequences from various eukaryotes, including five protista, one metaphyta, and three metazoa. An extensive phylogenetic study was performed, comparing two phenetic methods (neighbor joining on difference matrix, and Fitch and Margoliash on Knuc values matrix) and one cladistic (parsimony). The three methods led to similar tree topologies, except for the emergence of yeast that groups with ciliates and dinoflagellates when phenetic methods are used, but emerges later in the most parsimonious tree. This discrepancy was checked by statistical analyses on reduced trees (limited to four species) inferred using parsimony and evolutionary parsimony methods. The data support the phenetic tree topologies and a close relationship between dinoflagellates, ciliates, and yeast.  相似文献   

5.
Accuracy of phylogenetic trees estimated from DNA sequence data   总被引:4,自引:1,他引:3  
The relative merits of four different tree-making methods in obtaining the correct topology were studied by using computer simulation. The methods studied were the unweighted pair-group method with arithmetic mean (UPGMA), Fitch and Margoliash's (FM) method, thd distance Wagner (DW) method, and Tateno et al.'s modified Farris (MF) method. An ancestral DNA sequence was assumed to evolve into eight sequences following a given model tree. Both constant and varying rates of nucleotide substitution were considered. Once the DNA sequences for the eight extant species were obtained, phylogenetic trees were constructed by using corrected (d) and uncorrected (p) nucleotide substitutions per site. The topologies of the trees obtained were then compared with that of the model tree. The results obtained can be summarized as follows: (1) The probability of obtaining the correct rooted or unrooted tree is low unless a large number of nucleotide differences exists between different sequences. (2) When the number of nucleotide substitutions per sequence is small or moderately large, the FM, DW, and MF methods show a better performance than UPGMA in recovering the correct topology. The former group of methods is particularly good for obtaining the correct unrooted tree. (3) When the number of substitutions per sequence is large, UPGMA is at least as good as the other methods, particularly for obtaining the correct rooted tree. (4) When the rate of nucleotide substitution varies with evolutionary lineage, the FM, DW, and MF methods show a better performance in obtaining the correct topology than UPGMA, except when a rooted tree is to be produced from data with a large number of nucleotide substitutions per sequence.(ABSTRACT TRUNCATED AT 250 WORDS)   相似文献   

6.
The problem of reconstructing the duplication history of a set of tandemly repeated sequences was first introduced by Fitch (1977). Many recent studies deal with this problem, showing the validity of the unequal recombination model proposed by Fitch, describing numerous inference algorithms, and exploring the combinatorial properties of these new mathematical objects, which are duplication trees. In this paper, we deal with the topological rearrangement of these trees. Classical rearrangements used in phylogeny (NNI, SPR, TBR, ...) cannot be applied directly on duplication trees. We show that restricting the neighborhood defined by the SPR (Subtree Pruning and Regrafting) rearrangement to valid duplication trees, allows exploring the whole duplication tree space. We use these restricted rearrangements in a local search method which improves an initial tree via successive rearrangements. This method is applied to the optimization of parsimony and minimum evolution criteria. We show through simulations that this method improves all existing programs for both reconstructing the topology of the true tree and recovering its duplication events. We apply this approach to tandemly repeated human Zinc finger genes and observe that a much better duplication tree is obtained by our method than using any other program.  相似文献   

7.
Evolution of the salmonid mitochondrial control region.   总被引:12,自引:0,他引:12  
To explore the evolutionary nature of the salmonid mitochondrial DNA (mtDNA) control region (D-loop) and its utility for inferring phylogenies, the entire region was sequenced from all eight species of anadromous Pacific salmon, genus Oncorhynchus; the Atlantic salmon, Salmo salar; and the Arctic grayling, Thymallus arcticus. A comparison of aligned sequences demonstrates that the generally conserved sequence elements that have been previously reported for other vertebrates are maintained in these primitive teleost fishes. Results reveal a significantly nonrandom distribution of nucleotide substitutions, insertions, and deletions that suggests that portions of the salmonid D-loop may be under differential selective constraints and that most of the control region of these fishes may evolve at a rate similar to that of the remainder of their mtDNA genomes. Maximum likelihood and Fitch parsimony analyses of 9 kb of aligned salmonid sequence data give evolutionary trees of identical topology. These results are consistent with previous molecular studies of a limited number of salmonid taxa and with more comprehensive, classical analyses of salmonid evolution. Predictions from these data, based on a molecular clock assumption for the mtDNA control region, are also consistent with fossil evidence that suggests that species of Oncorhynchus could be as old as the Middle Pliocene and would have thus given rise to the extant Pacific salmon prior to about 5 or 6 million years ago.  相似文献   

8.
The paper describes morphometric and allozymic differences among four European species of the family Viviparidae: Viviparus contectus (Millet, 1813), V. viviparus (Linnaeus, 1758), V. acerosus Bourguignat, 1862, and V. ater (Cristofori et Jan, 1832). Fourteen continuous biometrical characters were measured. Incremental discriminant-function analysis, principal-component analysis, and non-metric multidimensional scaling were applied to analysis of the morphometric differences. All the techniques confirmed a similar picture: a slight morphometric differentiation, with the variability ranges of the species overlapping. On the other hand, the allozymic differentiation, studied at 12 loci, eight of them intra and/or interspecific polymorphic, is much better marked, the intraspecific Nei's distances among the four V. contectus populations ranging from 0.0014 to 0.0397, mean 0.0166, and interspecific distances ranging from 0.2306 (V. ater–V. acerosus) to 0.9888 (V. contectus 2 and V. viviparus), mean 0.6871. The allele frequencies and genetic distances (Nei's distance and Cavalli-Sforza and Edwards’chord distance) were used to compute maximum likelihood, additive Fitch–Margoliash and ultrametric Fitch–Margoliash trees. All the trees presented a similar pattern, but the maximum-likelihood and additive trees, based on Cavalli-Sforza and Edwards’distance, seem to reflect the phylogeny best. The results are compared with the most parsimonious phylogenies inferred for radular, soft-part morphology and anatomy, and opercular data from other papers by us, and the inferred phylogenies are also compared. Although the inferred molecular and morphological phylogenies are little different in topology, the amount of evolution along the corresponding branches (measured as the number of changes averaged over all reconstructions) is very different, the value of correlation coefficient between the two phylogenies being statistically insignificant. The occurrence of interspecific hybrids is discussed, and the isolation-by-competition mechanism is postulated. The probable origin of V. viviparus from a founder population extremely restricted in number is stressed. The possible history of the group is briefly discussed. The species is suggested to have originated in an unusual habitat of melt water at a glacier foreland that could have promoted genotypic differentiation and sympatric speciation.  相似文献   

9.
Accuracy of estimated phylogenetic trees from molecular data   总被引:2,自引:0,他引:2  
Summary The accuracies and efficiencies of four different methods for constructing phylogenetic trees from molecular data were examined by using computer simulation. The methods examined are UPGMA, Fitch and Margoliash's (1967) (F/M) method, Farris' (1972) method, and the modified Farris method (Tateno, Nei, and Tajima, this paper). In the computer simulation, eight OTUs (32 OTUs in one case) were assumed to evolve according to a given model tree, and the evolutionary change of a sequence of 300 nucleotides was followed. The nucleotide substitution in this sequence was assumed to occur following the Poisson distribution, negative binomial distribution or a model of temporally varying rate. Estimates of nucleotide substitutions (genetic distances) were then computed for all pairs of the nucleotide sequences that were generated at the end of the evolution considered, and from these estimates a phylogenetic tree was reconstructed and compared with the true model tree. The results of this comparison indicate that when the coefficient of variation of branch length is large the Farris and modified Farris methods tend to be better than UPGMA and the F/M method for obtaining a good topology. For estimating the number of nucleotide substitutions for each branch of the tree, however, the modified Farris method shows a better performance than the Farris method. When the coefficient of variation of branch length is small, however, UPGMA shows the best performance among the four methods examined. Nevertheless, any tree-making method is likely to make errors in obtaining the correct topology with a high probability, unless all branch lengths of the true tree are sufficiently long. It is also shown that the agreement between patristic and observed genetic distances is not a good indicator of the goodness of the tree obtained.  相似文献   

10.
Summary We have cloned and determined the nucleotide sequence of a complementary DNA (cDNA) encoded by a newly isolated human tropomyosin gene and expressed in liver. Using the leastsquare method of Fitch and Margoliash, we investigated the nucleotide divergences of this sequence and those published in the literature, which allowed us to clarify the classification and evolution of the tropomyosin genes expressed in vertebrates. Tropomyosin undergoes alternative splicing on three of its nine exons. Analysis of the exons not involved in differential splicing showed that the four human tropomyosin genes resulted from a duplication that probably occurred early, at the time of the amphibian radiation. The study of the sequences obtained from rat and chicken allowed a classification of these genes as one of the types identified for humans.The divergence of exons 6 and 9 indicates that functional pressure was exerted on these sequences, probably by an interaction with proteins in skeletal muscle and perhaps also in smooth muscle; such a constraint was not detected in the sequences obtained from nonmuscle cells. These results have led us to postulate the existence of a protein in smooth muscle that may be the counterpart of skeletal muscle troponin.We show that different kinds of functional pressure were exerted on a single gene, resulting in different evolutionary rates and different convergences in some regions of the same molecule.Codon usage analysis indicates that there is no strict relationship between tissue types (and hence the tRNA precursor pool) and codon usage. G+C content is characteristic of a gene and does not change significantly during evolution. These results are in good agreement with an isochore composition of the genome, and thus suggest a similar chromosomal environment in chicken, rat, and human.  相似文献   

11.
Summary A mathematical theory for computing the probabilities of various nucleotide configurations among related species is developed, and the probability of obtaining the correct tree (topology) from nucleotide sequence data is evaluated using models of evolutionary trees that are close to the tree of mitochondrial DNAs from human, chimpanzee, gorilla, orangutan, and gibbon. Special attention is given to the number of nucleotides required to resolve the branching order among the three most closely related organisms (human, chimpanzee, and gorilla). If the extent of DNA divergence is close to that obtained by Brown et al. for mitochondrial DNA and if sequence data are available only for the three most closely related organisms, the number of nucleotides (m*) required to obtain the correct tree with a probability of 95% is about 4700. If sequence data for two outgroup species (orangutan and gibbon) are available, m* becomes about 2600–2700 when the transformed distance, distance-Wagner, maximum parsimony, or compatibility method is used. In the unweighted pair-group method, m* is not affected by the availability of data from outgroup species. When these five different tree-making methods, as well as Fitch and Margoliash's method, are applied to the mitochondrial DNA data (1834 bp) obtained by Brown et al. and by Hixson and Brown, they all give the same phylogenetic tree, in which human and chimpanzee are most closely related. However, the trees considered here are gene trees, and to obtain the correct species tree, sequence data for several independent loci must be used.  相似文献   

12.
Using simulated data, we compared five methods of phylogenetic tree estimation: parsimony, compatibility, maximum likelihood, Fitch- Margoliash, and neighbor joining. For each combination of substitution rates and sequence length, 100 data sets were generated for each of 50 trees, for a total of 5,000 replications per condition. Accuracy was measured by two measures of the distance between the true tree and the estimate of the tree, one measure sensitive to accuracy of branch lengths and the other not. The distance-matrix methods (Fitch- Margoliash and neighbor joining) performed best when they were constrained from estimating negative branch lengths; all comparisons with other methods used this constraint. Parsimony and compatibility had similar results, with compatibility generally inferior; Fitch- Margoliash and neighbor joining had similar results, with neighbor joining generally slightly inferior. Maximum likelihood was the most successful method overall, although for short sequences Fitch- Margoliash and neighbor joining were sometimes better. Bias of the estimates was inferred by measuring whether the independent estimates of a tree for different data sets were closer to the true tree than to each other. Parsimony and compatibility had particular difficulty with inaccuracy and bias when substitution rates varied among different branches. When rates of evolution varied among different sites, all methods showed signs of inaccuracy and bias.   相似文献   

13.
Phylogenetic trees from multiple genes can be obtained in two fundamentally different ways. In one, gene sequences are concatenated into a super-gene alignment, which is then analyzed to generate the species tree. In the other, phylogenies are inferred separately from each gene, and a consensus of these gene phylogenies is used to represent the species tree. Here, we have compared these two approaches by means of computer simulation, using 448 parameter sets, including evolutionary rate, sequence length, base composition, and transition/transversion rate bias. In these simulations, we emphasized a worst-case scenario analysis in which 100 replicate datasets for each evolutionary parameter set (gene) were generated, and the replicate dataset that produced a tree topology showing the largest number of phylogenetic errors was selected to represent that parameter set. Both randomly selected and worst-case replicates were utilized to compare the consensus and concatenation approaches primarily using the neighbor-joining (NJ) method. We find that the concatenation approach yields more accurate trees, even when the sequences concatenated have evolved with very different substitution patterns and no attempts are made to accommodate these differences while inferring phylogenies. These results appear to hold true for parsimony and likelihood methods as well. The concatenation approach shows >95% accuracy with only 10 genes. However, this gain in accuracy is sometimes accompanied by reinforcement of certain systematic biases, resulting in spuriously high bootstrap support for incorrect partitions, whether we employ site, gene, or a combined bootstrap resampling approach. Therefore, it will be prudent to report the number of individual genes supporting an inferred clade in the concatenated sequence tree, in addition to the bootstrap support.  相似文献   

14.
In phylogenetic analyses with combined multigene or multiprotein data sets, accounting for differing evolutionary dynamics at different loci is essential for accurate tree prediction. Existing maximum likelihood (ML) and Bayesian approaches are computationally intensive. We present an alternative approach that is orders of magnitude faster. The method, Distance Rates (DistR), estimates rates based upon distances derived from gene/protein sequence data. Simulation studies indicate that this technique is accurate compared with other methods and robust to missing sequence data. The DistR method was applied to a fungal mitochondrial data set, and the rate estimates compared well to those obtained using existing ML and Bayesian approaches. Inclusion of the protein rates estimated from the DistR method into the ML calculation of trees as a branch length multiplier resulted in a significantly improved fit as measured by the Akaike Information Criterion (AIC). Furthermore, bootstrap support for the ML topology was significantly greater when protein rates were used, and some evident errors in the concatenated ML tree topology (i.e., without protein rates) were corrected. [Bayesian credible intervals; DistR method; multigene phylogeny; PHYML; rate heterogeneity.].  相似文献   

15.
Development of methods for estimating species trees from multilocus data is a current challenge in evolutionary biology. We propose a method for estimating the species tree topology and branch lengths using approximate Bayesian computation (ABC). The method takes as data a sample of observed rooted gene tree topologies, and then iterates through the following sequence of steps: First, a randomly selected species tree is used to compute the distribution of rooted gene tree topologies. This distribution is then compared to the observed gene topology frequencies, and if the fit between the observed and the predicted distributions is close enough, the proposed species tree is retained. Repeating this many times leads to a collection of retained species trees that are then used to form the estimate of the overall species tree. We test the performance of the method, which we call ST-ABC, using both simulated and empirical data. The simulation study examines both symmetric and asymmetric species trees over a range of branch lengths and sample sizes. The results from the simulation study show that the model performs very well, giving accurate estimates for both the topology and the branch lengths across the conditions studied, and that a sample size of 25 loci appears to be adequate for the method. Further, we apply the method to two empirical cases: a 4-taxon data set for primates and a 7-taxon data set for yeast. In both cases, we find that estimates obtained with ST-ABC agree with previous studies. The method provides efficient estimation of the species tree, and does not require sequence data, but rather the observed distribution of rooted gene topologies without branch lengths. Therefore, this method is a useful alternative to other currently available methods for species tree estimation.  相似文献   

16.
Summary LHP is a suitable protein for studying evolution in flies (Diptera). This blood protein, which occurs at high concentration late in larval development, was purified to homogeneity from 5 species of Drosophilidae and one species each of Tephritidae and Calliphoridae. Rabbit antisera to the purified LHPs allowed immunological comparisons to be made with the micro-complement fixation technique. Various indirect tests indicated that immunological distance is a reliable estimator of the degree of amino acid sequence difference between LHPs from different species. An evolutionary tree for the 7 LHPs was constructed from the immunological distances with the method of Fitch and Margoliash (1967) to provide the branching order and the method of Chakraborty (1977) to provide the branch lengths. A modified method of tree construction allowed LHPs from 10 additional species to be attached to this tree. The resulting LHP tree for 17 species agrees approximately in branching order with that based on Throckmorton's study of 60 anatomical traits. However, the ratio of anatomical change to LHP change along branches within the tree varies widely, confirming the independence of organismal and molecular evolution. The LHP tree thus provides a new perspective on evolution within and among the families of higher Diptera.  相似文献   

17.
A simulation study was carried out to investigate the relative importance of tree topology (both balance and stemminess), evolutionary rates (constant, varying among characters, and varying among lineages), and evolutionary models in determining the accuracy with which phylogenetic trees can be estimated. The three evolutionary context models were phyletic (characters can change at each simulated time step), speciational (changes are possible only at the time of speciation into two daughter lineages), and punctuational (changes occur at the time of speciation but only in one of the daughter lineages). UPGMA clustering and maximum parsimony (“Wagner trees”) methods for estimating phylogenies were compared. All trees were based on eight recent OTUs. The three evolutionary context models were found to have the largest influence on accuracy of estimates by both methods. The next most important effect was that of the stemminess × context interaction. Maximum parsimony and UPGMA performed worst under the punctuational models. Under the phyletic model, trees with high stemminess values could be estimated more accurately and balanced trees were slightly easier to estimate than unbalanced ones. Overall, maximum parsimony yielded more accurate trees than UPGMA—but that was expected for these simulations since many more characters than OTUs were used. Our results suggest that the great majority of estimated phylogenetic trees are likely to be quite inaccurate; they underscore the inappropriateness of characterizing current phylogenetic methods as being for reconstruction rather than for estimation.  相似文献   

18.
田鹏  刘占林 《生物信息学》2009,7(3):232-233
以系统发育树构建的原有距离方法为基础,吸取了NJ法和FM法中的部分理论,提出了以节点引入为手段的新的简易方法,通过该方法构建了分子系统发育树,结果表明这种方法更加快捷,而且所得结果与FM法完全一致。  相似文献   

19.
Distance-based methods are popular for reconstructing evolutionary trees of protein sequences, mainly because of their speed and generality. A number of variants of the classical neighbor-joining (NJ) algorithm have been proposed, as well as a number of methods to estimate protein distances. We here present a large-scale assessment of performance in reconstructing the correct tree topology for the most popular algorithms. The programs BIONJ, FastME, Weighbor, and standard NJ were run using 12 distance estimators, producing 48 tree-building/distance estimation method combinations. These were evaluated on a test set based on real trees taken from 100 Pfam families. Each tree was used to generate multiple sequence alignments with the ROSE program using three evolutionary models. The accuracy of each method was analyzed as a function of both sequence divergence and location in the tree. We found that BIONJ produced the overall best results, although the average accuracy differed little between the tree-building methods (normally less than 1%). A noticeable trend was that FastME performed poorer than the rest on long branches. Weighbor was several orders of magnitude slower than the other programs. Larger differences were observed when using different distance estimators. Protein-adapted Jukes-Cantor and Kimura distance correction produced clearly poorer results than the other methods, even worse than uncorrected distances. We also assessed the recently developed Scoredist measure, which performed equally well as more complex methods.  相似文献   

20.
Connexins and probably innexins are the principal constituents of gap junctions, while claudins and occludins are principal tight junctional constituents. All have similar topologies with four alpha-helical transmembrane segments (TMSs), and all exhibit well-conserved extracytoplasmic cysteines that either are known to or potentially can form disulfide bridges. We have conducted sequence, topological and phylogenetic analyses of the proteins that comprise the connexin, innexin, claudin and occludin families. A multiple alignment of the sequences of each family was used to derive average hydropathy and similarity plots as well as phylogenetic trees. Analyses of the data generated led to the following evolutionary and functional suggestions: (1) In all four families, the most conserved regions of the proteins from each family are the four TMSs although the extracytoplasmic loops between TMSs 1 and 2, and TMSs 3 and 4 are usually well conserved. (2) The phylogenetic trees revealed sets of orthologues except for the innexins where phylogeny primarily reflects organismal source, probably due to a lack of relevant organismal sequence data. (3) The two halves of the connexins exhibit similarities suggesting that they were derived from a common origin by an internal gene duplication event. (4) Conserved cysteyl residues in the connexins and innexins may point to a similar extracellular structure involved in the docking of hemichannels to create intercellular communication channels. (5) We suggest a similar role in homomeric interactions for conserved extracellular residues in the claudins and occludins. The lack of sequence or motif similarity between the four different families indicates that, if they did evolve from a common ancestral gene, they have diverged considerably to fulfill separate, novel functions. We suggest that internal duplication was a general evolutionary strategy used to generate new families of channels and junctions with unique functions. These findings and suggestions should serve as guides for future studies concerning the structures, functions and evolutionary origins of junctional proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号