首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The nonstructural protein 1 (nsp1) of the severe acute respiratory syndrome coronavirus has 179 residues and is the N-terminal cleavage product of the viral replicase polyprotein that mediates RNA replication and processing. The specific function of nsp1 is not known. Here we report the nuclear magnetic resonance structure of the nsp1 segment from residue 13 to 128, which represents a novel alpha/beta-fold formed by a mixed parallel/antiparallel six-stranded beta-barrel, an alpha-helix covering one opening of the barrel, and a 3(10)-helix alongside the barrel. We further characterized the full-length 179-residue protein and show that the polypeptide segments of residues 1 to 12 and 129 to 179 are flexibly disordered. The structure is analyzed in a search for possible correlations with the recently reported activity of nsp1 in the degradation of mRNA.  相似文献   

3.
Severe acute respiratory syndrome coronavirus is a newly emergent virus responsible for a recent outbreak of an atypical pneumonia. The coronavirus spike protein, an enveloped glycoprotein essential for viral entry, belongs to the class I fusion proteins and is characterized by the presence of two heptad repeat (HR) regions, HR1 and HR2. These two regions are understood to form a fusion-active conformation similar to those of other typical viral fusion proteins. This hairpin structure likely juxtaposes the viral and cellular membranes, thus facilitating membrane fusion and subsequent viral entry. The fusion core protein of severe acute respiratory syndrome coronavirus spike protein was crystallized, and the structure was determined at 2.8 A of resolution. The fusion core is a six-helix bundle with three HR2 helices packed against the hydrophobic grooves on the surface of central coiled coil formed by three parallel HR1 helices in an oblique antiparallel manner. This structure shares significant similarity with the fusion core structure of mouse hepatitis virus spike protein and other viral fusion proteins, suggesting a conserved mechanism of membrane fusion. Drug discovery strategies aimed at inhibiting viral entry by blocking hairpin formation, which have been successfully used in human immunodeficiency virus 1 inhibitor development, may be applicable to the inhibition of severe acute respiratory syndrome coronavirus on the basis of structural information provided here. The relatively deep grooves on the surface of the central coiled coil will be a good target site for the design of viral fusion inhibitors.  相似文献   

4.
This paper describes the structure determination of nsp3a, the N-terminal domain of the severe acute respiratory syndrome coronavirus (SARS-CoV) nonstructural protein 3. nsp3a exhibits a ubiquitin-like globular fold of residues 1 to 112 and a flexibly extended glutamic acid-rich domain of residues 113 to 183. In addition to the four beta-strands and two alpha-helices that are common to ubiquitin-like folds, the globular domain of nsp3a contains two short helices representing a feature that has not previously been observed in these proteins. Nuclear magnetic resonance chemical shift perturbations showed that these unique structural elements are involved in interactions with single-stranded RNA. Structural similarities with proteins involved in various cell-signaling pathways indicate possible roles of nsp3a in viral infection and persistence.  相似文献   

5.
Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a novel coronavirus. Since its associated morbidity and mortality have been postulated to be due to immune dysregulation, we investigated which of the viral proteins is responsible for chemokine overexpression. To delineate the viral and cellular factor interactions, the role of four SARS coronavirus proteins, including nonstructural protein 1 (nsp-1), nsp-5, envelope, and membrane, were examined in terms of cytokine induction. Our results showed that the SARS coronavirus nsp-1 plays an important role in CCL5, CXCL10, and CCL3 expression in human lung epithelial cells via the activation of NF-kappaB.  相似文献   

6.
The severe acute respiratory syndrome coronavirus (SARS-CoV) 3a protein is one of the opening reading frames in the viral genome with no homologue in other known coronaviruses. Expression of the 3a protein has been demonstrated during both in vitro and in vivo infection. Here we present biochemical data to show that 3a is a novel coronavirus structural protein. 3a was detected in virions purified from SARS-CoV infected Vero E6 cells although two truncated products were present predominantly instead of the full-length protein. In Vero E6 cells transiently transfected with a cDNA construct for expressing 3a, a similar cleavage was observed. Furthermore, co-expression of 3a, membrane and envelope proteins using the baculovirus system showed that both full-length and truncated 3a can be assembled into virus-like particles. This is the first report that demonstrated the incorporation of 3a into virion and showed that the SARS-CoV encodes a novel coronavirus structural protein.  相似文献   

7.
The causative agent of severe acute respiratory syndrome (SARS) is the SARS-associated coronavirus, SARS-CoV. The nucleocapsid (N) protein plays an essential role in SARS-CoV genome packaging and virion assembly. We have previously shown that SARS-CoV N protein forms a dimer in solution through its C-terminal domain. In this study, the crystal structure of the dimerization domain, consisting of residues 270-370, is determined to 1.75A resolution. The structure shows a dimer with extensive interactions between the two subunits, suggesting that the dimeric form of the N protein is the functional unit in vivo. Although lacking significant sequence similarity, the dimerization domain of SARS-CoV N protein has a fold similar to that of the nucleocapsid protein of the porcine reproductive and respiratory syndrome virus. This finding provides structural evidence of the evolutionary link between Coronaviridae and Arteriviridae, suggesting that the N proteins of both viruses have a common origin.  相似文献   

8.
The coronavirus membrane protein (M) is the key player in the assembly of virions at intracellular membranes between endoplasmic-reticulum and Golgi-complex. Using a newly established human monoclonal anti-M antibody we detected glycosylated and nonglycosylated membrane-associated M in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infected cells and in purified virions. Further analyses revealed that M contained a single N-glycosylation site at asparagine 4. Recombinant M was transported to the plasma membrane and gained complex-type N-glycosylation. In SARS-CoV infected cells and in purified virions, however, N-glycosylation of M remained endoglycosidase H-sensitive suggesting that trimming of the N-linked sugar side chain is inhibited.  相似文献   

9.
A phylogenetically conserved ribosomal protein L16p/L10e organizes the architecture of the aminoacyl tRNA binding site on the large ribosomal subunit. Eukaryotic L10 also exhibits a variety of cellular activities, and, in particular, human L10 is known as a putative tumor suppressor, QM. We have determined the 2.5-Å crystal structure of the human L10 core domain that corresponds to residues 34-182 of the full-length 214 amino acids. Its two-layered α + β architecture is significantly similar to those of the archaeal and bacterial homologues, substantiating a high degree of structural conservation across the three phylogenetic domains. A cation-binding pocket formed between α2 and β6 is similar to that of the archaeal L10 protein but appears to be better ordered. Previously reported L10 mutations that cause defects in the yeast ribosome are clustered around this pocket, indicating that its integrity is crucial for its role in L10 function. Characteristic interactions among Arg90-Trp171-Arg139 guide the C-terminal part outside of the central fold, implying that the eukaryote-specific C-terminal extension localizes on the outer side of the ribosome.  相似文献   

10.
IscA belongs to an ancient family of proteins responsible for iron-sulfur cluster assembly in essential metabolic pathways preserved throughout evolution. We report here the 2.3 A resolution crystal structure of Escherichia coli IscA, a novel fold in which mixed beta-sheets form a compact alpha-beta sandwich domain. In contrast to the highly mobile secondary structural elements within the bacterial Fe-S scaffold protein IscU, a protein which is thought to have a similar function, the great majority of the amino acids that are conserved in IscA homologues are located in elements that constitute a well-ordered fold. However, the 10-residue C-terminal tail segment that contains two invariant cysteines critical for the Fe-S-binding function of a cyanobacterial (Synechocystis PCC) IscA homologue is not ordered in our structure. In addition, the crystal packing reveals a helical assembly that is constructed from two possible tetrameric oligomers of IscA.  相似文献   

11.
The worldwide outbreak of severe acute respiratory syndrome (SARS) was shown to be associated with a novel coronavirus (CoV) now called SARS CoV. We report here the generation of SARS CoV S protein-pseudotyped murine leukemia virus (MLV) vector particles. The wild-type S protein pseudotyped MLV vectors, although at a low efficiency. Partial deletion of the cytoplasmic tail of S dramatically increased infectivity of pseudotypes, with titers only two- to threefold lower than those of pseudotypes generated in parallel with the vesicular stomatitis virus G protein. S-pseudotyped MLV particles were used to analyze viral tropism. MLV(SARS) pseudotypes and wild-type SARS CoV displayed similar cell types and tissue and host restrictions, indicating that the expression of a functional receptor is the major restraint in permissiveness to SARS CoV infection. Efficient gene transfer could be detected in Vero and CaCo2 cells, whereas the level of gene marking of 293T, HeLa, and HepG2 cells was only slightly above background levels. A cat cell line and a dog cell line were not susceptible. Interestingly, PK-15, a porcine kidney cell line, and primary porcine kidney cells were also highly permissive for SARS S pseudotypes and wild-type SARS CoV. This finding suggests that swine may be susceptible to SARS infection and may be a source for infection of humans. Taken together, these results indicate that MLV(SARS) pseudotypes are highly valuable for functional studies of viral tropism and entry and, in addition, can be a powerful tool for the development of therapeutic entry inhibitors without posing a biohazard to human beings.  相似文献   

12.
Li FQ  Xiao H  Tam JP  Liu DX 《FEBS letters》2005,579(11):2387-2396
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes a highly basic nucleocapsid (N) protein of 422 amino acids. Similar to other coronavirus N proteins, SARS-CoV N protein is predicted to be phosphorylated and may contain nuclear localization signals, serine/arginine-rich motif, RNA binding domain and regions responsible for self-association and homo-oligomerization. In this study, we demonstrate that the protein is posttranslationally modified by covalent attachment to the small ubiquitin-like modifier. The major sumoylation site was mapped to the (62)lysine residue of the N protein. Further expression and characterization of wild type N protein and K62A mutant reveal that sumoylation of the N protein drastically promotes its homo-oligomerization, and plays certain roles in the N protein-mediated interference of host cell division. This is the first report showing that a coronavirus N protein undergoes posttranslational modification by sumoylation, and the functional implication of this modification in the formation of coronavirus ribouncleoprotein complex, virion assembly and virus-host interactions.  相似文献   

13.
The severe acute respiratory syndrome coronavirus enters cells through the activities of a spike protein (S) which has receptor-binding (S1) and membrane fusion (S2) regions. We have characterized four sequential states of a purified recombinant S ectodomain (S-e) comprising S1 and the ectodomain of S2. They are S-e monomers, uncleaved S-e trimers, cleaved S-e trimers, and dissociated S1 monomers and S2 trimer rosettes. Lowered pH induces an irreversible transition from flexible, L-shaped S-e monomers to clove-shaped trimers. Protease cleavage of the trimer occurs at the S1-S2 boundary; an ensuing S1 dissociation leads to a major rearrangement of the trimeric S2 and to formation of rosettes likely to represent clusters of elongated, postfusion trimers of S2 associated through their fusion peptides. The states and transitions of S suggest conformational changes that mediate viral entry into cells.  相似文献   

14.
Yuan X  Shan Y  Yao Z  Li J  Zhao Z  Chen J  Cong Y 《Molecules and cells》2006,21(2):186-191
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV), a distant member of the Group 2 coronaviruses, has recently been identified as the etiological agent of severe acute respiratory syndrome (SARS). The genome of SARS-CoV contains four structural genes that are homologous to genes found in other coronaviruses, as well as six subgroup-specific open reading frames (ORFs). ORF3 encodes a predicted 154-amino-acid protein that lacks similarity to any known protein, and is designated 3b in this article. We reported previously that SARS-CoV 3b is predominantly localized in the nucleolus, and induces G0/G1 arrest and apoptosis in transfected cells. In this study, we show that SARS-CoV 3b fused with EGFP at its N- or C- terminus co-localized with a mitochondria-specific marker in some transfected cells. Mutation analysis of SARS-CoV 3b revealed that the domain spanning amino acids 80 to 138 was essential for its mitochondria localization. These results provide new directions for studies of the role of SARS-CoV 3b protein in SARS pathogenesis.  相似文献   

15.
16.
Severe acute respiratory syndrome coronavirus encodes several accessory proteins of unknown function. We previously showed that one such protein, encoded by ORF6, enhanced the growth of mouse hepatitis virus in tissue culture cells and in mice. Protein 6 consists of an N-terminal hydrophobic peptide and a C-terminal region containing intracellular protein sorting motifs. Herein, we show that mutation of the hydrophobic region but not the sorting motifs affected the ability of protein 6 to enhance virus growth. Collectively, these results support the notion that the 6 protein interacts with membrane-bound viral replication or assembly machinery to directly enhance virus replication and virulence in animals.  相似文献   

17.
18.
19.
Lpg0189 is a type II secretion system-dependent extracellular protein with unknown function from Legionella pneumophila. Herein, we determined the crystal structure of Lpg0189 at 1.98 Å resolution by using single-wavelength anomalous diffraction (SAD). Lpg0189 folds into a novel chair-shaped architecture, with two sheets roughly perpendicular to each other. Bioinformatics analysis suggests Lpg0189 and its homologues are unique to Legionellales and evolved divergently. The interlinking structural and bioinformatics studies provide a better understanding of this hypothetical protein.  相似文献   

20.
Recent studies from our laboratory have showed that resveratrol, a polyphenol found predominantly in grapes rendered strong cardioprotection in animal models of heart disease. The cardioprotection which was observed was primarily associated with the ability of resveratrol to reduce oxidative stress in these models. The aim of the current study was to corroborate the role of resveratrol as an inhibitor of oxidative stress and explore the underlying mechanisms of its action in heart disease. For this purpose, we used a cell model of oxidative stress, the hydrogen peroxide (H2O2) exposed adult rat cardiomyocytes, which was treated with and without resveratrol (30 μM); cardiomyocytes which were not exposed to resveratrol served as controls. Cell injury, cell death and oxidative stress measurements as well as the activities of the major endogenous antioxidants superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were carried out in control and H2O2 exposed cardiomyocytes, treated with and without resveratrol. Pharmacological blockade using specific blockers of the antioxidant enzymes were used to confirm their role in mediating resveratrol action in H2O2 exposed cardiomyocytes. The status of H2O2 and antioxidant enzymes in serum samples from spontaneously hypertensive rats (SHR) treated with and without resveratrol (2.5 mg/kg body weight) was also examined.Our results showed significant cell injury and death in H2O2 exposed cardiomyocytes which was prevented upon resveratrol treatment. SOD and CAT activities were decreased in H2O2 exposed adult rat cardiomyocytes; treatment with resveratrol significantly prevented this reduction. However, GPx activity was not altered in the H2O2 exposed cardiomyocytes in comparison to controls. Pharmacological blockade of SOD and/or CAT prevented the beneficial effect of resveratrol. In SHR, H2O2 levels were increased, but CAT activity was decreased, while SOD remained unchanged, when compared to WKY rats; resveratrol treatment significantly prevented the increase in H2O2 levels and the decrease in CAT activities in SHR.Based on our results, we conclude that treatment with resveratrol prevents oxidative stress induced cardiomyocyte injury mainly by preserving the activities of critical antioxidant enzymes. This may be a crucial mechanism by which resveratrol confers cardioprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号