首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1.  Spikes in Aplysia MA1 neurons produced excitatory (EJPs), inhibitory (IJPs), and diphasic inhibitory-excitatory junction potentials in different fibers of the buccal muscles.
2.  The IJPs following the MA1 spikes were recorded in the muscle fibers innervated by the jaw-closing motoneurons. The depolarization of muscle fibers produced by the motoneurons was largely suppressed by simultaneous MA1 firing, suggesting that the MA1 neurons make a direct connection to a part of the muscle fibers innervated by these motoneurons and inhibit them.
3.  The excitatory and inhibitory components of the junction potentials produced by MA1 were reversibly blocked by hexamethonium and d-tubocurarine, respectively. In contrast, the EJPs produced by the jaw-closing motoneurons were blocked by an amino acid antagonist, suggesting that the MA1 neurons and the jaw-closing motoneurons use different transmitters in the nerve-muscle junctions.
4.  The jaw movement produced by the jaw-closing motoneurons was suppressed by simultaneous MA1 firing, and the suppression was released by d-tubocurarine, suggesting that the IJPs produced by MA1 may contribute to the suppression of jaw movement. The firing of MA1 produced the vertical movement of the buccal muscles, which was blocked by hexamethonium, suggesting that the EJPs produced by MA1 may contribute to the vertical movement.
  相似文献   

2.
1.  Muscles of the posterior cardiac plate (pcp) and pyloric regions in the stomach of Squilla are innervated by motoneurons located in the stomatogastric ganglion (STG). The pattern of innervation of various muscles in these regions was determined using electrophysiological methods.
2.  The dilator muscles are singly or doubly innervated by the pyloric dilator neurons (PDs). The constrictor muscles are singly or doubly innervated by the pcp neuron (PCP) or the pyloric neurons (PYs). These muscles are sequentially activated by pcp-pyloric motor outputs produced by the PCP, PY, and PD. All muscles can generate an all-or-nothing spike.
3.  The constrictor muscles generate spikes followed by depolarizing afterpotentials which lead to a sustained depolarization with repetitive spikes. The PYs can entrain rhythmic spike discharges of these muscles.
4.  The spike of muscles remains unchanged by bath application of tetrodotoxin (10-7 M) to suppress neuronal impulse activities, but it is blocked by Mn2+ (10 mM).
5.  The constrictor muscle isolated from the STG displays an endogenous property of spontaneous membrane oscillation that produces a train of spikes. Brief depolarizing or hyperpolarizing stimuli can trigger or terminate an oscillatory potential, respectively, and reset the subsequent rhythm.
6.  The possible functions of myogenicity under the control of discharges of motoneurons in the pyloric constrictor neuromuscular system are discussed.
  相似文献   

3.
1.  Coordinated movements of the wings during flight in the locust result from coordinated activity of flight neurons in the thoracic ganglia. Many flight interneurons and motoneurons fire synchronous bursts of action potentials during the expression of the flight motor pattern. The mechanisms which underlie this synchronous firing were investigated in a deafferented preparation of Locusta migratoria.
2.  Simultaneous intracellular recordings were taken from flight neurons in the mesothoracic ganglion using glass microelectrodes filled with fluorescent dye.
3.  Three levels of synchronous activity between synergistic motoneurons and between the right and left partners of bilaterally symmetrical pairs of interneurons were observed: bursting which was loosely in phase but which showed little correlation between the temporal parameters of individual bursts in the two neurons; bursting which showed synchrony of the beginning and end of bursts; and bursts which showed highly synchronous spike-for-spike activity.
4.  Direct interactions between the neurons had little or no part to play in maintaining any of the levels of synchrony, even in instances of very close synchrony (spikes in different neurons occurring within 1 ms of each other). Highly synchronous firing was a consequence of common synaptic input impinging on neurons with similar morphological and physiological properties.
  相似文献   

4.
The circadian rhythm in the ERG amplitude of the lateral compound eye ofLimulus can be phase shifted either by general illumination or by illuminating combinations of the photoreceptor organs.
1.  For 15-min exposures, light confined to one lateral eye, or to the median ocelli, or to the ventral photoreceptor region resulted in the smallest phase shifts.
2.  Illuminating combinations of these organs produced larger shifts. The most effective combination tested included the median ocelli, the ventral photoreceptors, and one lateral eye. The phase shift resulting from illumination of this combination was only about one-half of the shift produced by general illumination.
3.  These results suggest that the circadian clock also receives light information from other, unidentified, photoreceptors located outside the prosoma.
  相似文献   

5.
1.  Studies were performed to determine the changes in immunoreactive (IR) type II glucocorticoid receptors of the ventral horn of the spinal cord produced by adrenalectomy (ADX), dexamethasone (DEX) treatment, and spinal cord transection in rats.
2.  These treatments did not significantly affect the number of IR neurons of the ventral horn; however, staining intensity was enhanced after ADX and decreased following 4 days of DEX. A similar response pattern was observed for glial-type cells.
3.  In control rats, about half of the ventral horn motoneurons were surrounded by immunoreactive glial perineuroral cells. These perineuronal cells increased after ADX (77% of counted neurons) and decreased following DEX treatment (32%;P < 0.05).=">
4.  Two days after transection, staining was intensified in ventral horn motoneurons and glial cells located in the spinal cord below the lesion. Immunoreactive perineuronal cells increased to 85% of counted neurons, from a value of 66% in sham-operated rats (P < 0.05).=">
5.  These findings suggest considerable plasticity of the spinal cord GCR in response to changes in hormonal levels and experimental lesions. It is possible that factors involved in cell to cell communication with transfer of hypothetical regulatory molecules may play roles in GCR regulation and the increased immunoreaction of glia associated with neurons following transection and ADX.
  相似文献   

6.
1.  An extracellular recording and staining technique has been used to study the structure of individual ventral-cord elements in the auditory pathway ofLocusta migratoria.
2.  Three groups of auditory ventral-cord neurons can be distinguished: (a) neurons ascending to the supraesophageal ganglion, (b) T-shaped neurons, and (c) neurons limited to the thoracic ventral cord.
3.  The ventral-cord neurons ascending to the supraesophageal ganglion link the auditory centers of the thorax to those of the supraesophageal ganglion. These are, at least in part, richly arborized neurons of large diameter.
4.  The ventral-cord neurons with T structure send equivalent signals along both arms of the T; they resemble the neurons of the first group in that they make synaptic connections in the supraesophageal ganglion, but they also conduct auditory information to caudal regions of the thorax via the descending trunk of the axon.
5.  In the supraesophageal ganglion there are several extensive projection areas of the auditory ventral-cord neurons. No direct connections to the mushroom bodies, the central body or the protocerebral bridge could be demonstrated.
6.  The thoracic ventral-cord neurons act as short segmental interneurons, providing a connection between the tympanal receptor fibers and the ascending and T-shaped ventral-cord neurons. They play a crucial role in auditory information processing.
7.  The possible functional properties of the various morphological sections of the auditory ventral-cord neurons are discussed, with reference to their connections with motor and other neuronal systems.
  相似文献   

7.
Intracellular recordings were carried out on locust flight motoneurons after hemisection of individual thoracic ganglia. With the exception of minimal surgical manipulations, the animals were intact and able to perform tethered flight. Analysis of the synaptic drive recorded in the motoneurons during flight motor activity revealed the extent to which ganglion hemisection influenced the premotor rhythm generating network.
1.  Hemisection of the mesothoracic ganglion (Fig. 2) as well as hemisection of both the mesothoracic and the prothoracic ganglia (Fig. 3) had no significant effects on the pattern of synaptic input to the flight motoneurons. Thus the rhythm generating premotor network does not depend on commissural information transfer in the mesothoracic and the prothoracic ganglia. This conclusion was supported by experiments in which more extensive surgical isolations of thoracic ganglia were carried out (Fig. 5).
2.  Removal of input from wing receptors (deafferentation) in addition to hemisection of the mesothoracic ganglion (Fig. 4) resulted in rhythmic and coordinated oscillations of the motoneuron membrane potential which were indistinguishable from those observed in deafferented animals with all ganglia intact.
3.  Hemisection of the metathoracic ganglion had more pronounced effects on the patterns of synaptic drive to the flight motoneurons and their spike discharge. Rhythmic activity which was often subthreshold could, however, still be recorded following a metathoracic split (Fig. 6).
4.  No rhythmic synaptic input was observed after hemisection of both mesothoracic and metathoracic ganglia (Fig. 7).
  相似文献   

8.
The caudal photoreceptors (CPRs) of crayfish (Procambarus clarkii) can trigger walking and abdominal movements by their response to light.
1.  In a restrained, inverted crayfish, illumination of A6 evoked a CPR discharge followed by leg movements and bursting from the abdominal tonic flexor (TF) motoneurons. Intracellular electrical stimulation of a single CPR at high frequency (80 Hz) evoked similar responses.
2.  Responses only occurred when a single CPR axon was driven at 60 Hz or more and outlasted the stimulus.
3.  CPR stimulation also excites the pattern-initiating network (Moore and Larimer 1987) in the abdomen.
4.  The axon of the CPR projects from ganglion A6 to the brain. Terminal branches occur in the subesophageal ganglion and the brain. A small descending interneuron is dye-coupled to CPR in the subesophageal ganglion.
5.  In animals with cut circumesophageal connectives, the CPRs can evoke walking and the abdominal motor pattern.
6.  The relationship of the abdominal motor pattern to walking is altered by restraint and/or inversion. In freely moving crayfish, the cyclic abdominal motor pattern is only observed with backward walking. In restrained, inverted crayfish, the motor pattern occurs with both forward or backward walking.
  相似文献   

9.
Twelve of the main European LCA software packages currently available are examined wirh the aim of establishing which are the most appropriate for LCAs on industrial processes. The packages performances are assessed in terms of
–  • Volume of Data
–  • WindowsTM environment
–  • Network Capabilities
–  • Impact Assessment
–  • Graphical representation of the inventory results
–  • Sensitivity analysis
–  • Units
–  • Cost
–  • User Support
–  • Flow Diagrams
–  • Burdens allocation
–  • Transparency of data
–  • Input & output parameters
–  • Demo version
–  • Quality of data
The review concludes with a Specification Table which summarises the facilities available on each software package. The general conclusion from this study is that for industrially based LCAs, there are four packages which may offer advantages over the rest. These are The Boustead Model, The Ecobilan Group’s TEAM™, PEMS 3.0 and SimaPro 3.1.  相似文献   

10.
1.  The excitatory and inhibitory influences on the gill ofAplysia Juliana, which are mediated by the branchial nerve, were studied by means of electrophysiological techniques. Excitatory and inhibitory pathways in the nerve were stimulated simultaneously or selectively.
2.  The branchial nerve was found to contain both excitatory and inhibitory pathways which did not contain synapses in the branchial ganglion. The excitatory pathways caused longitudinal shortening of the gill along the efferent branchial vessel and the inhibitory pathways were modulatory, depressing the longitudinal shortening.
3.  Branchial nerve stimulation elicited two types of excitatory junctional potential (EJP), which were not mediated by the branchial ganglion, in a muscle cell of the efferent branchial vessel. One type was attributed to the central motor neuron and the other type to a motor neuron which is probably situated in the neural plexus of the gill periphery.
4.  Four inhibitory pathways from the central nervous system to the gill were found.
5.  Inhibitory junctional potentials (IJPs) recorded from muscle cells of the efferent branchial vessel in response to branchial nerve stimulation did not have monosynaptic characteristics. It is thought that inhibitory motor neurons which were activated by the branchial nerve might exist at the neural plexus of the gill.
6.  A single EJP which has been induced by a stimulus pulse applied to the excitatory pathway of the branchial nerve may be depressed in an all-or-none manner by a stimulus pulse applied to the inhibitory pathway, if this is done within a distinct short period prior to or after the stimulus inducing the EJP. This indicates that the central motor neuron receives presynaptic inhibition at its periphery.
7.  The motor neurons of the neural plexus seem to receive inhibitory innervation. Suppression of endogenous EJPs in the efferent vessel persisted for a long period even after cessation of stimulation.
8.  A certain branchioganglionic neuron (BGN) was found to receive inhibitory postsynaptic potential (IPSP) inputs from the branchial nerve.
9.  The multimodality of both the excitatory and the inhibitory pathways in the branchial nerve may explain the compound neural modulations of gill movements.
  相似文献   

11.
J. Robb 《Human Evolution》1994,9(3):215-229
In recent years anthropologists have made much progress in understanding ancient activities from skeletal remains. In this paper, material from the Iron Age cemetery at Pontecagnano (VII-IV century BC) is used to illustrate activity-related traits of eight basic categories:
(1)  idiosyncratic patterns of dental wear
(2)  activity-related articular degeneration
(3)  non-pathological functional alterations (neoformations, contact facets)
(4)  mechanical remodelling of bone architecture
(5)  enthesopathies (muscular lesions)
(6)  traumatic lesions
(7)  activity-related pathologies
(8)  activity-related nutritional characteristics
These traits, and others, can be used not only singly but in conjunction to define (a) patterns of activity and occupational specialization for individuals, and (b) distributions within society reflecting the basic division of labor by geneder and class.  相似文献   

12.
1.  Tethered flies (Musca domestica) walking on an air-suspended ball show a spontaneous response to the e-vector of polarized light presented from above, i.e. a slowly rotating e-vector induces periodic changes in the flies' turning tendency. Suitable control experiments exclude the possibility that the response is elicited by intensity gradients in the stimulus (Figs. 1 and 2).
2.  Presence of the e-vector response in both white and UV light and its complete absence in yellow light equally support the concept that the specialized dorsal rim area of the compound eye with its highly polarization sensitive UV receptors R7marg and R8marg mediates polarization vision in flies (Fig. 3).
3.  E-vector orientations inducing no turning response additional to the fly's inherent turning tendency are either parallel (avoided e-vector) or perpendicular (preferred e-vector) to the animal's body axis (Figs. 1 and 4).
4.  Considering the fanlike arrangement of the microvillar orientations of R7marg and R8marg in the dorsal rim area of the eye of Calliphora and Musca, a stabilizing function of polarization vision in controlling the flight course is suggested and discussed in the context of results from other behavioural studies.
  相似文献   

13.
1.  The activity of tympanal high- and low-frequency receptors in the migratory locustLocusta migratoria was recorded with glass capillary microelectrodes, and Lucifer Yellow was then injected through the microelectrode to reveal the cells' metathoracic projections.
2.  A photodetector device was used to monitor the abdominal respiratory movements, which caused clearly visible deflections of the tympanal membrane.
3.  The auditory receptors respond not only to sound stimuli but also to the respiratory movements; these phasic (Figs. 1–3) or tonic (Fig. 4) responses are especially pronounced during the inspiration and expiration movements, and less so during the constriction phases.
4.  The magnitude of the response to sound depends on the phase of the stimulus with respect to the respiratory movements. At certain phases sound elicits no response at all (Fig. 5).
  相似文献   

14.
15.
This paper describes the morphology and response characteristics of two types of paired descending neurons (DNs) (classified as DNVII1 and DNIV1) and two lobula neurons (HR1 and HP1) in the honeybee, Apis mellifera.
1.  The terminal arborizations of the lobula neurons are in juxtaposition with the dendritic branches of the DNs (Figs. 2, 3b, 5). Both of the DNs descend into the ipsilateral side of the thoracic ganglia via the dorsal intermediate tract (Fig. 6) and send out many blebbed terminal branches into the surrounding motor neuropil (Figs. 3c, 7).
2.  Both the lobula and descending neurons respond in a directionally selective manner to the motion of widefield, periodic square-wave gratings.
3.  The neurons have broad directional tuning curves (Figs. 10, 11). HR1 is maximally sensitive to regressive (back-to-front) motion and HP1 is maximally sensitive to progressive (front-to-back) motion over the ipsilateral eye (Fig. 11). DNVII1 is maximally sensitive when there is simultaneous regressive motion over the ipsilateral eye and progressive motion over the contralateral eye (Fig. 12a). Conversely, DNIV1 is optimally stimulated when there is simultaneous progressive motion over the ipsilateral eye and regressive motion over the contralateral eye (Fig. 12b).
4.  The response of DNIV1 is shown to depend on the contrast frequency (CF) rather than the angular velocity of the periodic gratings used as stimuli. The peak responses of both regressive and progressive sensitive DNs are shown to occur at CFs of 8–10 Hz (Figs. 13, 14).
  相似文献   

16.
1.  The effect of intracellularly injected cAMP on the amplitude of excitatory postsynaptic potentials was studied using identified neurons of the snailHelix pomatia.
2.  In 25% of the experiments, postsynaptic cAMP elevation caused a pronounced augmentation of the excitatory postsynaptic potential (EPSP) amplitude, lasting up to 15–30 min.
3.  The results suggest that a cAMP increase in the postsynaptic neuron may be involved in the enhancement of synaptic efficiency.
  相似文献   

17.
18.
In the rift valley (North-East of France/South-West of Germany), the Rhine runs freely for 300 km from South to North. The absence of natural obstacles allows the development of a very regular profile of the river. We have therefore an opportunity to study very gradual modifications of the alluvial forest communities of the fluvial corridor from upstream to downstream, according to the gradual evolution of the ecological factors, related to slope decrease and hydrological modifications.We describe, from Basel to Mainz:
1)  modification of dynamic processes in the forest communities such as successional sequences or sylvigenetic mosaïcs of the terminal stages.
2)  modification of species richness.
3)  reduction of species diversity.
4)  simplification of the forest stratification.
5)  modification of efficiency of the biogeochemical cycling.
6)  ecological vicariances.
7)  modification in species behaviour.
  相似文献   

19.
1.  Interactions of cockroaches with 4 different predator species were recorded by videography. Some predators, especially spiders, struck from relatively short distances and usually contacted a cockroach prior to initiation of escape (Table 1, Fig. 3). This touch frequently occurred on an antenna. Cockroaches turned away from the side on which an antenna was touched.
2.  We then measured the success of escape from predators for cockroaches with either cerci or antennae ablated. Only antennal removal caused a significant decrease in the success of escape from spiders (Fig. 5).
3.  With controlled stimuli, cockroaches responded reliably to abrupt touch of antennae, legs or body (Fig. 6). Responses resembled wind-elicited escape: they consisted of a short latency turn (away from the stimulus) followed by running (Figs. 7, 8). However, lesions show that touchevoked escape does not depend on the giant interneuron system (Table 2).
4.  Following section of one cervical connective, cockroaches continued to respond to touching either antenna, but often turned inappropriately toward, rather than away from, stimuli applied to the antenna contralateral to the severed connective (Table 3, Fig. 10).
5.  For certain types of predators touch may be a primary cue by which cockroaches detect predatory attack. Descending somatosensory pathways for escape are distinct from the GI system.
  相似文献   

20.
Thiolutin was found to inhibit the utilization of glucose and other growth substrates in Escherichia coli. The inhibition was detected by a sharp drop of the respiration rate after addition of the antibiotic. The actual function affected was allocated to the cytoplasmic membrane of the bacterial cells by the following evidence:
–  - spheroplasts were affected like intact cells,
–  - individual reactions of either the electron transport chain or the glycolytic pathway were not inhibited,
–  - glucose consumption in the culture stopped and the cells accumulated guanosine tetraphosphate as under starvation conditions,
–  - activation of the cell's apo-glucose dehydrogenase restored respiration via bypassing the glucose phosphotransferase system.
It was concluded that the transport of certain substrates across the membrane was inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号