首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Purified rabbit-muscle and -liver glucose phosphate isomerase, free of contaminating enzyme activities that could interfere with the assay procedures, were tested for inhibition by fructose, fructose 1-phosphate and fructose 1,6-diphosphate. 2. Fructose 1-phosphate and fructose 1,6-diphosphate are both competitive with fructose 6-phosphate in the enzymic reaction, the apparent Ki values being 1·37×10−3−1·67×10−3m for fructose 1-phosphate and 7·2×10−3−7·9×10−3m for fructose 1,6-diphosphate; fructose and inorganic phosphate were without effect. 3. The apparent Km values for both liver and muscle enzymes at pH7·4 and 30° were 1·11×10−4−1·29×10−4m for fructose 6-phosphate, determined under the conditions in this paper. 4. In the reverse reaction, fructose, fructose 1-phosphate and fructose 1,6-diphosphate did not significantly inhibit the conversion of glucose 6-phosphate into fructose 6-phosphate. 5. The apparent Km values for glucose 6-phosphate were in the range 5·6×10−4−8·5×10−4m. 6. The competitive inhibition of hepatic glucose phosphate isomerase by fructose 1-phosphate is discussed in relation to the mechanism of fructose-induced hypoglycaemia in hereditary fructose intolerance.  相似文献   

2.
A manganese-containing superoxide dismutase (EC 1.15.1.1) was fully characterized from leaves of the higher plant Pisum sativum L., var. Lincoln. The amino acid composition determined for the enzyme was compared with that of a wide spectrum of superoxide dismutases and found to have a highest degree of homology with the mitochondrial manganese superoxide dismutases from rat liver and yeast. The enzyme showed an apparent pH optimum of 8.6 and at 25°C had a maximum stability at alkaline pH values. By kinetic competition experiments, the rate constant for the disproportionation of superoxide radicals by pea leaf manganese superoxide dismutase was found to be 1.61 × 109 molar−1·second−1 at pH 7.8 and 25°C. The enzyme was not sensitive to NaCN or to H2O2, but was inhibited by N3. The sulfhydryl reagent p-hydroxymercuribenzoate at 1 mm concentration produced a nearly complete inhibition of the manganese superoxide dismutase activity. The metal chelators o-phenanthroline, EDTA, and diethyldithiocarbamate all inhibited activity slightly in decreasing order of intensity. A comparative study between this higher plant manganese superoxide dismutase and other dismutases from different origins is presented.  相似文献   

3.
Citrulline formation by both human neuronal nitric-oxide synthase (nNOS) and mouse macrophage inducible NOS was inhibited by the hydrogen sulfide (H2S) donor Na2S with IC50 values of ∼2.4·10−5 and ∼7.9·10−5 m, respectively, whereas human endothelial NOS was hardly affected at all. Inhibition of nNOS was not affected by the concentrations of l-arginine (Arg), NADPH, FAD, FMN, tetrahydrobiopterin (BH4), and calmodulin, indicating that H2S does not interfere with substrate or cofactor binding. The IC50 decreased to ∼1.5·10−5 m at pH 6.0 and increased to ∼8.3·10−5 m at pH 8.0. Preincubation of concentrated nNOS with H2S under turnover conditions decreased activity after dilution by ∼70%, suggesting irreversible inhibition. However, when calmodulin was omitted during preincubation, activity was not affected, suggesting that irreversible inhibition requires both H2S and NO. Likewise, NADPH oxidation was inhibited with an IC50 of ∼1.9·10−5 m in the presence of Arg and BH4 but exhibited much higher IC50 values (∼1.0–6.1·10−4 m) when Arg and/or BH4 was omitted. Moreover, the relatively weak inhibition of nNOS by Na2S in the absence of Arg and/or BH4 was markedly potentiated by the NO donor 1-(hydroxy-NNO-azoxy)-l-proline, disodium salt (IC50 ∼ 1.3–2.0·10−5 m). These results suggest that nNOS and inducible NOS but not endothelial NOS are irreversibly inhibited by H2S/NO at modest concentrations of H2S in a reaction that may allow feedback inhibition of NO production under conditions of excessive NO/H2S formation.  相似文献   

4.
1. The formation of adenosine 5′-phosphate, guanosine 5′-phosphate and inosine 5′-phosphate from [8-14C]adenine, [8-14C]guanine and [8-14C]hypoxanthine respectively in the presence of 5-phosphoribosyl pyrophosphate and an extract from Ehrlich ascites-tumour cells was assayed by a method involving liquid-scintillation counting of the radioactive nucleotides on diethylaminoethylcellulose paper. The results obtained with guanine were confirmed by a spectrophotometric assay which was also used to assay the conversion of 6-mercaptopurine and 5-phosphoribosyl pyrophosphate into 6-thioinosine 5′-phosphate in the presence of 6-mercaptopurine phosphoribosyltransferase from these cells. 2. At pH 7·8 and 25° the Michaelis constants for adenine, guanine and hypoxanthine were 0·9 μm, 2·9 μm and 11·0 μm in the assay with radioactive purines; the Michaelis constant for guanine in the spectrophotometric assay was 2·6 μm. At pH 7·9 the Michaelis constant for 6-mercaptopurine was 10·9 μm. 3. 25 μm-6-Mercaptopurine did not inhibit adenine phosphoribosyltransferase. 6-Mercaptopurine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 4·7 μm) and hypoxanthine phosphoribosyltransferase (Ki 8·3 μm). Hypoxanthine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 3·4 μm). 4. Differences in kinetic parameters and in the distribution of phosphoribosyltransferase activities after electrophoresis in starch gel indicate that different enzymes are involved in the conversion of adenine, guanine and hypoxanthine into their nucleotides. 5. From the low values of Ki for 6-mercaptopurine, and from published evidence that ascites-tumour cells require supplies of purines from the host tissues, it is likely that inhibition of hypoxanthine and guanine phosphoribosyltransferases by free 6-mercaptopurine is involved in the biological activity of this drug.  相似文献   

5.
1. The aerobic transport of d-glucose and d-galactose in rabbit kidney tissue at 25° was studied. 2. In slices forming glucose from added substrates an accumulation of glucose against its concentration gradient was found. The apparent ratio of intracellular ([S]i) and extracellular ([S]o) glucose concentrations was increased by 0·4mm-phlorrhizin and 0·3mm-ouabain. 3. Slices and isolated renal tubules actively accumulated glucose from the saline; the apparent [S]i/[S]o fell below 1·0 only at [S]o higher than 0·5mm. 4. The rate of glucose oxidation by slices was characterized by the following parameters: Km 1·16mm; Vmax. 4·5μmoles/g. wet wt./hr. 5. The active accumulation of glucose from the saline was decreased by 0·1mm-2,4-dinitrophenol, 0·4mm-phlorrhizin and by the absence of external Na+. 6. The kinetic parameters of galactose entry into the cells were: Km 1·5mm; Vmax 10μmoles/g. wet wt./hr. 7. The efflux kinetics from slices indicated two intracellular compartments for d-galactose. The galactose efflux was greatly diminished at 0°, was inhibited by 0·4mm-phlorrhizin, but was insensitive to ouabain. 8. The following mechanism of glucose and galactose transport in renal tubular cells is suggested: (a) at the tubular membrane, these sugars are actively transported into the cells by a metabolically- and Na+-dependent phlorrhizin-sensitive mechanism; (b) at the basal cell membrane, these sugars are transported in accordance with their concentration gradient by a phlorrhizin-sensitive Na+-independent facilitated diffusion. The steady-state intracellular sugar concentration is determined by the kinetic parameters of active entry, passive outflow and intracellular utilization.  相似文献   

6.
1. Three procedures for isolating ribonucleoprotein particles from the cytoplasmic fraction of rat-uterus homogenates are described. By procedure 1, ribonucleoprotein particles were isolated in the presence of 5mm-Mg2+ and 25mm-K+, and the postmitochondrial supernatant fraction was made to 1·3% (w/v) in potassium deoxycholate. About 50% of the RNA and protein of the microsomal fraction was recovered in the monomeric ribosomes isolated. By procedure 2, ribonucleoprotein particles were isolated in the presence of 10mm-Mg2+ and 0·1m-K+, and in the absence of detergent. The ribosomes obtained were primarily polymeric, but recovery of microsomal RNA and protein was only 32%. By procedure 3, ribonucleoprotein particles were isolated according to procedure 1 but without the use of detergent. A mixture of polymeric and monomeric ribosomes was obtained, and the recovery of microsomal RNA and protein was about 60%. 2. Uterine polymeric and monomeric ribosomes, isolated by procedure 3 and designated `polyribosomal preparation', were examined for protein-synthesizing capabilities. The principal properties of the cell-free protein-synthesizing system containing the polyribosomal preparation are described. The efficiency of amino acid incorporation in the complete system incubated for 30min. and containing the polyribosomal preparation was found to be either 2·5 molecules of [14C]leucine or 2·2 molecules of [14C]-valine incorporated/ribosome. Assay of the preparation in the complete cell-free system containing 10mm-sodium fluoride indicated that 40% of the incorporation activity is a result of initiation of new polypeptide chains and 60% is due to completion of previously existing chains. Monomeric ribosomes obtained by various treatments of the polyribosomal preparation with sodium fluoride, ribonuclease and potassium deoxycholate had decreased incorporation activity in the cell-free system. However, monomeric ribosomes obtained by treatment with sodium fluoride only had an incorporation activity 50% greater than that of monomers obtained by treatment with ribonuclease only. 3. The results indicate that uterine polymeric and monomeric ribosomes are sites of amino acid incorporation in vivo and in vitro. It is concluded that most polymeric and monomeric ribosomes occurring in the cytoplasmic fraction of the uterus are free and unattached to membranes, and that the polyribosomes are relatively unstable.  相似文献   

7.
myo-Inositol homeostasis in foetal rabbit lung   总被引:2,自引:2,他引:0  
In several species, lung maturation is accompanied by a decline in the phosphatidylinositol content of lung surfactant and a concomitant increase in its phosphatidylglycerol content. To examine the possibility that this developmental change is influenced by the availability of myo-inositol, potential sources of myo-inositol for the developing rabbit lung were investigated. On day 28 of gestation the myo-inositol content of foetal rabbit lung tissue (2.3±0.5μmol/g of tissue) was not significantly different from that of adult lung tissue but the activity of d-glucose 6-phosphate:1l-myo-inositol 1-phosphate cyclase (cyclase) in foetal lung tissue (81.0±9.0nmol·h−1·g of tissue−1) was higher than that found in adult lung tissue (23.2±1.0nmol·h−1·g of tissue−1). Day 28 foetal rabbit lung tissue was found also to take up myo-inositol by a specific, energy-dependent, Na+-requiring mechanism. Half-maximal uptake of myo-inositol by foetal rabbit lung slices was observed when the concentration of myo-inositol in the incubation medium was 85μm. When the myo-inositol concentration was 1mm (but not 100μm) the addition of glucose (5.5mm) stimulated myo-inositol uptake. myo-Inositol uptake was observed also in adult rabbit lung and was found to be sub-maximal at the concentration of myo-inositol found in adult rabbit serum. The concentration of myo-inositol in the serum of pregnant adult rabbits (47.5±5.5μm) was significantly lower than that of non-pregnant adult female rabbits (77.9±9.2μm). On day 28 of gestation the concentration of myo-inositol in foetal serum (175.1±12.0μm) was much less than on day 25, but more than that found on day 30. A transient post-partum increase in the concentration of myo-inositol in serum was followed by a rapid decline. Much of the myo-inositol in foetal rabbit serum probably originates from the placenta, where on day 28 of gestation a high cyclase activity (527±64nmol·h−1·g of tissue−1) was measured. The gestational decline in serum myo-inositol concentration, together with the decreasing cyclase activity of the lungs, is consistent with the view that maturation of the lungs is accompanied by decreased availability of myo-inositol to this tissue.  相似文献   

8.
The NAD+-dependent isocitrate dehydrogenase from etiolated pea (Pisum sativum L.) mitochondria was purified more than 200-fold by dye-ligand binding on Matrix Gel Blue A and gel filtration on Superose 6. The enzyme was stabilized during purification by the inclusion of 20% glycerol. In crude matrix extracts, the enzyme activity eluted from Superose 6 with apparent molecular masses of 1400 ± 200, 690 ± 90, and 300 ± 50 kD. During subsequent purification steps the larger molecular mass species disappeared and an additional peak at 94 ± 16 kD was evident. The monomer for the enzyme was tentatively identified at 47 kD by sodium dodecyl-polyacrylamide gel electrophoresis. The NADP+-specific isocitrate dehydrogenase activity from mitochondria eluted from Superose 6 at 80 ± 10 kD. About half of the NAD+ and NADP+-specific enzymes remained bound to the mitochondrial membranes and was not removed by washing. The NAD+-dependent isocitrate dehydrogenase showed sigmodial kinetics in response to isocitrate (S0.5 = 0.3 mm). When the enzyme was aged at 4°C or frozen, the isocitrate response showed less allosterism, but this was partially reversed by the addition of citrate to the reaction medium. The NAD+ isocitrate dehydrogenase showed standard Michaelis-Menten kinetics toward NAD+ (Km = 0.2 mm). NADH was a competitive inhibitor (Ki = 0.2 mm) and, unexpectedly, NADPH was a noncompetitive inhibitor (Ki = 0.3 mm). The regulation by NADPH may provide a mechanism for coordination of pyridine nucleotide pools in the mitochondria.  相似文献   

9.
Ceramide glucoside (1-O-glucosido-2-N-acyl-sphingosine) was hydrolysed to ceramide (N-acyl-sphingosine) and glucose by β-glucosidase from ox brain. The reaction was stimulated by the non-ionic detergent, Triton X-100, or by the anionic detergents, cholate or taurocholate. It was not reversible, had optimum pH5·0 (with acetate buffer) or 5·6 (with pyridine buffer), had Km 1·8×10−4m and was inhibited by δ-gluconolactone and sphingosine, but not by ceramide or palmitic acid.  相似文献   

10.
1. An enzyme that catalyses the transfer of sulphate from adenosine 3′-phosphate 5′[35S]-sulphatophosphate to l-tyrosine methyl ester and tyramine was purified approx. 70-fold from female rat livers. 2. The partially purified preparation is still contaminated with adenosine 3′-phosphate 5′-sulphatophosphate–phenol sulphotransferase (EC 2.8.2.1), but a partial separation of the two enzymes can be achieved by chromatography on columns of Sephadex G-200 and DEAE-Sephadex. 3. The enzyme responsible for the sulphation of l-tyrosine methyl ester and tyramine is activated by dithiothreitol, 2-mercaptoethanol and GSH, the degree of activation being more marked with preparations previously stored at 0 or −10°C. In contrast, the enzymic sulphation of p-nitrophenol is inhibited by all three thiols. Again, there is a quantitative difference in the degree of inhibition of the two enzymes by o-iodosobenzoate, p-chloromercuribenzoate, N-ethylmaleimide and iodoacetate. 4. Mixed-substrate experiments support the hypothesis that the enzyme responsible for the sulphation of l-tyrosine methyl ester and tyramine is separate from that responsible for the sulphation of p-nitrophenol. However, p-nitrophenol is a potent inhibitor of the sulphation of both tyrosyl derivatives whereas these latter compounds have no effect on the sulphation of p-nitrophenol.  相似文献   

11.
1. Rat tissue homogenates convert dl-1-aminopropan-2-ol into aminoacetone. Liver homogenates have relatively high aminopropanol-dehydrogenase activity compared with kidney, heart, spleen and muscle preparations. 2. Maximum activity of liver homogenates is exhibited at pH9·8. The Km for aminopropanol is approx. 15mm, calculated for a single enantiomorph, and the maximum activity is approx. 9mμmoles of aminoacetone formed/mg. wet wt. of liver/hr.at 37°. Aminoacetone is also formed from l-threonine, but less rapidly. An unidentified amino ketone is formed from dl-4-amino-3-hydroxybutyrate, the Km for which is approx. 200mm at pH9·8. 3. Aminopropanol-dehydrogenase activity in homogenates is inhibited non-competitively by dl-3-hydroxybutyrate, the Ki being approx. 200mm. EDTA and other chelating agents are weakly inhibitory, and whereas potassium chloride activates slightly at low concentrations, inhibition occurs at 50–100mm. 4. It is concluded that aminopropanol-dehydrogenase is located in mitochondria, and in contrast with l-threonine dehydrogenase can be readily solubilized from mitochondrial preparations by ultrasonic treatment. 5. Soluble extracts of disintegrated mitochondria exhibit maximum aminopropanol-dehydrogenase activity at pH9·1 At this pH, Km values for the amino alcohol and NAD+ are approx. 200 and 1·3mm respectively. Under optimum conditions the maximum velocity is approx. 70mμmoles of aminoacetone formed/mg. of protein/hr. at 37°. Chelating agents and thiol reagents appear to have little effect on enzyme activity, but potassium chloride inhibits at all concentrations tested up to 80mm. dl-3-Hydroxybutyrate is only slightly inhibitory. 6. Dehydrogenase activities for l-threonine and dl-4-amino-3-hydroxybutyrate appear to be distinct from that for aminopropanol. 7. Intraperitoneal injection of aminopropanol into rats leads to excretion of aminoacetone in the urine. Aminoacetone excretion proportional to the amount of the amino alcohol administered, is complete within 24hr., but represents less than 0·1% of the dose given. 8. The possible metabolic role of amino alcohol dehydrogenases is discussed.  相似文献   

12.
Ceramide lactoside [1-O-(galactosido-4-β-glucosido)-2-N-acyl-sphingosine] was hydrolysed to ceramide glucoside and galactose by β-galactosidase of rat brain. The reaction was not reversible, required cholate or taurocholate, had optimum pH5·0 and Km 2·2×10−5m. It was inhibited by γ-galactonolactone and galactose as well as by ceramide, sphingosine and fatty acid. Ceramide lactoside could be degraded to ceramide, galactose and glucose by mixtures of rat-brain β-galactosidase and ox-brain β-glucosidase.  相似文献   

13.
We isolated oryctin, a 66-residue peptide, from the hemolymph of the coconut rhinoceros beetle Oryctes rhinoceros and cloned its cDNA. Oryctin is dissimilar to any other known peptides in amino acid sequence, and its function has been unknown. To reveal that function, we determined the solution structure of recombinant 13C,15N-labeled oryctin by heteronuclear NMR spectroscopy. Oryctin exhibits a fold similar to that of Kazal-type serine protease inhibitors but has a unique additional C-terminal α-helix. We performed protease inhibition assays of oryctin against several bacterial and eukaryotic proteases. Oryctin does inhibit the following serine proteases: α-chymotrypsin, endopeptidase K, subtilisin Carlsberg, and leukocyte elastase, with Ki values of 3.9 × 10−10 m, 6.2 × 10−10 m, 1.4 × 10−9 m, and 1.2 × 10−8 m, respectively. Although the target molecule of oryctin in the beetle hemolymph remains obscure, our results showed that oryctin is a novel single domain Kazal-type inhibitor and could play a key role in protecting against bacterial infections.  相似文献   

14.
Serine hydroxymethyltransferase (SHMT) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes a hydroxymethyl group transfer from l-serine to tetrahydrofolate (H4folate) to yield glycine and 5,10-methylenetetrahydrofolate (CH2-H4folate). SHMT is crucial for deoxythymidylate biosynthesis and a target for antimalarial drug development. Our previous studies indicate that PvSHMT catalyzes the reaction via a ternary complex mechanism. To define the kinetic mechanism of this catalysis, we explored the PvSHMT reaction by employing various methodologies including ligand binding, transient, and steady-state kinetics as well as product analysis by rapid-quench and HPLC/MS techniques. The results indicate that PvSHMT can bind first to either l-serine or H4folate. The dissociation constants for the enzyme·l-serine and enzyme·H4folate complexes were determined as 0.18 ± 0.08 and 0.35 ± 0.06 mm, respectively. The amounts of glycine formed after single turnovers of different preformed binary complexes were similar, indicating that the reaction proceeds via a random-order binding mechanism. In addition, the rate constant of glycine formation measured by rapid-quench and HPLC/MS analysis is similar to the kcat value (1.09 ± 0.05 s−1) obtained from the steady-state kinetics, indicating that glycine formation is the rate-limiting step of SHMT catalysis. This information will serve as a basis for future investigation on species-specific inhibition of SHMT for antimalarial drug development.  相似文献   

15.
The human pathogen Shigella flexneri subverts host function and defenses by deploying a cohort of effector proteins via a type III secretion system. The IpaH family of 10 such effectors mimics ubiquitin ligases but bears no sequence or structural homology to their eukaryotic counterpoints. Using rates of 125I-polyubiquitin chain formation as a functional read out, IpaH9.8 displays V-type positive cooperativity with respect to varying concentrations of its Ubc5B∼125I-ubiquitin thioester co-substrate in the nanomolar range ([S]½ = 140 ± 32 nm; n = 1.8 ± 0.1) and cooperative substrate inhibition at micromolar concentrations ([S]½ = 740 ± 240 nm; n = 1.7 ± 0.2), requiring ordered binding to two functionally distinct sites per subunit. The isosteric substrate analog Ubc5BC85S-ubiquitin oxyester acts as a competitive inhibitor of wild-type Ubc5B∼125I-ubiquitin thioester (Ki = 117 ± 29 nm), whereas a Ubc5BC85A product analog shows noncompetitive inhibition (Ki = 2.2 ± 0.5 μm), consistent with the two-site model. Re-evaluation of a related IpaH3 crystal structure (PDB entry 3CVR) identifies a symmetric dimer consistent with the observed cooperativity. Genetic disruption of the predicted IpaH9.8 dimer interface reduces the solution molecular weight and significantly ablates the kcat but not [S]½ for polyubiquitin chain formation. Other studies demonstrate that cooperativity requires the N-terminal leucine-rich repeat-targeting domain and is transduced through Phe395. Additionally, these mechanistic features are conserved in a distantly related SspH2 Salmonella enterica ligase. Kinetic parallels between IpaH9.8 and the recently revised mechanism for E6AP/UBE3A (Ronchi, V. P., Klein, J. M., and Haas, A. L. (2013) E6AP/UBE3A ubiquitin ligase harbors two E2∼ubiquitin binding sites. J. Biol. Chem. 288, 10349–10360) suggest convergent evolution of the catalytic mechanisms for prokaryotic and eukaryotic ligases.  相似文献   

16.
Enzymes in cancer: Asparaginase from chicken liver   总被引:2,自引:1,他引:1  
1. A procedure for partial purification of asparaginase from chicken liver is presented. 2. The bulk of the enzyme is located in the soluble fraction of chicken liver. 3. Molecular weights of chicken-liver asparaginase and of the guinea-pig serum enzyme, estimated by gel filtration, were 306000 and 210000 respectively. The Michaelis constants (Km) at 37° and pH8·5 were 6·0×10−5m and 7·2×10−5m respectively. 4. At 50° the chicken-liver enzyme was moderately stable, some activity being lost by aggregation; in dilute electrolyte solutions the activity rapidly diminished. 5. The anti-lymphoma effect of guinea-pig serum in mice carrying the 6C3HED tumour was confirmed. Chicken-liver asparaginase also showed an effect but in this case the enzyme preparation had to be administered repeatedly. 6. Guinea-pig serum asparaginase was stable for several days in mouse blood, after intraperitoneal injection, whereas chicken-liver asparaginase rapidly disappeared. 7. Aspartic acid β-hydrazide was shown to be a competitive inhibitor of chicken-liver asparaginase with Ki approx. 5·6×10−4m. In mice it produced an anti-lymphoma effect, as reported previously.  相似文献   

17.
Fractionation of developing soybean cotyledons into cellular components demonstrates that most of the activity necessary to incorporate acetate-1-14C into lipid remains in the supernatant from a 198,000g spin for 1 hr. The system studied is dependent upon ATP, CoA, and CO2. Concentrations of ATP greater than 4 × 10−3m are inhibitory, while 1 × 10−4m CoA is needed for optimal activity. Avidin inhibition of acetate incorporation into lipid could be reversed by biotin. Studies indicated that NADPH is a better source of reducing power than NADH. The system studied is inhibited by p-chloromercuribenzoic acid and this inhibition can be reversed by an excess of GSH. The system studied shows maximum activity in tris buffer at pH 8.6 or in glycine buffer, pH 9.4.  相似文献   

18.
The initial rate of thymidine-3H incorporation into the acid-soluble pool by cultured Novikoff rat hepatoma cells was investigated as a function of the thymidine concentration in the medium. Below, but not above 2 µM, thymidine incorporation followed normal Michaelis-Menten kinetics at 22°, 27°, 32°, and 37°C with an apparent Km of 0.5 µM, and the Vmax values increased with an average Q10 of 1.8 with an increase in temperature. The intracellular acid-soluble 3H was associated solely with thymine nucleotides (mainly deoxythymidine triphosphate [dTTP]). Between 2 and 200 µM, on the other hand, the initial rate of thymidine incorporation increased linearly with an increase in thymidine concentration in the medium and was about the same at all four temperatures. Pretreatment of the cells with 40 or 100 µM p-chloromercuribenzoate for 15 min or heat-shock (49.5°C, 5 min) markedly reduced the saturable component of uptake without affecting the unsaturable component or the phosphorylation of thymidine. The effect of p-chloromercuribenzoate was readily reversed by incubating the cells in the presence of dithiothreitol. Persantin and uridine competitively inhibited thymidine incorporation into the acid-soluble pool without inhibiting thymidine phosphorylation. At concentrations below 2 µM, thymidine incorporation into DNA also followed normal Michaelis-Menten kinetics and was inhibited in an apparently competitive manner by Persantin and uridine. The apparent Km and Ki values were about the same as those for thymidine incorporation into the nucleotide pool. The over-all results indicate that uptake is the rate-limiting step in the incorporation of thymidine into the nucleotide pool as well as into DNA. The cells possess an excess of thymidine kinase, and thymidine is phosphorylated as rapidly as it enters the cells and is thereby trapped. At low concentrations, thymidine is taken up mainly by a transport reaction, whereas at concentrations above 2 µM simple diffusion becomes the principal mode of uptake. Evidence is presented that indicates that uridine and thymidine are transported by different systems. Upon inhibition of DNA synthesis, net thymidine incorporation into the acid-soluble pool ceased rapidly. Results from pulse-chase experiments indicate that a rapid turnover of dTTP to thymidine may be involved in limiting the level of thymine nucleotides in the cell.  相似文献   

19.
1. Studies on the inactivation of rat intestinal alkaline phosphatase by several metal-binding agents, namely EDTA, 8-hydroxyquinoline, pyridine-2,6-dicarboxylic acid, αα′-bipyridyl, o-phenanthroline and sodium cyanide, indicated the functional role of a metal, probably zinc, in the catalysis. The metal ligands lowered stereospecific uncompetitive inhibition of the enzyme by l-phenylalanine by an extent that paralleled the decline in enzyme activity. 2. The thiol reagents p-hydroxymercuribenzoate, iodoacetamide and iodine inactivated rat intestinal phosphatase. The enzyme could be protected from inactivation by either cysteine or substrate. The l-phenylalanine inhibition remained unchanged only in the presence of moderately inactivating concentrations of the thiol reagents. 3. Inactivation of the enzyme by the amino-group-blocking reagent, O-methylisourea, provided ample evidence for the participation in the catalysis of the -amino group of lysine. At the same time, l-phenylalanine inhibition remained unaltered even when the enzyme was strongly inactivated. This -amino-group-blocked enzyme exhibited no change in migration in starch gel, in contrast with enzyme treated with acetic anhydride, formaldehyde or succinic anhydride. The Michaelis constant of the enzyme was enhanced by such modifications, but the optimum pH remained the same. 4. d-Phenylalanine acted as a competitive or `co-operative' activator for intestinal alkaline phosphatase after it had been modified by acetylation.  相似文献   

20.
Activated factor XII (FXIIa) is selectively inhibited by corn Hageman factor inhibitor (CHFI) among other plasma proteases. CHFI is considered a canonical serine protease inhibitor that interacts with FXIIa through its protease-binding loop. Here we examined whether the protease-binding loop alone is sufficient for the selective inhibition of serine proteases or whether other regions of a canonical inhibitor are involved. Six CHFI mutants lacking different N- and C-terminal portions were generated. CHFI-234, which lacks the first and fifth disulfide bonds and 11 and 19 amino acid residues at the N and C termini, respectively, exhibited no significant changes in FXIIa inhibition (Ki = 3.2 ± 0.4 nm). CHFI-123, which lacks 34 amino acid residues at the C terminus and the fourth and fifth disulfide bridges, inhibited FXIIa with a Ki of 116 ± 16 nm. To exclude interactions outside the FXIIa active site, a synthetic cyclic peptide was tested. The peptide contained residues 20–45 (Protein Data Bank code 1BEA), and a C29D substitution was included to avoid unwanted disulfide bond formation between unpaired cysteines. Surprisingly, the isolated protease-binding loop failed to inhibit FXIIa but retained partial inhibition of trypsin (Ki = 11.7 ± 1.2 μm) and activated factor XI (Ki = 94 ± 11 μm). Full-length CHFI inhibited trypsin with a Ki of 1.3 ± 0.2 nm and activated factor XI with a Ki of 5.4 ± 0.2 μm. Our results suggest that the protease-binding loop is not sufficient for the interaction between FXIIa and CHFI; other regions of the inhibitor also contribute to specific inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号